首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 191 毫秒
1.
The alpha subunit of eukaryotic protein synthesis initiation factor (eIF-2 alpha) is phosphorylated at a single serine residue (Ser51) by two distinct and well-characterized protein kinase, the haem-controlled repressor (HCR) and the double-stranded RNA-activated inhibitor (dsI). The sequence adjacent to Ser51 is rich in basic residues (Ser51-Arg-Arg-Arg-Ile-Arg) suggesting that they may be important in the substrate specificity of the two kinases, as is the case for several other protein kinases. A number of proteins and synthetic peptides containing clusters of basic residues were tested as substrates for HCR and dsI. Both kinases were able to phosphorylate histones and protamines ar multiple sites as judged by two-dimensional mapping of the tryptic phosphopeptides. These data also showed that the specificities of the two kinases were different from one another and from the specificities of two other protein kinases which recognise basic residues, cAMP-dependent protein kinase and protein kinase C. In histones, HCR phosphorylated only serine residues while dsI phosphorylated serine and threonine. Based on phosphoamino acid analyses and gel filtration of tryptic fragments, dsI was capable of phosphorylating both 'sites' in clupeine Y1 and salmine A1, whereas HCR acted only on the N-terminal cluster of serines in these protamines. The specificities of HCR and dsI were further studied using synthetic peptides with differing configurations of basic residues. Both kinases phosphorylated peptides containing C-terminal clusters of arginines on the 'target' serine residue, provided that they were present at positions +3 and/or +4 relative to Ser51. However, peptides containing only N-terminal basic residues were poor and very poor substrates for dsI and HCR, respectively. These findings are consistent with the disposition of basic residues near the phosphorylation site in eIF-2 alpha and show that the specificities of HCR and dsI differ from other protein kinases whose specificities have been studied.  相似文献   

2.
High-level recombinant expression of protein kinases in eukaryotic cells or Escherichia coli commonly gives products that are phosphorylated by autocatalysis or by the action of endogenous kinases. Here, we report that phosphorylation occurred on serine residues adjacent to hexahistidine affinity tags (His-tags) derived from several commercial expression vectors and fused to overexpressed kinases. The result was observed with a variety of recombinant kinases expressed in either insect cells or E. coli. Multiple phosphorylations of His-tagged full-length Aurora A, a protein serine/threonine kinase, were detected by mass spectrometry when it was expressed in insect cells in the presence of okadaic acid, a protein phosphatase inhibitor. Peptide mapping by liquid chromatography-mass spectrometry detected phosphorylations on all three serine residues in an N-terminal tag, alpha-N-acetyl-MHHHHHHSSGLPRGS. The same sequence was also phosphorylated, but only at a low level, when a His-tagged protein tyrosine kinase, Pyk2 was expressed in insect cells and activated in vitro. When catalytic domains of Aurora A and several other protein serine/threonine kinases were expressed in E. coli, serines in the affinity tag sequence GSSHHHHHHSSGLVPRGS were also variably phosphorylated. His-Aurora A with hyperphosphorylation of the serine residues in the tag aggregated and resisted thrombin-catalyzed removal of the tag. Treatment with alkaline phosphatase partly restored sensitivity to thrombin. The same His-tag sequence was also detected bearing alpha-N-d-gluconoylation in addition to multiple phosphorylations. The results show that histidine-tag sequences can receive complicated posttranslational modification, and that the hyperphosphorylation and resulting heterogeneity of the recombinant fusion proteins can interfere with downstream applications.  相似文献   

3.
The matrix protein from avian myeloblastosis virus and the Rous sarcoma virus, Prague C strain, is a phosphoprotein. A comparison of the amino acid sequences shows these phosphoproteins are very similar. The sites of phosphorylation of the matrix protein purified from virions are identified as serine residues 68 and 106. Treatment with purified rabbit skeletal-muscle protein phosphatase 1 or 2A, selectively releases phosphate from serine 68, while alkali treatment releases phosphate from both sites. When analyzed as a substrate for six different protein kinases, only the Ca2+/phospholipid-dependent protein kinase modifies the matrix protein. The serine residues phosphorylated in vivo are identical to those phosphorylated in vitro by this protein kinase. The role of these phosphorylation events in viral production is discussed.  相似文献   

4.
Intermediate filament (IF) networks can be regulated by phosphorylation of unit proteins, such as vimentin, by specific kinases leading to reorganization of the IF filamentous structure. Recently, we identified mitogen-activated protein kinase-activated protein kinase-2 (MAPKAP kinase-2) as a vimentin kinase (Cheng and Lai [1998] J. Cell. Biochem. 71:169-181). Herein we describe the results of further in vitro studies investigating the effects of MAPKAP kinase-2 phosphorylation on vimentin and the effects of the phosphorylation on the filamentous structure. We show that MAPKAP kinase-2 mainly phosphorylates vimentin at Ser-38, Ser-50, Ser-55, and Ser-82, residues all located in the head domain of the protein. Surprisingly, and in stark contrast to phosphorylation by most other kinases, phosphorylation of vimentin by MAPKAP kinase-2 has no discernable effect on its assembly. It suggested that structure disassembly is not the only obligated consequence of phosphorylated vimentin as regulated by other kinases. Finally, a mutational analysis of each of the phosphorylated serine residues in vimentin suggested that no single serine site was primarily responsible for structure maintenance, implying that the retention of filamentous structure may be the result of the coordinated action of several phosphorylated serine sites. This also shed new lights on the functional task(s) of vimentin that is intermediate filament proteins might provide a phosphate reservoir to accommodate the phosphate surge without any structural changes.  相似文献   

5.
Eukaryotic initiation factor 2 (eIF-2) from rabbit reticulocytes can be phosphorylated on its beta-subunit by two different protein kinases, protein kinase C and casein kinase 2. Phosphorylation by these kinases is additive, suggesting that they phosphorylate different sites (serine residues) in eIF-2 beta. Two-dimensional peptide mapping of the phosphopeptides generated from labelled eIF-2 beta by digestion with trypsin, cyanogen bromide or Staphylococcus aureus V8 proteinase showed that protein kinase C and casein kinase 2 phosphorylated distinct and different sites in this protein. This conclusion was supported by the results of analysis of the phosphopeptides on reverse-phase chromatography. Analysis of the phosphopeptides derived from eIF-2 beta labelled by both kinases together strongly suggested that the sites labelled by protein kinase C and casein kinase 2 are adjacent in the primary sequence. These data are discussed in the light of the present understanding of the sequence specificity of the kinases. Rat liver eIF-2 beta was also found to be a substrate for protein kinase C and casein kinase 2, which were again shown to label different serine residues.  相似文献   

6.
The main intrinsic membrane protein of the lens fiber cell, MIP, has been previously shown to be phosphorylated in preparations of lens fragments. Phosphorylation occurred on serine residues near the cytoplasmic C-terminus of the molecule. Since MIP is thought to function as a channel protein in lens plasma membranes, possibly as a cell-to-cell channel protein, phosphorylation could regulate the assembly or gating of these channels. We sought to identify the specific serines which are phosphorylated in order to help identify the kinases involved in regulating MIP function. To this end we purified a peptide fragment from native membranes that had not been subjected to any exogenous kinases or kinase activators. Any phosphorylation detected in these fragments must be due to cellular phosphorylation and thus is termed in vivo phosphorylation. Purified membranes were also phosphorylated with cAMP-dependent protein kinase to determine the mobility of phosphorylated and unphosphorylated MIP-derived peptides on different HPLC columns and to determine possible cAMP-dependent protein kinase phosphorylation sites. Lens membranes, which contain 50-60% of the protein as MIP, were digested with lysylendopeptidase C. Peptides were released from the C-terminal region of MIP and a major product of 21-22 kDa remained membrane-associated. Separation of the lysylendopeptidase-C-released peptides on C8 reversed-phase HPLC demonstrated that one of these fragments, corresponding to residues 239-259 in MIP, was partially phosphorylated. The phosphorylated and nonphosphorylated forms of this peptide were separated on QAE HPLC. In vivo phosphorylation sites were found at residues 243 and 245 through phosphoserine modification via ethanethiol and sequence analysis. Phosphorylation was never detected on serine 240. The phosphorylation level of serine 243 could be increased by incubation of membranes with cAMP-dependent protein kinase under standard assay conditions. Other kinases that phosphorylate serines found near acidic amino acids must be responsible for the in vivo phosphorylation demonstrated at serine 245.  相似文献   

7.
Post-translational modification of proteins is a universal form of cellular regulation. Phosphorylation on serine, threonine, tyrosine or histidine residues by protein kinases is the most widespread and versatile form of covalent modification. Resultant changes in activity, localization or stability of phosphoproteins drives cellular events. MS and bioinformatic analyses estimate that ~30% of intracellular proteins are phosphorylated at any given time. Multiple approaches have been developed to systematically define targets of protein kinases; however, it is likely that we have yet to catalogue the full complement of the phosphoproteome. The amino acids that surround a phosphoacceptor site are substrate determinants for protein kinases. For example, basophilic enzymes such as PKA (protein kinase A), protein kinase C and calmodulin-dependent kinases recognize basic side chains preceding the target serine or threonine residues. In the present paper we describe a strategy using peptide arrays and motif-specific antibodies to identify and characterize previously unrecognized substrate sequences for protein kinase A. We found that the protein kinases PKD (protein kinase D) and MARK3 [MAP (microtubule-associated protein)-regulating kinase 3] can both be phosphorylated by PKA. Furthermore, we show that the adapter protein RIL [a product of PDLIM4 (PDZ and LIM domain protein 4)] is a PKA substrate that is phosphorylated on Ser(119) inside cells and that this mode of regulation may control its ability to affect cell growth.  相似文献   

8.
Abstract: VAMP/synaptobrevin (SYB), an integral membrane protein of small synaptic vesicles, is specifically cleaved by tetanus neurotoxin and botulinum neurotoxins B, D, F, and G and is thought to play an important role in the docking and/or fusion of synaptic vesicles with the presynaptic membrane. Potential phosphorylation sites for various kinases are present in SYB sequence. We have studied whether SYB is a substrate for protein kinases that are present in nerve terminals and known to modulate neurotransmitter release. SYB can be phosphorylated within the same vesicle by endogenous Ca2+/calmodulin-dependent protein kinase II (CaMKII) associated with synaptic vesicles. This phosphorylation reaction occurs rapidly and involves serine and threonine residues in the cytoplasmic region of SYB. Similarly to CaMKII, a casein kinase II (CasKII) activity copurifying with synaptic vesicles is able to phosphorylate SYB selectively on serine residues of the cytoplasmic region. This phosphorylation reaction is markedly stimulated by sphingosine, a sphingolipid known to activate CasKII and to inhibit CaMKII and protein kinase C. The results show that SYB is a potential substrate for protein kinases involved in the regulation of neurotransmitter release and open the possibility that phosphorylation of SYB plays a role in modulating the molecular interactions between synaptic vesicles and the presynaptic membrane.  相似文献   

9.
The lysosomal enzyme binding receptor protein isolated from monkey brain by phosphomannan-Sepharose affinity chromatography was phosphorylated by [gamma-32P] ATP by protein kinases tightly associated with the receptor protein. A greater than 200 kDa protein was phosphorylated on both serine and tyrosine residues and a approximately 45 kDa protein was phosphorylated on only serine residues as evidenced by SDS-gel electrophoresis, autoradiography and phosphoamino acid analysis [(Panneerselvam, Ramamoorthy & Balasubramanian (1987) Biochem Biophys Res Commun, 147, 927-935)]. 125I-labelled lysosomal enzymes could be cross-linked to the receptor protein in the presence of disuccinimidyl suberate. Phosphorylation of the receptor on both serine and tyrosine residues was inhibited by quercetin, polylysine and polymyxin B. Catalytic subunit of cyclic AMP-dependent protein kinase preferentially phosphorylated the approximately 45 kDa protein. In the presence of Triton X-100, phosphorylation of a few additional protein bands on non-tyrosine residues was observed. There was a marked reduction in the efficiency of binding lysosomal enzymes by the phosphorylated receptor protein in comparison to the unphosphorylated receptor protein.  相似文献   

10.
11.
Recently, a new technology for high-throughput screening has been developed, called IMAP(patent pending). IMAP technology has previously been implemented in an assay for cyclic nucleotide phosphodiesterases (PDE). The authors describe the development of a homogeneous, non-antibody-based fluorescence polarization (FP) assay for a variety of protein kinases. In this assay, fluorescently labeled peptide substrate phosphorylated by the kinase is captured on modified nanoparticles through interactions with immobilized metal (M(III)) coordination complexes, resulting in a change from low to high polarization values. This assay is applicable to protein kinases that phosphorylate serine, threonine, or tyrosine residues. The IMAP platform is very compatible with high-throughput robotics and can be applied to the 1536-well format. As there are hundreds of different kinases coded for in the human genome, the assay platform described in this report is a valuable new tool in drug discovery.  相似文献   

12.
MAP kinase kinase (MAPKK) was purified 30,000-fold to homogeneity from extracts of rabbit skeletal muscle and shown to be a monomeric protein of apparent molecular mass 44 kDa. MAPKK activated the 42 kDa isoform of MAP kinase by phosphorylation of Thr-183 and Tyr-185, and phosphorylated itself slowly on tyrosine, threonine and serine residues, establishing that it is a 'dual specificity' protein kinase. Peptide sequences from MAPKK were homologous to other protein serine/threonine kinases, especially to the subfamily that includes yeast protein kinases that lie upstream of yeast MAP kinase homologues in the pheromone-dependent mating pathways.  相似文献   

13.
In Mycobacterium tuberculosis (Mtb), regulatory phosphorylation of proteins at serine and/or threonine residues by serine/threonine protein kinases (STPKs) is an emerging theme connected with the involvement of these enzymes in virulence mechanisms. The identification of phosphorylation sites in proteins provides a powerful tool to study signal transduction pathways and to identify the corresponding interaction networks. Detection of phosphorylated proteins as well as assignment of the phosphorylated sites in STPKs is a major challenge in proteomics since some of these enzymes might be interesting therapeutical targets. Using different strategies to identify phosphorylated residues, we report, in the present work, MS studies of the entire intracellular regions of recombinant protein kinases PknA, PknD, PknE, and PknH from Mtb. The on-target dephosphorylation/MALDI-TOF for identification of phosphorylated peptides was used in combination with LC-ESI/MS/MS for localization of phosphorylation sites. By doing so, seven and nine phosphorylated serine and/or threonine residues were identified as phosphorylation sites in the recombinant intracellular regions of PknA and PknH, respectively. The same technique led also to the identification of seven phosphorylation sites in each of the two recombinant kinases, PknD and PknE.  相似文献   

14.
The glycogen-binding (G) subunit of protein phosphatase-1G is phosphorylated stoichiometrically by glycogen synthase kinase-3 (GSK3), and with a greater catalytic efficiency than glycogen synthase, but only after prior phosphorylation by cyclic AMP-dependent protein kinase (A-kinase) at site 1. The residues phosphorylated are the first two serines in the sequence AIFKPGFSPQPSRRGS-, while the C-terminal serine (site 1) is one of the two residues phosphorylated by A-kinase. These findings demonstrate that (i) the G subunit undergoes multisite phosphorylation in vitro; (ii) phosphorylation by GSK3 requires the presence of a C-terminal phosphoserine residue; (iii) GSK3 can synergise with protein kinases other than casein kinase-2.  相似文献   

15.
Orchestia cavimana is a terrestrial crustacean, which cyclically stores calcium in diverticula of the midgut, in the form of calcified amorphous concretions. These concretions are associated with a proteinaceous matrix, the main constituent of the soluble matrix is Orchestin, an acidic calcium-binding protein [Testenière et al., Biochem. J. 361 (2002) 327-335]. In the present paper, we clearly demonstrate that Orchestin is phosphorylated on serine and tyrosine residues, but that calcium binding only occurs via the phosphoserine residues. To our knowledge, this is the first example of an invertebrate mineralization for which a post-translational modification is clearly related to an important function of a calcifying protein.  相似文献   

16.
P1, a high mobility group-like nuclear protein, phosphorylated by casein kinase II on multiple sites in situ, has been found to be phosphorylated in vitro by protein kinase C, cyclic AMP-dependent protein kinase and calcium/calmodulin-dependent protein kinase II on multiple and mostly distinct thermolytic peptides. All these enzymes phosphorylated predominantly serine residues, with casein kinase II and protein kinase C also labeling threonine residues. Both casein kinase II and second messenger-regulated protein kinases, particularly protein kinase C, might therefore be involved in the physiological regulation of multisite phosphorylation of P1.  相似文献   

17.
18.
A number of oncogenic viruses encode transforming proteins with protein kinase activities apparently specific for tyrosine residues. Recent evidence has raised questions as to the substrate specificity of these kinases in general and the physiological relevance of tyrosine phosphorylation in particular. The P130gag-fps transforming protein of Fujinami sarcoma virus (FSV) is strongly phosphorylated at 2 tyrosine residues in FSV-transformed cells of which 1 (Tyr-1073) is also the major site of P130gag-fps intermolecular autophosphorylation in vitro. We have investigated the specificity of the protein kinase activity intrinsic to FSV P130gag-fps by using site-directed mutagenesis to change the codon for Tyr-1073 to those for the other commonly phosphorylated hydroxyamino acids, serine and threonine. This approach has some advantages over the use of synthetic peptides to define protein kinase recognition sites in that the protein containing the altered target site can be expressed in intact cells. In addition it allows higher order as well as primary structure of the enzyme recognition site to be considered. Neither serine nor threonine were phosphorylated when substituted for tyrosine at position 1073 of P130gag-fps indicating a stringent specificity for tyrosine as a substrate of the P130gag-fps protein kinase autophosphorylating activity. Consistent with the suggestion that tyrosine phosphorylation is of functional significance we find that these and other FSV Tyr-1073 mutants have depressed enzymatic and oncogenic capacities.  相似文献   

19.
The present studies demonstrate that matrix Gla protein (MGP), a 10-kDa vitamin K-dependent protein, is phosphorylated at 3 serine residues near its N-terminus. Phosphoserine was identified at residues 3, 6, and 9 of bovine, human, rat, and lamb MGP by N-terminal protein sequencing. All 3 modified serines are in tandemly repeated Ser-X-Glu sequences. Two of the serines phosphorylated in shark MGP, residues 2 and 5, also have glutamate residues in the n + 2 position in tandemly repeated Ser-X-Glu sequences, whereas the third, shark residue 3, would acquire an acidic phosphoserine in the n + 2 position upon phosphorylation of serine 5. The recognition motif found for MGP phosphorylation, Ser-X-Glu/Ser(P), has been seen previously in milk caseins, salivary proteins, and a number of regulatory peptides. A review of the literature has revealed an intriguing dichotomy in the extent of serine phosphorylation among secreted proteins that are phosphorylated at Ser-X-Glu/Ser(P) sequences. Those phosphoproteins secreted into milk or saliva are fully phosphorylated at each target serine, whereas phosphoproteins secreted into the extracellular environment of cells are partially phosphorylated at target serine residues, as we show here for MGP and others have shown for regulatory peptides and the insulin-like growth factor binding protein 1. We propose that the extent of serine phosphorylation regulates the activity of proteins secreted into the extracellular environment of cells, and that partial phosphorylation can therefore be explained by the need to ensure that the phosphoprotein be poised to gain or lose activity with regulated changes in phosphorylation status.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
C Grose  W Jackson    J A Traugh 《Journal of virology》1989,63(9):3912-3918
Varicella-zoster virus (VZV) glycoprotein gpI is the predominant viral glycoprotein within the plasma membranes of infected cells. This viral glycoprotein is phosphorylated on its polypeptide backbone during biosynthesis. In this report, we investigated the protein kinases which participate in the phosphorylation events. Under in vivo conditions, VZV gpI was phosphorylated on its serine and threonine residues by protein kinases present within lysates of either VZV-infected or uninfected cells. Because this activity was diminished by heparin, a known inhibitor of casein kinase II, isolated gpI was incubated with purified casein kinase II and shown to be phosphorylated in an in vitro assay containing [gamma-32P]ATP. The same glycoprotein was phosphorylated when [32P]GTP was substituted for [32P]ATP in the protein kinase assay. We also tested whether VZV gpI was phosphorylated by two other ubiquitous mammalian protein kinases--casein kinase I and cyclic AMP-dependent kinase--and found that only casein kinase I modified gpI. When the predicted 623-amino-acid sequence of gpI was examined, two phosphorylation sites known to be optimal for casein kinase II were observed. Immediately upstream from each of the casein kinase II sites was a potential casein kinase I phosphorylation site. In summary, this study showed that VZV gpI was phosphorylated by each of two mammalian protein kinases (casein kinase I and casein kinase II) and that potential serine-threonine phosphorylation sites for each of these two kinases were present in the viral glycoprotein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号