首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Articular chondrocytes from rheumatoid joints have been shown to express class II major histocompatibility (MHC) antigens that were correlated with the presence of interferon-gamma (IFN-γ) in the inflamed joint. Chondrocytes expressing MHC antigens function as antigens function as antigen presenting cells and thus stimulate lymphocyte proliferation. These responses suggest a powerful role for the IFN-γ stimulation of chondrocytes. The present studies were designed to examine the functional role of chondrocytes exposed to IFN-γ during cartilage degradation that occurs in synovial disease. Destruction of cartilage in arthritis is partially attributable to metalloproteinases released by the chondrocytes in response to interleukin-1 (IL-1). Bovine articular chondrocytes treated with interleukin-1 alpha (IL-1α) produced enhanced levels of stromelysin mRNA, however, Northern blots could not determine the percentage of cells responding. Exposure of bovine articular chondrocytes to IFN-γ induced the expression of bovine HLA-DR (boHLA-DR) antigen in 50% of the cells. Using a modified cell sorting technique, chondrocytes that expressed class II MHC antigens produced two fold greater stromelysin mRNA than chondrocytes that did not express this antigen. In contrast, collagen type II mRNA levels were similar in chondrocytes, regardless of the expression of class II MHC antigens. In situ hybridization studies showed that less than half of all cartilage chondrocytes were induced to synthesize stromelysin mRNA. These observations suggest that IFN-γ stimulates specific subpopulations of chondrocytes to be functionally active in inflammation-induced metalloprotease secretion. © 1993 Wiley-Liss, Inc.  相似文献   

2.
3.
4.
5.
6.
Alternative splicing of the type II procollagen gene (COL2A1) is developmentally regulated during chondrogenesis. Chondroprogenitor cells produce the type IIA procollagen isoform by splicing (including) exon 2 during pre-mRNA processing, whereas differentiated chondrocytes synthesize the type IIB procollagen isoform by exon 2 skipping (exclusion). Using a COL2A1 mini-gene and chondrocytes at various stages of differentiation, we identified a non-classical consensus splicing sequence in intron 2 adjacent to the 5' splice site, which is essential in regulating exon 2 splicing. RNA mapping confirmed this region contains secondary structure in the form of a stem-loop. Mutational analysis identified three cis elements within the conserved double-stranded stem region that are functional only in the context of the natural weak 5' splice site of exon 2; they are 1) a uridine-rich enhancer element in all cell types tested except differentiated chondrocytes; 2) an adenine-rich silencer element, and 3) an enhancer cis element functional in the context of secondary structure. This is the first report identifying key cis elements in the COL2A1 gene that modulate the cell type-specific alternative splicing switch of exon 2 during cartilage development.  相似文献   

7.
8.
9.
10.
11.
12.
Cultured human articular and costal chondrocytes were used as a model system to examine the effects of recombinant gamma-interferon (IFN-gamma) on synthesis of procollagens, the steady state levels of types I and II procollagen mRNAs, and the expression of major histocompatibility complex class II (Ia-like) antigens on the cell surface. Adult articular chondrocytes synthesized mainly type II collagen during weeks 1-3 of primary culture, whereas types I and III collagens were also produced after longer incubation and predominated after the first subculture. Juvenile costal chondrocytes synthesized no detectable alpha 2(I) collagen chains until after week 1 of primary culture; type II collagen was the predominant species even after weeks of culture. The relative amounts of types I and II collagens synthesized were reflected in the levels of alpha 1(I), alpha 2(I), and alpha 1(II) procollagen mRNAs. In articular chondrocytes, the levels of alpha 1(I) procollagen mRNA were disproportionately low (alpha 1(I)/alpha 2(I) less than 1.0) compared with costal chondrocytes (alpha 1 (I)/alpha 2(I) approximately 2). Recombinant IFN-gamma (0.1-100 units/ml) inhibited synthesis of type II as well as types I and III collagens associated with suppression of the levels of alpha 1(I), alpha 2(I), and alpha 1(II) procollagen mRNAs. IFN-gamma suppressed the levels of alpha 1(I) and alpha 1(II) procollagen mRNAs to a greater extent than alpha 2(I) procollagen mRNA in articular but not in costal chondrocytes. Human leukocyte interferon (IFN-alpha) at 1000 units/ml suppressed collagen synthesis and procollagen mRNA levels to a similar extent as IFN-gamma at 1.0 unit/ml. In addition, IFN-gamma but not IFN-alpha induced the expression of HLA-DR antigens on intact cells. The lymphokine IFN-gamma could, therefore, have a role in suppressing cartilage matrix synthesis in vivo under conditions in which the chondrocytes are in proximity to T lymphocytes and their products.  相似文献   

13.
14.
We previously isolated a rheumatoid arthritis-related antigen (RA-A47) protein that had reactivity with RA sera from a human chondrosarcoma-derived chondrocytic cell line, HCS-2/8. Sequencing analysis of ra-a47 cDNA revealed RA-A47 as a product of the colligin-2 gene, which is also known as the human heat shock protein (HSP) 47 gene. Expression of hsp47 has been shown to be cooperatively altered with that of collagen genes upon stimulation. In this study, it was confirmed that the mRNA expression of ra-a47 and COL2A1, a type II collagen gene, was upregulated on stimulation with transforming growth factor (TGF) beta in chondrocytes. However, in contrast, inflammatory cytokines such as tumor necrosis factor (TNF) alpha, interferon (IFN) beta, and interleukin (IL)-6 downregulated the expression of ra-a47 mRNA, whereas the expression of COL2A1 mRNA was not repressed, or even upregulated, in HCS-2/8 cells. Of note, inducible NO synthase (iNOS) and matrix metalloproteinase (MMP)-9 mRNAs were strongly stimulated by TNFalpha. We also found that cell-surface type II collagen disappeared upon such a stimulation, suggesting that decrement of RA-A47 may inhibit the secretion of type II collagen and lead to its accumulation inside the cells. RA-A47 was detected in the cultured medium of TNFalpha-treated HCS-2/8 cells and of IL-1-treated rabbit chondrocytes by Western blot analysis. Under the same conditions, RA-A47 was detected on the cell surface by immunofluorescence staining. These findings demonstrate that the RA-A47 chaperone protein is specifically downregulated, causing the intracellular accumulation of unsecretable type II collagen, while the extracellular matrix (ECM) is degraded by MMPs and iNOS through the stimulation of chondrocytes by TNFalpha. The altered localization of RA-A47 to the surface or outside of cells may represent the mechanism for the recognition of RA-A47 as an autoantigen during rheumatoid arthritis.  相似文献   

15.
16.
17.
18.
The identification of mutations in the SRY-related SOX9 gene in patients with campomelic dysplasia, a severe skeletal malformation syndrome, and the abundant expression of Sox9 in mouse chondroprogenitor cells and fully differentiated chondrocytes during embryonic development have suggested the hypothesis that SOX9 might play a role in chondrogenesis. Our previous experiments with the gene (Col2a1) for collagen II, an early and abundant marker of chondrocyte differentiation, identified a minimal DNA element in intron 1 which directs chondrocyte-specific expression in transgenic mice. This element is also a strong chondrocyte-specific enhancer in transient transfection experiments. We show here that Col2a1 expression is closely correlated with high levels of SOX9 RNA and protein in chondrocytes. Our experiments indicate that the minimal Col2a1 enhancer is a direct target for Sox9. Indeed, SOX9 binds to a sequence of the minimal Col2a1 enhancer that is essential for activity in chondrocytes, and SOX9 acts as a potent activator of this enhancer in cotransfection experiments in nonchondrocytic cells. Mutations in the enhancer that prevent binding of SOX9 abolish enhancer activity in chondrocytes and suppress enhancer activation by SOX9 in nonchondrocytic cells. Other SOX family members are ineffective. Expression of a truncated SOX9 protein lacking the transactivation domain but retaining DNA-binding activity interferes with enhancer activation by full-length SOX9 in fibroblasts and inhibits enhancer activity in chondrocytes. Our results strongly suggest a model whereby SOX9 is involved in the control of the cell-specific activation of COL2A1 in chondrocytes, an essential component of the differentiation program of these cells. We speculate that in campomelic dysplasia a decrease in SOX9 activity would inhibit production of collagen II, and eventually other cartilage matrix proteins, leading to major skeletal anomalies.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号