首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The peripheral and central tonotopy of auditory receptors of the bushcricket Pholidoptera griseoaptera is described. Out of 24 auditory receptor cells of the crista acustica 18 were identified by single-cell recordings in the prothoracic ganglion and complete staining with neurobiotin. Proximal receptor cells of the crista acustica were most sensitive to 6 kHz, with medial cells being sensitive to 20–30 kHz, whereas distal cells were most sensitive to frequencies higher than 50 kHz. Projection areas within the auditory neuropile in the prothoracic ganglion were to- notopically arranged. Proximal cells projected anteriorly, medial cells ventrally and posteriorly, and distal cells to more dorsal regions. Identified receptor cells revealed an interindividual variability of tuning and central projections. Receptor cells from the intermediate organ of a bushcricket were identified for the first time. Receptors of the distal intermediate organ were broadly tuned and less sensitive than those of the crista acustica. Receptor cells of the proximal intermediate organ were most sensitive to frequencies below 10 kHz. They projected in anterior portions of the auditory neuropile, whereas cells of the distal intermediate organ had terminations spread over almost the whole auditory neuropile.  相似文献   

2.
The projections of four anatomically distinct groups of putative neurosecretory cells found within the supra-oesophageal ganglion of the leech Macrobdella decora were studied by intracellular injection of horseradish peroxidase. All four groups have their own characteristic branching pattern while sharing the common feature of possessing primary branches that project into the dorsal commissure. Numerous secondary processes extend from these primary branches to terminate within the neural lamella, as well as within the neuropile. Electron microscopy of the regions into which these secondary processes project reveals numerous neurosecretory terminals. The data suggests that the midregion of the dorsal commissure constitues a neurohemal complex. These observations strengthen the argument that the four groups of identified cells are indeed neurosecretory.  相似文献   

3.
Summary The neuropile regions in the supraesophageal ganglion ofLocusta migratoria were revealed by Bodian staining of frontal and parasagittal sections.A combined recording and staining technique (CoS method, Rehbein et al., 1974) was used to identify physiologically five different types of auditory ventral cord neurons and mark the course of their axons and the positions of the terminal arborizations. The boundaries of the projection regions are described; they include the various multimodal neuropile regions in the ventrolateral protocerebrum.Previously demonstrated instances of convergence with neurons of other sensory systems, and others likely to exist, are considered with respect to their possible significance in neuronal processing within the auditory system.Supported by the Deutsche Forschungsgemeinschaft, as part of the program Sonderforschungsbereich Bionach, Bochum. The investigations were done at Lehrstuhl für Allgemeine Zoologie, Ruhr-UniversitÄt, D-4630 Bochum  相似文献   

4.
Summary The gross structure as well as the neuronal and non-neuronal components of the lamina ganglionaris of the locust Schistocerca gregaria are described on the basis of light- and electron-microscopical preparations of Golgj (selective silver) and ordinary histological preparations. The array of optic cartridges within the lamina neuropile — their order and arrangement — and the composition of the cartridges are described. There are six types of monopolar neurons: three whose branches reach to other cartridges and three whose branches are confined to their own cartridges. Retinula axons terminate either in the lamina or the medulla neuropiles. There are three types of centrifugal neurons, two types of horizontal neuron, as well as glia and trachea in the lamina neuropile. The development of the lamina neuropile is described in terms of developing monopolar and centrifugal axons, growing retinula fibres, and composition of the developing optic cartridges.MSN was supported in part by a Fulbrights-Hays Scholarsship. We are grateful to the Science Research Council for its grant to PMJS.  相似文献   

5.
Summary The praying mantis, Mantis religiosa, is unique in possessing a single, tympanal auditory organ located in the ventral midline of its body between the metathoracic coxae. The ear is in a deep groove and consists of two tympana facing each other and backed by large air sacs. Neural transduction takes place in a structure at the anterior end of the groove. This tympanal organ contains 32 chordotonal sensilla organized into three groups, two of which are 180° out of line with the one attaching directly to the tympanum. Innervation is provided by Nerve root 7 from the metathoracic ganglion. Cobalt backfills show that the auditory neuropile is a series of finger-like projections terminating ipsilaterally near the midline, primarily near DC III and SMC. The auditory neuropile thus differs from the pattern common to all other insects previously studied.  相似文献   

6.
Neurosecretory (Nsy) cells within the cerebral ganglion of Lumbricus terrestris were classified ultrastructurally. The Nsy cells within the subesophageal ganglion, nerve cord ganglion, and the peripheral nervous system were also examined. A comparative survey of Nsy cells of four other species of oligochaetes, Eisenia feotida, octolasion cyaneum, Dendrobeona subrubicunda, and Allolophora longa, was also carried out. Seven cell types (A1, A2, A3, A4, A5, C, and SEF), distinguished by special cytological and ultrastructural features, were found within the cerebral ganglion. Distribution of these cells inside and outside the cerebral ganglion was studied in detail by light and electron microscopy. The nerve terminals of each cell type were followed into the neuropile region. Exocytosis from cell bodies appears to be the main release mechanism for the Nsy granules, whereas small Nsy vesicles are released through synapses in the neuropile. Peripheral fibers of some cell types (A1, A2, and A3) extend through the capsule to the pericapsular epithelium. It is possible that Nsy cells secrete hormones from their cell bodies and peripheral processes and that their centrally directed axons release modulators/transmitters within the neuropile.  相似文献   

7.
The Drosophila brain is tracheated by the cerebral trachea, a branch of the first segmental trachea of the embryo. During larval stages the cerebral trachea splits into several main (primary) branches that grow around the neuropile, forming a perineuropilar tracheal plexus (PNP) at the neuropile surface. Five primary tracheal branches whose spatial relationship to brain compartments is relatively invariant can be distinguished, although the exact trajectories and branching pattern of the brain tracheae are surprisingly variable. Immunohistochemical and electron microscopic studies demonstrate that all brain tracheae grow in direct contact with the glial cell processes that surround the neuropile. To investigate the effect of glia on tracheal development, embryos and larvae lacking glial cells as a result of a genetic mutation or a directed ablation were analyzed. In these animals, the tracheal branching pattern was highly abnormal. In particular, the number of secondary branches entering the central neuropile was increased. Wild-type larvae possess only two central tracheae, typically associated with the mushroom body and the antennocerebral tract. In larvae lacking glial cells, six to ten tracheal branches penetrate the neuropile in a variable pattern. This finding indicates that glia-derived signals constrained tracheal growth in the Drosophila brain and restrict the number of branches entering the neuropile.  相似文献   

8.
Summary The fine structure of the brain of the monogenean Gastrocotyle trachuri (Platyhelminthes) is described. The brain consists of a central neuropile surrounded by a layer of cell bodies. The neuropile is composed of a fine meshwork of naked neurites which contain various types of vesicles and other organelles although microtubules have not been found. Five kinds of vesicles; three clear types and two dense types, were found within the neuropile.Two types of neuronal cell body were identified on the basis of their vesicle contents although it is possible that these two types represent the extremes of a single cell type. A characteristic feature of the neuronal perikarya of Gastrocotyle is the presence of deep infoldings into the cell of the outer membrane. These infoldings often contain fibrous interstitial material and in a number of cases hemidesmosome-like structures have been found in the distended, distal end of the infoldings.  相似文献   

9.
Summary The auditory and tensor nerves of cicadas are mixed nerves containing both afferent and efferent elements. In 17-year cicadas, and in Okanagana rimosa, the auditory nerve contains afferents from body hairs, from the detensor tympani-chordotonal organ, and some 1300–1500 afferents from the hearing organ. Within the fused metathoracic-abdominal ganglionic complex the receptors from both the auditory and tensor nerves form a neuropilar structure that reveals the metameric organization of this complex. A few fibers run anteriorly, projecting into the meso and prothoracic ganglia. Within the ganglionic complex a division of auditory nerve afferents into a dense intermediate and a more diffuse ventral neuropile is observed. In addition, a dorsal motor neuropile is outlined by arborizations of the timbal motor neuron. This neuron is one of several efferent cell types associated with the auditory nerve, and there is an indication that several efferent fibers innervate the timbal muscle. There is anatomical evidence for a possible neuronal coupling between the bilaterally symmetrical large timbal motor neurons. In general, central projections from the auditory and tensor nerves support evidence of a structural layering within the CNS of insects.  相似文献   

10.
We have studied the architecture of giant neuropile glial cells of the medicinal leech Hirudo medicinalis L. using confocal laser scanning microscopy. We also measured changes in the intracellular Ca2+ concentration ([Ca2+]i) induced by activation of glutamate receptors or voltage-gated Ca2+ channels in different glial cell compartments. Glial cells of isolated segmental ganglia were filled iontophoretically with the Ca2+ indicator dye Fluo-3. The three-dimensional structure, calculated from serial sections, showed that numerous fine glial branches extend within the whole neuropile, where most of the synapses between neurones are established. Activation of glial glutamate receptors by glutamate or kainate, or depolarizing the cell membrane by elevating the external K+ concentration resulted in a transient increase in [Ca2+]i, as measured by Fluo-3 fluorescence. The comparison of [Ca2+]i changes in glial cell branches with changes in the cell body demonstrated that transients in the branches were 2–3 times larger than those in the cell body. The results suggest that glutamate receptors and voltage-gated Ca2+ channels are located in the membrane not only of the glial cell body but also of the cellular branches, which may extend close to synaptic domains.  相似文献   

11.
Acetylcholine was ionophoretically applied within the neuropile of the sixth abdominal ganglion of the cockroach Periplaneta americana and depolarizing responses were recorded from an identified giant interneurone (GI 1) using the oil-gap, single-fibre technique. Estimated peak concentrations in the range 1.0 × 10?11M ? 1.0 × 10?8 M acetylcholine were present at the receptors, when this putative neurotransmitter was ionophoretically-applied, at threshold doses, to regions of the neuropile containing dendritic branches of GI 1. Using a stepping micro-drive unit for positioning the ionophoretic micropipette, it was shown that profiles of acetylcholine sensitivity correlated with the distribution of dendritic branches of GI 1 revealed by cobalt staining of the cell under test. It is concluded that acetylcholine receptors are widely distributed throughout the dendritic branches of GI 1 in the sixth abdominal ganglion. The results demonstrate the possibility of investigating the effects of locally-applied putative transmitter molecules and pharmacological agents on synaptic membranes of an identified neurone in the central nervous system of an insect.  相似文献   

12.
The synganglion in the larvalAmblyomma americanum consists of a ganglionic mass pierced by the oesophagus. The nervous tissue consisting of an outer cortex and an inner neuropile is surrounded by an external neurilemma. The cortex comprises perineurium glial cells and neurosecretory and non-neurosecretory neuronal cell bodies. The neuropile consists of nerve fibres ensheathed by glial cells. The entire ganglionic mass is enclosed within a sinus of the circulatory system. No investigations using electron microscopy appear to have been made on the synganglion in the tick larval stage.  相似文献   

13.
Summary Small nerve terminals in the neuropile of the brain of the crab Scylla serrata make close contact with the secondary, tertiary and higher order central branches of the reflex eye-withdrawal motoneurons. Most contacts have the characteristics of chemically transmitting synapses in that the presynaptic terminals contain agranular vesicles of 25 to 50 nm in diameter and are separated from the motoneuron by a synaptic cleft of about 16 nm. Some terminals contain synaptic ribbons, others contain a mixture of larger (50 to 80 nm) agranular and also dense cored vesicles. In addition large blunt-ended contacts unaccompanied by vesicles, occur between neurons in the neuropile and the motoneuron. It is suggested that the absence of synaptic contacts over the large primary branches of the motoneuron could explain previous physiological findings that little or no resistance changes can be detected in this part of the neuron during excitation or inhibition.We thank Mrs. Joan Goodrum for the preparation of Fig. 1.  相似文献   

14.
Neuronal projections from neuroendocrine tracts (nervi corpori cordiaci I and II) in the brains of the locust (Schistocerca vaga), cricket (Acheta domesticus), and cockroach (Periplaneta americana) were studied using reconstructions of silver-intensified cobalt chloride preparations. Collaterals from the NCC I in these species branch extensively in the dorsal protocerebral neuropile, anterior to the stalk of the corpora pedunculata and ventral to its calyces. Other fibers project from the NCC I bilaterally into the medial protocerebral neuropile, anterior to the central body, and posterior to the beta lobes. NCC II collaterals arborize in the medial, dorsal, and lateral protocerebral neuropile, their region of projection partially overlapping with that of the NCC I. Several NCC II fibers terminate in the superior arch of the central body in Acheta but not in the other two species. Tritocerebral cells filled through the NCC I branch in the medial tritocerebral neuropile in all three species, but most extensively in Schistocerca. No NCC fibers were seen to penetrate any part of the corpora pedunculata, protocerebral bridge, olfactory glomeruli, ocellar tracts, or optic lobes. These neuronal projections from the NCC I and II lie anterior to regions of branching of second-order ocellar fibers and thus provide no anatomical basis for direct ocellar input to neurosecretory cells, contrary to previous reports for orthopteroid species (Brousse-Gaury, '71a, b). However, interneurons filled from the optic lobes were found to terminate in the same region of dorsal protocerebral neuropile as NCC I and II fibers in Acheta, thus providing a possible pathway for optic input to the cerebral neuroendocrine system.  相似文献   

15.
G. Alberti  N. A. Fernandez 《Protoplasma》1988,146(2-3):106-117
Summary The lenticulus ofHydrozetes lemnae represents an eye composed of a single cuticular cornea underlain by flat extensions of epidermal cells, two pigment cells, and a pair of lamellated bodies. The latter consist of about 100 vertically arranged lamellae which are orientated longitudinally in the animal. The lamellated bodies are accompanied by glia cells. Two large fat body cells separate the paired components medially. Each lamellated body is connected to a perikaryon located in the brain. It is evident that these components are parts of photoneurons of the central nervous system. Their vertically directed extensions are dendritic branches, terminating under the cornea as lamellated bodies. It is assumed that these are the photosensitive parts of the two photoneurons which serve as receptor cells. The axon of each cell runs transversely through the brain and terminates in a small distinct optic neuropile close to the opposite perikaryon. Thus the resulting chiasma opticum comprises two axons only. The extraordinary composition of this eye corroborates the assumption that it is a secondary light sense organ.  相似文献   

16.
The tergite nerve N6 of the first abdominal segment of the locust Locusta migratoria contains receptor fibers, from the tympanic organ, and hair sensilla as well as motoric axons. The nerve was axotomized in nymphal instars or adults, and the regeneration of nerve fibers was studied. The sensory fibers regrow and regenerate their projection pattern within the central nervous system. They recognize their specific neuropile areas even after entering the ganglion through different pathways. The receptor fibers of the tympanic organ reestablish synaptic connections to auditory interneurons, even though the physiological characteristics of the interneurons are not fully restored. This regenerative capability contrasts with the lack of regeneration of peripheral structures in locusts, but supports the described plasticity in the auditory system of monaural locusts (Lakes, Kalmring, and Engelhard, 1990). The motor fibers do not regenerate nerves innervating muscles of the body wall.  相似文献   

17.
Ultrastructure within the Lateral Plexus of the Limulus Eye   总被引:6,自引:5,他引:1       下载免费PDF全文
The ultrastructure of the lateral plexus in the compound eye of Limulus is investigated by serial section technique. "Cores" of tissue containing the axons, lateral plexus, and neuropile associated with one sensory ommatidium show the following features: (a) collateral branches from retinular cells do not contribute to the lateral plexus proper, but do form retinular neuropile by contacting collaterals of a self-contained cluster of retinular axons; (b) collateral branches from eccentric cell axons always branch repeatedly upon leaving the parent axon, and compose the bulk of the lateral plexus; (c) the most distal collateral branches from an eccentric cell axon appear to form neuropile and synaptic contacts with each other, whereas more proximal branches form synaptic contacts with collaterals from eccentric cell axons of neighboring ommatidia. We conclude that the ribbon synapses and associated transmitter substance in eccentric cell collaterals must be inhibitory, and that two pathways for self-inhibition may exist. We suggest, as a working hypothesis for the structure of the lateral plexus, a branching pattern with depth that mirrors the horizontal spread of lateral inhibition measured physiologically.  相似文献   

18.
Summary In Locusta migratoria and Schistocerca gregaria, the projection areas and branching patterns of the tympanal receptor cells in the thoracic ganglia were revealed. Four auditory neuropiles can be distinguished on each side of the ventral cord, always located in the anterior part of the ring tract in each neuromere (two in the meta-, one in the meso-, and one in the prothoracic ganglion). Some of the receptor fibres ascend to the suboesophageal ganglion. There are distinct subdivisions within the auditory, frontal metathoracic and mesothoracic neuropiles. The arrangement of the terminal arborisations of the four types of tympanal receptor cells according to their different frequency-intensity responses is somatotopic and similar in the two ganglia. Here the receptor cells of type-1 form a restricted lateroventral arborisation. Cells of type-4 occupy the caudal part with a dorsorostral extension. Cells of type-2 and -3 arborise in a subdivision between both. Most of the stained low-frequency receptors (type-1, -2, and -3) terminate either in the metathoracic or, predominantly, in the mesothoracic ganglion. In contrast, the high-frequency cells (type-4) ascend to the prothoracic ganglion. The receptor fibres of the different types of receptor cells differ in diameter.Abbreviations aRT anterior part of the ring tract - cf characteristic frequency - MVT median ventral tract - SEG suboesophageal ganglion - SMC supramedian commissure - VMT ventral median tract - VIT ventral intermediate tract Supported by the Deutsche Forschungsgemeinschaft; part of program A7 in Sonderforschungsbereich 305 (Ecophysiology)  相似文献   

19.
Zlatic M  Landgraf M  Bate M 《Neuron》2003,37(1):41-51
Drosophila sensory neurons form distinctive terminal branch patterns in the developing neuropile of the embryonic central nervous system. In this paper we make a genetic analysis of factors regulating arbor position. We show that mediolateral position is determined in a binary fashion by expression (chordotonal neurons) or nonexpression (multidendritic neurons) of the Robo3 receptor for the midline repellent Slit. Robo3 expression is one of a suite of chordotonal neuron properties that depend on expression of the proneural gene atonal. Different features of terminal branches are separately regulated: an arbor can be shifted mediolaterally without affecting its dorsoventral location, and the distinctive remodeling of one arbor continues as normal despite this arbor shifting to an abnormal position in the neuropile.  相似文献   

20.
Two types of auditory interneurone which ascend from the prothoracic ganglion to the brain in the cricket Gryllus bimaculatus (De Geer) are described. Intracellular recordings were made from the axons of the neurones in the brain under closed-field stimulus conditions and the recorded cells then stained with either cobalt or Lucifer Yellow. Both neurone types—the Plurisegmental ascending low frequency neurone 1 (PALF1), and the Plurisegmental ascending high frequency neurone 1 (PAHF1)—show response characteristics which would make them well suited to encoding the conspecific calling and courtship songs respectively. Further, the projection areas of both neurone types in the brain overlap those of previously identified intraganglionic interneurones, particularly in the anterior-ventral protocerebrum, and it is suggested that an auditory neuropile may exist in this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号