首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
HNE (4-hydroxy-2,3-trans-nonenal), an aldehydic product of lipid peroxidation, has been reported to modulate different functional parameters of human and rat neutrophils (PMNs), such as chemiluminescence, migration and some enzymatic activities, thus exerting effects that varied according to the concentration tested. Experiments were done to evaluate the effects of HNE on superoxide anion (O2?.) production from human PMNs, isolated from healthy volunteers. After having tested that HNE by itself was not able to activate the cells, comparisons were made between its effects on PMNs, stimulated by either a single stimulus, N-formyl-methionyl-leucyl-phenylalanine (FMLP), or a combination of stimuli, such as FMLP and the neuropeptide substance P (SP; primed PMNs). In the concentration range tested (10?12–10?4 M ), HNE inhibited FMLP-evoked O2?. production with an IC50 of 11·6 ± 1·5 × 10?6 M ; at concentrations ≤10?6 M , HNE enhanced O2?. production elicited by FMLP + SP, while higher concentrations were inhibitory. There was a bell-shaped dose–response curve to the enhancing effects of HNE, depending on the incubation time being recorded after only short periods (≤5 min) of the exposure of the cells to HNE; this was not shown by structurally-related aldehydes, such as 2-nonenal and nonanal. These results suggest that low concentrations of HNE may participate in the evolution of the inflammatory process, by contributing to the activation of PMNs. The effects of high concentrations of the aldehyde may represent a mechanism which contributes to the regulation of the extent of the inflammatory response.  相似文献   

2.
The effects of 4-hydroxy-2,3-trans-nonenal (HNE) and nonanal on the activity of phosphoinositide-specific phospholipase C of rat neutrophils have been studied in parallel with their action on neutrophil oriented migration. Concentrations of HNE ranging from 10(-7) to 10(-5) M significantly stimulated the oriented migration of rat polymorphonuclear leukocytes. HNE stimulated both the basal and GTP gamma S-induced phospholipase C activity when used at concentrations between 10(-8) and 10(-6) M. Nonanal was devoid both of chemotactic activity and of any action on phospholipase C activity. The effect of GTP gamma S on the stimulation of phospholipase C induced by HNE was higher when the lowest dose of the aldehyde was used; the finding of an additive effect between 10(-8) M HNE and 2 x 10(-5) M GTP gamma S suggests that the two compounds may share a final common pathway of action. These results suggest that the chemotactic activity of HNE might be mediated, like that of other more well-known chemoattractants, by the stimulation of phosphoinositide-specific phospholipase C.  相似文献   

3.
Oxidative stress reduces adenylate cyclase activity and also the maximal response to beta-adrenoceptor stimulation in the rat heart, while beta-adrenoceptor density is not affected or increased. Since free sulfhydryl groups are essential to beta-adrenoceptor function and the sulfhydryl reactive substance 4-hydroxy-2,3-trans-nonenal (HNE) is responsible for part of the effects of oxidative stress, the effect of HNE on beta-adrenoceptor function in field stimulated left atria of the rat was determined. To this end field stimulated atria were incubated with 10 microM, 100 microM and 1 mM HNE for 25 min. After removing the excess of HNE, beta-adrenoceptor function was determined by measuring the positive inotropic response to (-)-isoproterenol. It was found that 10 microM HNE had no effect on beta-adrenoceptor function, whereas 100 microM HNE reduced the maximal effect to (-)-isoproterenol without affecting the pD2 (-log EC50). At these concentrations, HNE had no effect on either beta-adrenoceptor density or on c-AMP production. After 1 mM HNE, the atria stopped contracting. Since the effects of the synthetic thiol inactivator N-ethyl maleimide were similar to those of HNE, it was concluded that the reduction of beta-adrenoceptor function by HNE is probably the result of alkylation of free sulfhydryl groups. Our results indicate that the reduction of adenylate cyclase activity by oxidative stress is not mediated by the production of HNE, however oxidative stress and HNE both reduce the maximal response to beta-adrenoceptor stimulation.  相似文献   

4.
Liver phospholipase-C (PL-C) activity proved to be promptly modified in rats fed with an orotic acid (OA) supplemented diet; an increased of PL-C basal activity was demonstrated after 2 days of diet. In the present work the possible involvement of lipid peroxidation was investigated, since 4-hydroxynonenal (HNE) and 4-hydroxyoctenal (HOE), two end-products of lipid peroxidation, have been shown to induce a strong stimulation of hepatic PL-C. Membrane-bound PL-C activity was evaluated together with the rate of TBArs production by liver homogenates obtained from rats fed with a diet containing 1% OA for 2 and 5 days. PL-C activity was measured by following the rate of formation of Ins-P3 from labelled PtdIns-P2 added to isolated liver membranes. TBArs production was unchanged in the livers of rats fed the OA diet, while basal and GTPgammaS-stimulated PL-C activity increased; furthermore PL-C stimulation by bombesin was deeply impaired by OA.  相似文献   

5.
Lung membranes are susceptible to oxygen radicals, formed during inflammation, redox cycling of toxic agents, exposition to ozon etc. Oxygen radicals may modify the beta-adrenergic response. However, at the same time beta-adrenoceptors of the lung are frequently addressed in therapy. We embarked upon this problem by studying the effects of the aldehyde 4-hydroxy-2,3-transnonenal (HNE), one of the major products of lipid peroxidation, on the density of beta-adrenoceptors of rat lung membranes. It is shown, that the physiological important sulfhydryl blocking agent HNE inactivates the beta-adrenoceptors in a time- and concentration dependent (0.5-2.5 mM) way, indicated by a decrease in (-)-[3H]dihydroalprenolol (DHA) binding to lung membranes. Moreover, it is shown that combined treatment of HNE with (-)-isoproterenol (0.5 microM) or 1-alprenolol (0.5-10 nM) does not influence the extent of inactivation of beta-adrenoceptors by HNE. This is in contrast with previous studies, conducted with other, synthetic, sulfhydryl blocking agents, such as N-ethylmaleimide (NEM), suggesting that an other mechanism of inactivation is involved upon HNE treatment.  相似文献   

6.
Intracellular metabolism of 4-hydroxy-2-nonenal (HNE), a major product and mediator of oxidative stress and inflammation, is analyzed in resting and fMLP-stimulated human polymorphonuclear leukocytes (PMNL), where this compound is generated during activation of the respiratory burst. HNE consumption rate in PMNL is very low, if compared to other cell types (rat hepatocytes, rabbit fibroblasts), where HNE metabolism is always an important part of secondary antioxidative defense mechanisms. More than 98% of HNE metabolites are identified. The pattern of HNE intermediates is quite similar in stimulated and resting PMNL - except for higher water formation in resting PMNL - while the initial velocity of HNE degradation is somewhat higher in resting cells, 0.44 instead of 0.28 nmol/(min × 106 cells). The main products of HNE metabolism are 4-hydroxynonenoic acid (HNA), 1,4-dihydroxynonene (DHN) and the glutathione adducts with HNE, HNA, and DHN. Protein-bound HNE and water account for about 3-4% of the total HNE derivatives in stimulated cells, while in resting cells protein-bound HNE and water are 4% and 20%, respectively. Cysteinyl-glycine-HNE adduct and mercapturic acids contribute to about 5%.  相似文献   

7.
Oxidative-stress-driven lipid peroxidation (LPO) is involved in the pathogenesis of several human diseases, including cancer. LPO products react with cellular proteins changing their properties, and with DNA bases to form mutagenic etheno-DNA adducts, removed from DNA mainly by the base excision repair (BER) pathway.One of the major reactive aldehydes generated by LPO is 4-hydroxy-2-nonenal (HNE). We investigated the effect of HNE on BER enzymes in human cells and in vitro. K21 cells pretreated with physiological HNE concentrations were more sensitive to oxidative and alkylating agents, H2O2 and MMS, than were untreated cells. Detailed examination of the effects of HNE on particular stages of BER in K21 cells revealed that HNE decreases the rate of excision of 1,N6-ethenoadenine (ɛA) and 3,N4-ethenocytosine (ɛC), but not of 8-oxoguanine. Simultaneously HNE increased the rate of AP-site incision and blocked the re-ligation step after the gap-filling by DNA polymerases. This suggested that HNE increases the number of unrepaired single-strand breaks (SSBs) in cells treated with oxidizing or methylating agents. Indeed, preincubation of cells with HNE and their subsequent treatment with H2O2 or MMS increased the number of nuclear poly(ADP-ribose) foci, known to appear in cells in response to SSBs. However, when purified BER enzymes were exposed to HNE, only ANPG and TDG glycosylases excising ɛA and ɛC from DNA were inhibited, and only at high HNE concentrations. APE1 endonuclease and 8-oxoG-DNA glycosylase 1 (OGG1) were not inhibited. These results indicate that LPO products exert their promutagenic action not only by forming DNA adducts, but in part also by compromising the BER pathway.  相似文献   

8.
9.
Among the oxidative breakdown products of ω-6 unsaturated fatty acids, the aldehyde 4-hydroxy-2,3-nonenal (HNE) is receiving increasing attention for its potential pathophysiological implication, which at least partly lies on the demonstrated ability to modulate gene expression of a number of genes. Here we show that a marked down-modulation of HNE nuclear localisation in cells of a macrophage line (J774-A1) can be afforded by treatment with sulfydryl and carbonyl reagents without significantly interfering with cell viability. As regards the addition of thiol-group reagents to the cell suspension, N-ethylmaleimide (NEM) led to a sustained decrease of HNE nuclear localisation, while 4-(chloromercuri)-benzene-sulfonic acid (PCMBS) gave a similar but more transient effect. Hydroxylamine (HYD), a carbonyl-group reagent, was also able to inhibit HNE nuclear localisation. The actual efficacy of the inhibitors used was then tested on the HNE-induced stimulation of transforming growth factor β1 (TGFβ1) production by J774-A1 cells. Indeed, the thiol reagents NEM and PCMBS, both markedly down-modulating HNE nuclear localisation, were able to inhibit HNE-induced increase of TGFβ1 protein synthesis. The carbonyl reagent HYD was less effective on this respect, producing strong but incomplete protection against HNE-induced TGFβ1 increase. Taken together, the results indicate that sulfydryl groups are involved in the process of HNE cellular internalisation, while both sulfydryl and carbonyl groups are involved in the process of HNE nuclear translocation, and consequently in the modulation of gene expression by the aldehyde. Further, an actual demonstration is provided that HNE-induced effect on gene regulation can be efficiently counteracted by suitable interference with HNE biochemistry.  相似文献   

10.
Replacement of media in cell cultures during exposure to hyperoxia was found to alter oxygen toxicity. Following 100 hr of exposure to 95% or 80% O2, the surviving fraction (SF) of Chinese hamster fibroblasts, as assayed by clonogenicity, was less than 1 × 10?3 when the culture media was replaced only at the onset of the O2 exposure. Media replacement every 24 hr throughout the hyperoxic exposure resulted in SFs of 1.7 × 10?1 (95% O2) and 1.9 × 10?1 (80% O2) at 95 hr. Cellular resistance to and metabolism of 4-hydroxy-2-nonenal (4HNE), a cytotoxic byproduct of lipid peroxidation, was examined in cells 24 hr following exposure to 80% O2 for 144 hr with media replacement. These O2-exposed cells were resistant to 4HNE, requiring 2.6 times as long in 80 μM 4HNE to reach 30% survival as compared to density-matched normoxia control. Furthermore, during 40 and 60 min of exposure to 4HNE, the O2-preexposed cells metabolized greater quantities of 4HNE (fmole/cell) relative to control. The activity of glutathione S-transferase (GST), an enzyme believed to be involved with the detoxification of 4HNE, was significantly increased in the O2-preexposed cells compared with controls. Catalase activity was significantly increased, but no change was found in total glutathione content, glutathione peroxidase, manganese superoxide dismutase, and copper-zinc superoxide dismutase activities at the time of 4HNE treatment in the O2-preexposed cells relative to density-matched control. The results demonstrate that in vitro tolerance to the cytotoxic effects of hyperoxia can be achieved through media replacement during O2 exposure. Tolerance to oxygen toxicity conferred resistance to the cytotoxic effects of 4HNE, possibly through GST-catalyzed detoxification. These results provide further support for the hypothesis that toxic aldehydic byproducts of lipid peroxidation contribute to hyperoxic injury.  相似文献   

11.
4-Hydroxynonenal (HNE) is a major end-product of lipid peroxidation. 1 mM HNE inhibits the activity of liver phospholipase C (PL-C) and this effect is prevented by 1 mM GSH; on the contrary GSH is unable to counteract the stimulation of PL-C induced by a low concentration of HNE (100 nM). Other hydroxyalkenals are able to stimulate PL-C at low doses (micromolar or less), the most effective being 4-hydroxyoctenal which acts at picomolar doses. The lack of a correlation between the chain length of the aldehydes used and the degree of PL-C stimulation seems to exclude the possibility that their effect could be due to an aspecific solvent action toward the phosphatidylinositol-4,5-diphosphate used as substrate for the enzymatic assay.  相似文献   

12.
Lipid peroxidation results in release of 4-hydroxy-2,3-trans-nonenal (HNE), which is known to conjugate to specific amino acids of proteins and may alter their function. The effect of HNE on the activities of Na(+)/K(+)-ATPase, Mg(2+)-ATPase, Ca(2+)-ATPase, and calmodulin-stimulated Ca(2+)-ATPase has been studied both in erythrocyte ghosts and in neutrophil membrane preparations. Neutrophil Ca(2+)-ATPase was strongly inhibited by micromolar concentrations of HNE (IC(50) = 12 microM), that means in the range of pathophysiologically relevant HNE levels. The IC(50) value for neutrophil Na(+)/K(+)-ATPase was about 40 microM. HNE was considerably less effective against neutrophil Mg(2+)-ATPase and the erythrocyte ghost enzymes (IC(50) values range from 91 to 240 microM). The data suggest that HNE may play a specific role in the regulation of neutrophil calcium homeostasis in response to oxidative stress.  相似文献   

13.
4-Hydroxynonenal (HNE) degradation was investigated in isolated perfused rat hearts of the WKY and SHR strains before and after ischemia. HNE (10 μmoles l?1) were infused and the concentration of HNE in the effluent was determined. The rate of initial consumption was about 50 nmoles min?1 g?1 wet weight in hearts of both the WKY and SHR rats. In the WKY rat hearts, this rate of HNE degradation did not change during several minutes of HNE infusion and also remained constant during postischemic reperfusion. In the hearts of the SHR rats the HNE degradation rate declined within 5 min to 25 nmoles min?1 g?1 wet weight. Also during postischemic reperfusion, there was a lower HNE degradation rate in the SHR rat hearts than in the WKY rat hearts. The influence of hypertrophy on the rate of HNE degradation is discussed. It is suggested that the low degradation of the cytotoxic lipid peroxidation product, HNE, in hypertrophic hearts may contribute to reduced antioxidant defence in those hearts.  相似文献   

14.
Since a number of experimental evidences suggests that some lipoperoxidation products can affect leukocyte migration "in vitro", we have investigated the chemotactic and chemokinetic properties of two of these products (4-hydroxy-2,3-trans-tetradecenal and 4-hydroxy-2,3-trans-nonenal) using rat neutrophils. The cells were obtained from the pleural cavity after injection of 1.0 ml isologous serum. The granulocytes were suspended in Hanks' plus BSA 2% and the motility determined by means of a modified Boyden chamber. For evaluating the chemotactic properties, the aldehyde were added into the lower compartment, while for detecting the chemokinetic power, the compounds were placed in both the compartments. Our results show that both the chemicals (in a range between nano- and micromolar concentrations) are able to exert -at different degree- a chemotactic activity. In this connection, the more active aldehyde appeared to be the tetradecenal. On the contrary, the same compounds seem uneffective in stimulating the random migration of polymorphonuclear cells.  相似文献   

15.
16.
We have evaluated the effects of the gut-brain peptides, VIP and CCK, on pituitary PRL secretion in monolayer cultures of normal and tumor bearing rodent and human pituitary tissue. In cultures prepared with normal human pituitary tissue obtained from three patients with metastatic breast cancer, VIP at 10?7M and 10?9M (but not 10?11M) significantly (p<.05) increased PRL secretion in the wells by 6 hrs. Similar concentrations of VIP also significantly (p<.05) promoted PRL release from pituitary tissue obtained by transphenoidal hypophysectomy from one of two prolactinoma patients. Dopamine (10?5M) inhibition of PRL secretion was not affected by 10?11 to 10?7M VIP. In contrast to these findings VIP did not significantly influence 6 hr rat PRL release in monolayer cultures of normal or transformed cells (GH3) with or without the addition of bacitracin (10?5M).CCK33 significantly (p<.01) increased rat PRL release in human pituitary monolayer cultures at 10?5M. The more biologically potent CCK8 significantly (p<.02) increased rat PRL release at a 10-fold lower concentration, 10?6M. In contrast, CCK8 10?8 to 10?6M, did not significantly influence PRL release from normal human pituitary cultures or from tumor bearing human (prolactinoma) and rat (GH3) cultures. We conclude that 1) the gut-brain peptides, VIP and CCK, can directly stimulate pituitary PRL release and 2) VIP may be a physiologic prolactin releasing factor in man.  相似文献   

17.
《Free radical research》2013,47(2):55-66
The lipid peroxidation product 4-hydroxynonenal (HNE) and homologous aldehydes have been found to possess chemotactic activity for rat neutrophil leukocytes in the micromolar to picomolar range, depending on the compound. Such an activity is displayed only in the presence of albumin. The mechanisms by which aldehydes could interact with neutrophils are discussed. II is proposed that albumin acts as a carrier for the aldehyde and releases them to a neutrophil receptor. At concentrations around 10?4M, 4-hydroxyal-kenals have been found to exert toxic effects on a number of cells, including a strong depression of neutrophil motility. Finally, HNE has been found at chemotactic concentrations in the inflammatory site. The possibility that HNE is involved in the neutrophil influx into the inflammatory site is considered.  相似文献   

18.
Type II extradiol dioxygenase, 2′-carboxy-2,3-dihydroxybiphenyl 1,2-dioxygenase (FlnD1D2) involved in the fluorene degradation pathway of Rhodococcus sp. DFA3 was purified to homogeneity from a heterologously expressing Escherichia coli. Gel filtration chromatography and SDS-PAGE suggested that FlnD1D2 is an α4β4 heterooctamer and that the molecular masses of these subunits are 30 and 9.9 kDa, respectively. The optimum pH and temperature for enzyme activity were 8.0 and 30 °C, respectively. Assessment of metal ion effects suggested that exogenously supplied Fe2+ increases enzyme activity 3.2-fold. FlnD1D2 catalyzed meta-cleavage of 2′-carboxy-2,3-dihydroxybiphenyl homologous compounds, but not single-ring catecholic compounds. The Km and kcat/Km values of FlnD1D2 for 2,3-dihidroxybiphenyl were 97.2 μM and 1.5 × 10?2 μM?1sec?1, and for 2,2′,3-trihydroxybiphenyl, they were 168.0 μM and 0.5 × 10?2 μM?1sec?1, respectively. A phylogenetic tree of the large and small subunits of type II extradiol dioxygenases suggested that FlnD1D2 constitutes a novel subgroup among heterooligomeric type II extradiol dioxygenases.  相似文献   

19.
Electrophysiological effects produced by selective activation of M3 cholinoreceptors were studied in isolated left atrium preparations from rat using the standard sharp glass microelectrode technique. The stimulation of M3 receptors was obtained by application of muscarinic agonist pilocarpine (10?5 M) in the presence of selective M2 antagonist methoctramine (10?7 M). Stimulation of M3 receptors induced marked reduction of action potential duration by 14.4 ± 2.4% and 16.1 ± 2.5% of control duration measured at 50 and 90% of repolarization, respectively. This effect was completely abolished by selective M3 blocker 4-DAMP (10?8 M). In isolated myocytes obtained from the rat left atrium, similar pharmacological stimulation of M3 receptors led to suppression of peak L-type calcium current by 13.9 ± 2.6% of control amplitude (measured at +10 mV), but failed to affect K+ currents I to, I Kur, and I Kir. In the absence of M2 blocker methoctramine, pilocarpine (10?5 M) produced stronger attenuation of I CaL and induced an increase in I Kir. This additive inward rectifier current could be abolished by highly selective blocker of Kir3.1/3.4 channels tertiapin-Q (10?6 M) and therefore was identified as I KACh. Thus, in the rat atrial myocardium activation of M3 receptors leads to shortening of action potentials via suppression of I CaL, but does not enhance the major potassium currents involved in repolarization. Joint stimulation of M2 and M3 receptors produces stronger action potential shortening due to M2-mediated activation of I KACh.  相似文献   

20.
Aldo-keto reductase AKR11C1 from Bacillus halodurans, a new member of aldo-keto reductase (AKR) family 11, has been characterized structurally and biochemically. The structures of the apo and NADPH bound form of AKR11C1 have been solved to 1.25 A and 1.3 A resolution, respectively. AKR11C1 possesses a novel non-aromatic stacking interaction of an arginine residue with the cofactor, which may favor release of the oxidized cofactor. Our biochemical studies have revealed an NADPH-dependent activity of AKR11C1 with 4-hydroxy-2,3-trans-nonenal (HNE). HNE is a cytotoxic lipid peroxidation product, and detoxification in alkaliphilic bacteria, such as B.halodurans, plays a crucial role in survival. AKR11C1 could thus be part of the detoxification system, which ensures the well being of the microorganism. The very poor activity of AKR11C1 on standard, small substrates such as benzaldehyde or DL-glyeraldehyde is consistent with the observed, very open active site lacking a binding pocket for these substrates. In contrast, modeling of HNE with its aldehyde function suitably positioned in the active site suggests that its elongated hydrophobic tail occupies a groove defined by hydrophobic side-chains. Multiple sequence alignment of AKR11C1 with the highly homologous iolS and YqkF proteins shows a high level of conservation in this putative substrate-binding site. We suggest that AKR11C1 is the first structurally characterized member of a new class of AKRs with specificity for substrates with long aliphatic tails.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号