首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The conformation of two agonist–antagonist pairs of bradykinin (Arg1-Pro2-Pro3-Gly4-Phe5-Ser6-Pro7-Phe8-Arg9) analogues were studied in CD3OH/H2O solution by 1H-nmr techniques. The first agonist peptide studied, D -Arg0-Arg1-Pro2-Hyp3-Gly4-Thi5-Ser6-Pro7-Thi8-Arg9, differs from the bradykinin sequence by the addition of D -Arg0, the replacement of the Phe moieties in positions 5 and 8 by Thi (Thi = β-(2-thienyl)-L -alanine), and Hyp3 (Hyp = L -4-hydroxy-L -proline) in position 3. In the corresponding antagonist sequence, Pro7 is replaced by D -Phe7. The second agonist–antagonist pair studied does not contain the D -Arg0 residue, which is present only to slow down the rate of metabolism. Based on complete resonance assignments from two-dimensional total correlation spectroscopy and rotating frame nuclear Overhauser effect spectroscopy spectra at 500 MHz, the peptides were analyzed in terms of intraresidue, sequential, and medium-range nuclear Overhauser effects, amide proton temperature coefficients, and vicinal coupling constants. Both agonist peptides show clear evidence for the existence of a type I β-turn comprising the C-terminal residues Ser6-Pro7-Thi8-Arg9 in fast conformational equilibrium with extended structures throughout. Although the conformational space is dominated by extended structures, the presence of the β-turn is spectroscopically clearly discernible. The two antagonist peptides, on the other hand, do not show evidence of turn formation but rather the presence of an extended conformation with some irregularities in the N-terminal region of the peptide. While the existence of a turn at the C-terminal end of bradykinin and its analogues with agonist activity has been predicted by empirical calculations and measurements in very apolar solvents, this study, for the first time, provides evidence based on physical data in a polar solvent environment that the turn is present, that it is type I and that it is essential for agonist activity. In the particular solvent used in these studies, the Pro7 to D -Phe7 substitution precluded the formation of the turn for the C-terminal residues of the antagonist. © 1993 John Wiley & Sons, Inc.  相似文献   

2.
Abstract

The solution conformations of two potent antagonists of bradykinin (Arg1-Pro2-Pro3-Gly4- Phe5-Ser6-Pro7-Phe8-Arg9), [Aca-1, DArg0, Hyp3, Thi5, DPhe7,(N-Bzl)Gly8]BK (1) and [Aaa- 1, DArg0, Hyp3, Thi5,(2-DNal)7, Thi8]BK (2), were studied by using 2D NMR spectroscopy in DMSO-dg and molecular dynamics simulations. The NMR spectra of peptide 1 reveals the existence of at least two isomers arising from isomerization across the DPhe7-(N-Bzl)Gly8peptide bond. The more populated isomer possesses the cis peptide bond at this position. The ratio of cis/trans isomers amounted to 7:3. With both antagonists, the NMR data indicate a β-turn structure for the Hyp3-Gly4 residues. In addition, for peptide 2, position 2,3 is likely to be occupied by turn-like structures. The cis peptide bond between DPhe7 and (N- Bzl)Gly8 in analogue 1 suggests type VI β-turn at position 7,8. The molecular dynamics runs were performed on both peptides in DMSO solution. The results indicate that the structure of peptide 1 is characterized by type VIb β-turn comprising residues Ser-Arg9 and the βI or βII-turn involving the Pro2-Thi5 fragment, whereas peptide 2 shows the tendency towards the formation of type I β-turn at position 2,3. The structures of both antagonists are stabilized by a salt bridge between the guanidine moiety of Arg1 and the carboxyl group of Arg9. Moreover, the side chain of DArg0 is apart of the rest of molecule and is not involved in structural elements except for a few calculated structures.  相似文献   

3.
In the present paper we describe the synthesis, purification, single crystal x-ray analysis, and solution structural characterization by nmr spectroscopy, combined with restrained molecular dynamic simulations, of the cyclic hexapeptide cyclo-(Pro-Phe-β-Ala-Phe-Phe-β-Ala). The peptide was synthesized by classical solution methods and the cyclization of the free hexapeptide was accomplished in good yields in diluted methylenechloride solution using N, N-dicyclohexyl-carbodiimide. The compound crystallizes in the monoclinic space group P21 from methanol/ethyl acetate. The molecule adopts in the solid state a conformation characterized by cis β-Ala6-Pro1 peptide bond. The α-amino acid residues are at the corner positions of turned structures. The Pro1-Phe2 segment is incorporated in a pseudo type I β-turn, while Phe4-Phe5 is in a typical type I β-turn. Assignment of all 1H and 13C resonances was achieved by homo- and heteronuclear two-dimensional techniques in dimethylsulfoxide (DMSO) solutions. The conformational analysis was based on inter-proton distances derived from rotating frame nuclear Overhauser effect spectroscopy spectra and homonuclear coupling constants. Restrained molecular dynamic simulation in vacuo was also performed to built refined molecular models. The molecule is present in DMSO solution as two slowly interconverting conformers, characterized by a cis-tran isomerism around the β-Ala6-Pro1 peptide bond. This work confirms our expectations on the low propensity of β-alanyl residues to be positioned at the corners of turned structure. © 1994 John Wiley & Sons, Inc.  相似文献   

4.
Bradykinin (BK) is a peptide hormone with sequence Arg1-Pro2-Pro3-Gly4-Phe5-Ser6-Pro7-Phe8-Arg9 and has been implicated in a multitude of pathophysiological processes such as the ability to lower systemic blood pressure and stimulate pain. BK analogues having bulky, β-branched D -aliphatic residues at position 7 combined with bulky L -aliphatic residues at position 8 have now been observed to be strong antagonists. Conformational studies based on two-dimensional nmr experiments in methanol/water (80/20 v/v) were carried out on several such active antagonists in a polar solvent. Included in this study were the very active antagonists, [D -Arg0, Hyp3, Thi5, D -Cpg7, Cpg8]-BK [Cpg: α-cyclo-pentyl-glycine; Hyp: trans-4-hydroxy-L -proline; Thi: β-(2-thienyl)-L -alanine] ( I ), [D -Arg0, Hyp3, D -Cpg7, Cpg8] -BK ( II ), as well as its variant with D -Cpg7 replaced by Cpg7, namely [D -Arg0, Hyp3, Cpg7, Cpg8]-BK ( III ). A turn-like structure, which coexists with the extended conformation, was observed between residues 2 and 5 for the most active antagonists I and II , in direct correlation with the peptide activities. No turn-like structure was found for residues 6–9. In peptide III , a turn-like structure was not identified. The existence of a turn at the C-terminal end of bradykinin and its analogues has been predicted by empirical calculations and supported by nmr measurements. But the present nmr study on the most active antagonists ( I , II ) does not support this hypothesis. Instead, the data suggest that a turn-like structure between residues 2 and 5 could be important for antagonist activity. Finally, one weak inhibitor [D -Cpg7]-BK ( IV ) showed no defined secondary structure. © 1993 John Wiley & Sons, Inc.  相似文献   

5.
CD and nmr studies have been carried out on aqueous trifluoroethanol (TFE) solutions of bradykinin (BK) and a bradykinin antagonist. The CD results exhibit a striking effect of TFE on the spectra of BK, with sequence Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg, and the BK antagonist, with sequence D -Arg-Arg-Pro-Hyp-Gly-Thi-D -Ser-D -Cpg-Cpg-Arg [where Hyp is 4-hydroxy-L -proline; Thi refers to β-(2-thienyl)-L -alanine and Cpg refers to α-cyclopentylglycine]. The effect of increasing concentration of TFE in water on the difference ellipticity at 222 nm was examined and showed that BK may be a mixture of at least two different conformers, one of which largely forms when the TFE concentration is increased beyond 80%. The linear extrapolation of 100% of the difference ellipticity of BK at low TFE concentrations yields a value in agreement with that shown by the BK antagonist, indicating that the conformation of BK at the lower TFE concentrations is similar to that of the BK antagonist. The conformational analysis was carried out using both one-dimensional and two-dimensional 1H-nmr techniques. The total correlation spectroscopy (TOCSY) spectrum of BK in a 60/40% (v/v) TFE/H2O solution at 10°C and a nuclear Overhauser effect spectroscopy (NOESY) spectrum that shows only sequential Hα(i) – NH(i + 1) or the Hα(i) – Hδδ′(i + 1) NOEs indicate that the majority of the molecules adopt an all-trans extended conformation. The TOCSY for BK in the 95/5% (v/v) TFE/H2O solution shows that there are two major conformations in the solution with about equal population. The NOESY experiment shows two new important cross peaks for one conformation, namely Pro2(α)-Pro3 (α) and the Pro2(α)-Gly4(NH), indicating a cis Pro2-Pro3 bond and a type VI β-turn between residues Arg1 and Gly4 involving cis proline at position 3, respectively. The low temperature coefficient of Gly4 for this conformation suggests the presence of an intramolecular hydrogen bond, therefore a type VIa β-turn is present. The other conformation is all trans and extended. The BK antafonist shows difference CD spectra in TFE solutions referred to H2O that are superficially indicative of a β-bend. However, nmr speaks against this possibility, as only one set of peaks were observed in the TOCSY and NOESY experiments, indicating an all-trans extended confirmation over the range of TFE concentrations. The BK-antagonist CD data suggest that solvent perturbation of the CD of an extended confirmation perturbation of the optical activity of the thienyl moiety of the peptide since the CD spectrum of N-acetyl-β-thienyl-L -alanine N-methylamide is strongly perturbed by TFE. The present results again demonstrate the complementary relationship between CD and nmr. © 1994 John Wiley & Sons, Inc.  相似文献   

6.
G H Paine  H A Scheraga 《Biopolymers》1987,26(7):1125-1162
The program SMAPPS (Statistical-Mechanical Algorithm for Predicting Protein Structure) was originally designed to determine the probable and average backbone (?, ψ) conformations of a polypeptide by the application of equilibrium statistical mechanics in conjunction with an adaptive importance sampling Monte Carlo procedure. In the present paper, the algorithm has been extended to include the variation of all side-chain (χ) and peptide-bond (ω) dihedral angles of a polypeptide during the Monte Carlo search of the conformational space. To test the effectiveness of the generalized algorithm, SMAPPS was used to calculate the probable and average conformations of Met-enkephalin for which all dihedral angles of the pentapeptide were allowed to vary. The total conformational energy for each randomly generated structure of Met-enkephalin was obtained by summing over the interaction energies of all pairs of nonbonded atoms of the whole molecule. The interaction energies were computed by the program ECEPP /2 (Empirical Conformational Energy Program for Peptides). Solvent effects were not included in the computation. The results of the Monte Carlo calculation of the structure of Met-enkephalin indicate that the thermodynamically preferred conformation of the pentapeptide contains a γ-turn involving the three residues Gly2-Gly3-Phe4. The γ-turn conformation, however, does not correspond to the structure of lowest conformational energy. Rather, the global minimum-energy conformation, recently determined by a new optimization technique developed in this laboratory, contains a type II′ β-bend that is formed by the interaction of the four residues Gly2-Gly3-Phe4-Met5. A similar minimum-energy conformation is found by the SMAPPS procedure. The thermodynamically preferred γ-turn structure has a conformational energy of 4.93 kcal/mole higher than the β-bend structure of lowest energy but, because of the inclusion of entropy in the SMAPPS procedure, it is estimated to be ~ 9 kcal/mole lower in free energy. The calculation of the average conformation of Met-enkephalin was repeated until a total of ten independent average conformations were established. As far as the phenylalanine residue of the pentapeptide is concerned, the results of the ten independent average conformations were all found to lie in the region of conformational space corresponding to the γ-turn. These results further support the conclusion that the γturn conformation is thermodynamically favored.  相似文献   

7.
The solid state conformations of cyclo[Gly–Proψ[CH2S]Gly–D –Phe–Pro] and cyclo[Gly–Proψ[CH2–(S)–SO]Gly–D –Phe–Pro] have been characterized by X-ray diffraction analysis. Crystals of the sulfide trihydrate are orthorhombic, P212121, with a = 10.156(3) Å, b = 11.704(3) Å, c = 21.913(4) Å, and Z = 4. Crystals of the sulfoxide are monoclinic, P21, with a = 10.662(1) Å, b = 8.552(3) Å, c = 12.947(2) Å, β = 94.28(2), and Z = 2. Unlike their all-amide parent, which adopts an all-trans backbone conformation and a type II β-turn encompassing Gly-Pro-Gly-D -Phe, both of these peptides contain a cis Gly1-Pro2 bond and form a novel turn structure, i.e., a type II′ β-turn consisting of Gly–D –Phe–Pro–Gly. The turn structure in each of these peptides is stabilized by an intramolecular H bond between the carbonyl oxygen of Gly1 and the amide proton of D -Phe4. In the cyclic sulfoxide, the sulfinyl group is not involved in H bonding despite its strong potential as a hydrogen-bond acceptor. The crystal structure made it possible to establish the absolute configuration of the sulfinyl group in this peptide. The two crystal structures also helped identify a type II′ β-turn in the DMSO-d6 solution conformers of these peptides. © 1993 John Wiley & Sons, Inc.  相似文献   

8.
Ian Mc Ewen 《Biopolymers》1993,33(4):693-702
The cyclic hexapeptide cyclo[-Pro1-Gly2-Glu3(OBzl)-Pro4-Phe5-Leu6-] ( 1 ; OBzl: benzyl ester) was modeled and synthesized to be used as a chiral site for the separation of enantiomers. Total correlation spectroscopy and nuclear Ovehauser effect spectroscopy spectra of the peptide in CDCl3 showed the presence of three stereoisomers. The two dominant stereoisomers 1a and 1b exchanged chemically with each other, while the minor stereoisomer 1c exchanged exclusively with the stereoisomer 1b . Stereoisomer 1a had two cis proline peptide bonds while stereoisomer 1b had all-trans peptide bonds. The stereoisomer 1c had, for nonstrained peptides, an unusual cis phenylalanine peptide bond while both proline peptide bonds were trans. © 1993 John Wiley & Sons, Inc.  相似文献   

9.
Nuclear Overhauser enhancement (NOE) experiments have been performed with the elastin peptides, namely; HCO-Val1-Pro2-Gly3-Gly4-OMe, t-Boc-Val1-Pro2-Gly3-Val4-Gly5-OMe and t-Boc-Val6-Ala1-Pro2-Gly3-Val4-Gly5-OMe in DMSO-d6. An NOE of approximately 10% was observed between the αCH of Pro2 and the NH of Gly3 involved in the β-turn of all three peptides. This finding shows the close proximity of two aforementioned protons and thus shows the occurrence of Type II β-turn in the repeat elastin peptides. The intermolecular distances are calculated and compared with the distances obtained from other model systems.  相似文献   

10.
Summary A simple heteronuclear relayed E.COSY pulse sequence with a minimum number of pulses is proposed for the quantitative determination of heteronuclear three-bond J-coupling constants in uniformly 13C-enriched polypeptide samples. Numerous heteronuclear three-bond coupling constants, including , , , and , can be determined for each residue from a single heteronuclear relayed E.COSY spectrum. Couplings relevant for stereospecific assignments as well as for the determination of dihedral angles in the amino acid backbone and in side chains are obtained. The method is demonstrated on the uniformly 13C-enriched decapeptide antamanide (-Val1-Pro2-Pro3-Ala4-Phe5-Phe6-Pro7-Pro8-Phe9-Phe10-).  相似文献   

11.
Abstract

A detailed NMR study is carried out in acetonitrile/water solutions on three novel cyclic bradykinin antagonist analogues, BKM-824, BKM-870, and BKM-872, to examine their solution structures, and to correlate the structures with bradykinin antagonist and anti-cancer activities. The solution structures of the cyclic peptides are correlated with the structural data for known linear bradykinin antagonists. The sequences are: BKM-824 c[Ava-Igl-Ser-DF5F-Oic- Arg] where Ava is 5-aminovaleric acid, Igl is α-(2-indanyl)glycine, F5F is pentafluorophenylalanine, and Oic is (2S,3aS,7aS)-octahydroindole-2-carboxylic acid; BKM-870; c[DArg-Arg-Add-DF5F-Oic-Arg] where Add is 12-aminododecanoic acid; and BKM-872; c[DArg-Arg-Eac-Ser-DF5F-Oic-Arg] where Eac is 6-aminocaproic acid. BKM-824 was the only peptide within this series that possessed a discernable solution structure. The NMR data indicate the presence of a type I β-turn between residues F5F4 and Ava1, a C-terminal-like end. Molecular dynamics calculations show that a type I β-turn from DF5F4 to Ava1 does exist although the turn was somewhat distorted. This result differs from the structures seen in linear bradykinin antagonists, which usually possess a type II II′β-turn at the C-terminal end and the presence of a defined turn is correlated with bradykinin antagonist activity. There is no solution structure for BKM-870 and BKM-872 but a correlation between the primary sequence Argterminal-DArg1-Arg2-long chain aliphatic amino acid and anti-cancer activity is evident.  相似文献   

12.
The conformation of the head-to-tail cyclic analogue of bradykinin in DMSO was investigated by nmr. Three sets of resonances were detected and fully assigned. These were attributed to the presence of three stable conformers, two of which were exchanging on the nmr time scale. A fourth, incomplete set of resonances was detected but not assigned. The three major conformers differ in the conformation at the three X-Pro bonds present. From nuclear Overhauser effect spectroscopy (NOESY) spectra, three sets of interproton distances were derived and used in NOE-restrained distance geometry calculations. The resulting structures were refined by energy minimization to yield families of structures. Conformer I is characterized by the presence of two type VIb β-turns between Arg1 and Gly4 and between Phe5 and Phe8. The first β-turn is present also in conformer II, while an inverse γ-turn bridging Pro3 is the most pronounced structural feature of conformer III. © 1995 John Wiley & Sons, Inc.  相似文献   

13.
Two cyclic hexapeptides, cyclo[Ala1-D -Ala2-Ser3-Phe4-Gly5-Ser6] and cyclo[Ala1-Gly2-Ser3-Phe4-Gly5-Ser6], derived from the loop portion of the C′C″ ridge of CD4, were characterized by high-resolution nmr spectroscopy and simulated annealing studies. In DMSO-d6 both of these peptides display a single conformer on the nmr time scale with two intramolecular H-bond (1 ← 4) stabilized β-turns at positions 2–3 and 5–6. The nmr derived distance constraints were used in simulated annealing calculations to generate the solution structures. These structures adopt energetically comparable conformational substates that are not resolvable on the nmr time scale. In aqueous solution, the H-bond stabilized β-turn conformation for cyclo [Ala-D -Ala-Ser-Phe-Gly-Ser] is no longer the predominant structural form. Structures generated using molecular dynamics simulations with no experimental constraints were compared with those from nmr analysis. The correlation between these two sets of structures allows the use of molecular simulations as a predictive tool for the conformational analysis of small peptides. © 1994 John Wiley & Sons, Inc.  相似文献   

14.
The molecular structure of N-benzyloxycarbonyl-α-aminoisobutyryl-prolyl-α-aminoisobutyryl-alanyl methyl ester (Z-Aib-Pro-Aib-Ala-OMe), the amino terminal tetrapeptide of alamethicin is reported. The molecule contains two consecutive β-turns with Aib-Pro and Pro-Aib at the corners, forming an incipient 310 helix. This constitutes the first example of an X2-Pro3 β-turn in the crystal structure of a small peptide.  相似文献   

15.
Pivaloyl-L -Pro-Aib-N-methylamide has been shown to possess one intramolecular hydrogen bond in (CD3)2SO solution, by 1H-nmr methods, suggesting the existence of β-turns, with Pro-Aib as the corner residues. Theoretical conformational analysis suggests that Type II β-turn conformations are about 2 kcal mol?1 more stable than Type III structures. A crystallographic study has established the Type II β-turn in the solid state. The molecule crystallizes in the space group P21 with a = 5.865 Å, b = 11.421 Å, c = 12.966 Å, β = 97.55°, and Z = 2. The structure has been refined to a final R value of 0.061. The Type II β-turn conformation is stabilized by an intramolecular 4 → 1 hydrogen bond between the methylamide NH and the pivaloyl CO group. The conformational angles are ?Pro = ?57.8°, ψPro = 139.3°, ?Aib = 61.4°, and ψAib = 25.1°. The Type II β-turn conformation for Pro-Aib in this peptide is compared with the Type III structures observed for the same segment in larger peptides.  相似文献   

16.
Differential scanning calorimetry studies of the effect of NaCl on protein-based polymer self-assembly has been carried out on six elastin-based synthetic sequential polypeptides- i.e., the polypentapeptide (L -Val1-L -Pro2-Gly3-L -Val4-Gly5)n and its more hydrophobic analogues (L -Leu1-L -Pro2-Gly3-L -Val4-Gly5)n and (L -Val1-L -Pro2-L -Ala3-L -Val4-Gly5)n; the polytetrapeptide (L -Val1-L -Pro2-Gly3-Gly4)n and its more hydrophobic analogue (L -IIe1-L -Pro2-Gly3-Gly4)n; and the polynonapeptide (a pentatetra hybrid), (L -Val1-L -Pro2-Gly3-L -Val4-Gly5-L -Val6-L -Pro7-Gly8-Gly9)n. Previous physical characterizations of the polypentapeptides have demonstrated the occurrence of an inverse temperature transition since increase in order of the polypentapeptide, as the temperature is raised from below to above that of the transition, has been repeatedly observed using different physical characterizations. In the present experiments, it is observed that the transition temperatures of the polypeptides studied are linearly dependent on NaCl concentration. The molar effectiveness of NaCl in shifting the transition temperature ΔTm/[N], is about 14°C/[N], with the dependence on peptide hydrophobicity being fairly small. Interestingly, however, the δΔQ/ [N] does depend on the hydrophobicity of a polypeptide.  相似文献   

17.
I. McEwen  K. Ottosson 《Biopolymers》1993,33(9):1377-1387
The cyclic tetrapeptide cyclo(-Pro1-Ala2-D -Phe3-Leu4-) was modeled and synthesized to be used for molecular interactions and chiral discrimination studies in CDCl3. Total correlation spectroscopy and nuclear Overhauser effect spectroscopy spectra of the cyclic tetrapeptide showed the presence of one dominant stereoisomer— 1 —and three minor ones— 2a , 2b , and 2c —in a relationship of 92:6:1:1. They formed three- to five-hydrogen bond complexes with Boc-D -Ser, Boc-L -Ser and Boc-L -Thr (Boc: t-butyloxylcarbonyl). These three Boc-amino acids interact more strongly with 2a , 2b , and 2c than with 1 , altering their relative concentrations to 48:40:6:6. In the complex between the cyclic tetrapeptide and Boc-D -Ser, the stereoisomer 2a exchanged chemically with 1 , 2b , and 2c , while 1 did not exchange with either 2b or 2c . This chemical exchange is due to cis-trans isomerization of the peptide bonds. The chiral discrimination of 2a , 2b , and 2c was stronger than that of 1 . No complexation occurred with Boc-L -Ala or Boc-L -Trp. © 1993 John Wiley & Sons, Inc.  相似文献   

18.
Extensive proton magnetic resonance experiments were carried out on three bradykinin peptide antagonists B-9430, B-9436, and B-9858 in aqueous solutions as well as in sodium dodecylsulphate micelles (B-9430 and B-9436) and CD3OH/H2O (60%/40%) mixtures for B-9858. All three peptides showed no observable secondary structure in aqueous solution. However, in their respective structure-inducing solvents, B-9430 (B1 and B2 receptor antagonist) and B-9436 (a B2 receptor antagonist) exhibit a type II β-turn involving residues 2–5, and B-9430 also exhibits a type II′ β-turn involving residues 6–9 (in sodium dodecylsulfate micellar solutions), whereas B-9858, a B1-specific receptor antagonist, exhibits only a type II β-turn involving residues 2–5 (in CD3OH/H2O solutions). Simulated annealing calculations on B-9858 confirm the experimental conclusions based on the nmr data. In addition, simulated annealing of the (2S, 3aS, 7aS)-octahydroindole-2-carboxylic acid (Oic residue), which is present in two of the three decapeptides studied, show that the one-chair conformation of the six-membered ring predominates, in agreement with the experimental data. The activities of these peptides are compared with their secondary structures and the specific receptor activity appears to depend on the presence of specific amino acid residues, such as N-(2-indanyl)glycine (Nig) and D[α-(2-indanyl)glycine] (D-Igl) as well as on elements of secondary structure. © 1997 John Wiley & Sons, Inc. Biopoly 42: 521–535, 1997  相似文献   

19.
The crystal structure of the model tripeptide Boc-Aib-Gly-Leu-OMe ( 1 ) reveals two independent molecules in the asymmetric unit that adopt “enantiomeric” type I and type I′ β-turn conformations with the Aib and Gly residues occupying the corner (i + 1 and i + 2) positions. 13C cross polarization and magic angle sample spinning spectra in the solid state also support the coexistence of two conformational species. 13C-nmr in CDCl3 establishes the presence of a single species or rapid exchange between conformations. 400 MHz 1H-nmr provides evidence for conformational exchange involving a major and minor species, with β-turn conformations supported by the low solvent exposure of Leu(3) NH and the observation of NiH ↔ Ni+1H nuclear Overhauser effects. CD bands in the region 190–230 nm are positive, supporting a major population of type I′ β-turns. The isomeric peptide, Boc-Gly-Leu-Aib-OMe ( 2 ), adopts an “open” type II′ β-turn conformation in crystals. Solid state and solution nmr support population of a single conformational species. Chiral perturbation introduced outside the folded region of peptides may provide a means of modulating screw sense in achiral sequences. © 1998 John Wiley & Sons, Inc. Biopoly 45: 191–202, 1998  相似文献   

20.
Summary Total retro-inverso (TRI) analogues of bradykinin (BK), the B2a -selective kinin antagonistd-Arg0[Hyp3,d-Phe7,Leu8]BK, angiotensin II (AT II) and the AT II antagonist Saralasin ([Sar1, Val5, Ala8]AT II) were prepared by conventional solid-phase synthesis. Molecular recognition of TRI peptidomimetics by G-protein-coupled receptors was studied by competitive radioligand displacement experiments. TRI analogues ofd-Arg0[Hyp3,d-Phe7,Leu8]BK specifically bound to the kidney medulla B2a bradykinin receptor with affinities (K d ) ranging from 64 μM to 4 μM. Conversely, TRI analogues of BK, AT II and Saralasin did not bind to either the B2a bradykinin receptor or the rat AT1a AT II receptor, respectively. These studies indicate that the TRI strategy is more compatible with the synthesis of antagonists than ‘agonists’. Three TRI peptidomimetics ofd-Arg0[Hyp3,d-Phe7,Leu8]BK were weak inhibitors of angiotensin converting enzyme. All other TRI peptidomimetics had no effect upon ACE activity. These data endorse the utility of the TRI strategy for the synthesis of protease-resistant antagonists of peptide hormones and neuropeptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号