首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 204 毫秒
1.
Reovirus infection is a well-characterized experimental system for the study of viral pathogenesis and antiviral immunity within the central nervous system (CNS). We have previously shown that c-Jun N-terminal kinase (JNK) and the Fas death receptor each play a role in neuronal apoptosis occurring in reovirus-infected brains. Death-associated protein 6 (Daxx) is a cellular protein that mechanistically links Fas signaling to JNK signaling in several models of apoptosis. In the present study, we demonstrate that Daxx is upregulated in reovirus-infected brain tissue through a type I interferon-mediated mechanism. Daxx upregulation is limited to brain regions that undergo reovirus-induced apoptosis and occurs in the cytoplasm and nucleus of neurons. Cytoplasmic Daxx is present in Fas-expressing cells during reovirus encephalitis, suggesting a role for Daxx in Fas-mediated apoptosis following reovirus infection. Further, in vitro expression of a dominant negative form of Daxx (DN-Daxx), which binds to Fas but which does not transmit downstream signaling, inhibits apoptosis of reovirus-infected cells. In contrast, in vitro depletion of Daxx results in increased expression of caspase 3 and apoptosis, suggesting that Daxx plays an antiapoptotic role in the nucleus. Overall, these data imply a regulatory role for Daxx in reovirus-induced apoptosis, depending on its location in the nucleus or cytoplasm.  相似文献   

2.
3.
4.
5.
Viral encephalitis is a major cause of morbidity and mortality worldwide, yet there is no proven efficacious therapy for most viral infections of the central nervous system (CNS). Many of the viruses that cause encephalitis induce apoptosis and activate c-Jun N-terminal kinase (JNK) following infection. We have previously shown that reovirus infection of epithelial cell lines activates JNK-dependent apoptosis. We now show that reovirus infection resulted in activation of JNK and caspase-3 in the CNS. Treatment of reovirus-infected mice with a cell-permeating peptide that competitively inhibits JNK activity resulted in significantly prolonged survival of intracerebrally infected mice following an otherwise lethal challenge with T3D (100 x 50% lethal dose). Protection correlated with reduced CNS injury, reduced neuronal apoptosis, and reduced c-Jun activation without altering the viral titer or viral antigen distribution. Given the efficacy of the inhibitor in protecting mice from viral encephalitis, JNK inhibition represents a promising and novel treatment strategy for viral encephalitis.  相似文献   

6.
Many viruses belonging to diverse viral families with differing structure and replication strategies induce apoptosis both in cultured cells in vitro and in tissues in vivo. Despite this fact, little is known about the specific cellular apoptotic pathways induced during viral infection. We have previously shown that reovirus-induced apoptosis of HEK cells is initiated by death receptor activation but requires augmentation by mitochondrial apoptotic pathways for its maximal expression. We now show that reovirus infection of HEK cells is associated with selective cytosolic release of the mitochondrial proapoptotic factors cytochrome c and Smac/DIABLO, but not the release of apoptosis-inducing factor. Release of these factors is not associated with loss of mitochondrial transmembrane potential and is blocked by overexpression of Bcl-2. Stable expression of caspase-9b, a dominant-negative form of caspase-9, blocks reovirus-induced caspase-9 activation but fails to significantly reduce activation of the key effector caspase, caspase-3. Smac/DIABLO enhances apoptosis through its action on cellular inhibitor of apoptosis proteins (IAPs). Reovirus infection is associated with selective down-regulation of cellular IAPs, including c-IAP1, XIAP, and survivin, effects that are blocked by Bcl-2 expression, establishing the dependence of IAP down-regulation on mitochondrial events. Taken together, these results are consistent with a model in which Smac/DIABLO-mediated inhibition of IAPs, rather than cytochrome c-mediated activation of caspase-9, is the key event responsible for mitochondrial augmentation of reovirus-induced apoptosis. These studies provide the first evidence for the association of Smac/DIABLO with virus-induced apoptosis.  相似文献   

7.
8.
Poliovirus (PV) is the causal agent of paralytic poliomyelitis, a disease that involves the destruction of motor neurons associated with PV replication. In PV-infected mice, motor neurons die through an apoptotic process. However, mechanisms by which PV induces cell death in neuronal cells remain unclear. Here, we demonstrate that PV infection of neuronal IMR5 cells induces cytochrome c release from mitochondria and loss of mitochondrial transmembrane potential, both of which are evidence of mitochondrial outer membrane permeabilization. PV infection also activates Bax, a proapoptotic member of the Bcl-2 family; this activation involves its conformational change and its redistribution from the cytosol to mitochondria. Neutralization of Bax by vMIA protein expression prevents cytochrome c release, consistent with a contribution of PV-induced Bax activation to mitochondrial outer membrane permeabilization. Interestingly, we also found that c-Jun NH(2)-terminal kinase (JNK) is activated soon after PV infection and that the PV-cell receptor interaction alone is sufficient to induce JNK activation. Moreover, the pharmacological inhibition of JNK by SP600125 inhibits Bax activation and cytochrome c release. This is, to our knowledge, the first demonstration of JNK-mediated Bax-dependent apoptosis in PV-infected cells. Our findings contribute to our understanding of poliomyelitis pathogenesis at the cellular level.  相似文献   

9.
10.
Targeted gene disruption studies have established that the c-Jun NH(2)-terminal kinase (JNK) signaling pathway is required for stress-induced release of mitochondrial cytochrome c and apoptosis. Here we demonstrate that activated JNK is sufficient to induce rapid cytochrome c release and apoptosis. However, activated JNK fails to cause death in cells deficient of members of the Bax subfamily of proapoptotic Bcl2-related proteins. Furthermore, exposure to stress fails to activate Bax, cause cytochrome c release, and induce death in JNK-deficient cells. These data demonstrate that proapoptotic members of the Bax protein subfamily are essential for JNK-dependent apoptosis.  相似文献   

11.
12.
The mainstay of asthma therapy, glucocorticosteroids (GCs) have among their therapeutic effects the inhibition of inflammatory cytokine production and induction of eosinophil apoptosis. In the absence of prosurvival cytokines (e.g., GM-CSF), eosinophils appear to be short-lived, undergoing apoptosis over 96 h in vitro. In a dose-dependent manner, GC further enhances apoptosis, while prosurvival cytokines inhibit apoptosis and antagonize the effect of GC. The mechanisms of eosinophil apoptosis, its enhancement by GC, and antagonism of GC by GM-CSF are not well-understood. As demonstrated in this study, baseline apoptosis of eosinophils resulted from oxidant-mediated mitochondrial injury that was significantly enhanced by GC. Mitochondrial injury was detected by early and progressive loss of mitochondrial membrane potential and the antioxidant protein, Mn superoxide dismutase (SOD). Also observed was the activation/translocation of the proapoptotic protein, Bax, to mitochondria. Underscoring the role of oxidants was the inhibition of mitochondrial changes and apoptosis with culture in hypoxia, or pretreatment with a flavoprotein inhibitor or a SOD mimic. GCs demonstrated early (40 min) and late (16 h) activation of proapoptotic c-Jun NH2-terminal kinase (JNK) and decreased the antiapoptotic protein X-linked inhibitor of apoptosis, a recently demonstrated inhibitor of JNK activation. Similarly, inhibition of JNK prevented GC-enhanced mitochondrial injury and apoptosis. Importantly, GM-CSF prevented GC-induced loss of X-linked inhibitor of apoptosis protein, late activation of JNK, and mitochondrial injury even in the face of unchanged oxidant production, loss of MnSOD, and early JNK activation. These data demonstrate that oxidant-induced mitochondrial injury is pivotal in eosinophil apoptosis, and is enhanced by GC-induced prolonged JNK activation that is in turn inhibited by GM-CSF.  相似文献   

13.
Smac, second mitochondria-derived activator of caspases, promotes apoptosis via activation of caspases. Previous studies have shown that c-Jun NH(2)-terminal kinase (JNK) is involved in regulating another mitochondrial protein, cytochrome c during apoptosis; however, the role of JNK in the release of mitochondrial Smac is unknown. Here we show that induction of apoptosis in multiple myeloma (MM) cells is associated with activation of JNK, translocation of JNK from cytosol to mitochondria, and release of Smac from mitochondria to cytosol. Blocking JNK either by dominant-negative mutant (DN-JNK) or cotreatment with a specific JNK inhibitor, SP600125, abrogates both stress-induced release of Smac and induction of apoptosis. These findings demonstrate that activation of JNK is an obligatory event for the release of Smac during stress-induced apoptosis in MM cells.  相似文献   

14.
15.
The c-Jun NH2-terminal kinase (JNK) branch of the mitogen-activated protein kinase signaling cascade has been implicated in the regulation of apoptosis in a variety of mammalian cell types. In the heart, disagreement persists concerning the role that JNKs may play in regulating apoptosis, since both pro- and antiapoptotic regulatory functions have been reported in cultured cardiomyocytes. Here we report the first analysis of cardiomyocyte cell death due to JNK inhibition or activation in vivo using genetically modified mice. Three separate mouse models with selective JNK inhibition were assessed for ventricular damage and apoptosis levels following ischemia-reperfusion injury. jnk1-/-, jnk2-/-, and transgenic mice expressing dominant negative JNK1/2 within the heart were each shown to have less JNK activity in the heart and less injury and cellular apoptosis in vivo following ischemia-reperfusion injury. To potentially address the reciprocal gain-of-function phenotype associated with sustained JNK activation, transgenic mice were generated that express MKK7 in the heart. These transgenic mice displayed elevated cardiac c-Jun kinase activity but, ironically, were also significantly protected from ischemia-reperfusion. Mechanistically, JNK-inhibited mice showed increased phosphorylation of the proapoptotic factor Bad at position 112, whereas MKK7 transgenic mice showed decreased phosphorylation of this site. Collectively, these results underscore the complexity associated with JNK signaling in regulating apoptosis, such that sustained inhibition or activation both elicit cellular protection in vivo, although probably through different mechanisms.  相似文献   

16.
Our previous studies showed that docetaxel-induced apoptosis of human melanoma cells was dependent on the activation of the c-jun NH(2)-terminal kinase (JNK) signaling pathway but was inhibited by the extracellular signal-regulated kinase (ERK)-1/2 pathway. However, the mechanisms by which these pathways were modulated by docetaxel were not clear. We report here that docetaxel induces activation of protein kinase C (PKC) signaling differentially through PKCepsilon and PKCdelta isoforms. Activation of PKCepsilon was most marked in docetaxel-resistant cells and paralleled the activation of the ERK1/2 pathway. Inhibition of PKCepsilon by small interfering RNA molecules resulted in down-regulation of phosphorylated ERK1/2 and sensitization of cells to docetaxel-induced apoptosis. Experiments also showed that beta-tubulin class III, a molecular target of docetaxel, coimmunoprecipitated with PKCepsilon and colocalized in confocal microscopic studies. In contrast to PKCepsilon, high levels of activated PKCdelta were associated with activation of the JNK pathway and sensitivity to docetaxel. Activation of PKCdelta seemed to be upstream of JNK because inhibition of PKCdelta by small interfering RNA abrogated activation of the JNK pathway. Although PKCdelta could be activated in resistant cells, downstream activation of JNK and c-Jun did not occur. In summary, these results suggest that the outcome of docetaxel-induced apoptotic events in human melanoma cells depends on their PKC isoform content and signaling responses. PKCepsilon was associated with prosurvival signaling through ERK, whereas PKCdelta was associated with proapoptotic responses through JNK activation.  相似文献   

17.
18.
Galectin-1 (gal-1), an endogenous β-galactoside-binding protein, triggers T-cell death through several mechanisms including the death receptor and the mitochondrial apoptotic pathway. In this study we first show that gal-1 initiates the activation of c-Jun N-terminal kinase (JNK), mitogen-activated protein kinase kinase 4 (MKK4), and MKK7 as upstream JNK activators in Jurkat T cells. Inhibition of JNK activation with sphingomyelinase inhibitors (20 μM desipramine, 20 μM imipramine), with the protein kinase C-δ (PKCδ) inhibitor rottlerin (10 μM), and with the specific PKCθ pseudosubstrate inhibitor (30 μM) indicates that ceramide and phosphorylation by PKCδ and PKCθ mediate gal-1-induced JNK activation. Downstream of JNK, we observed increased phosphorylation of c-Jun, enhanced activating protein-1 (AP-1) luciferase reporter, and AP-1/DNA-binding in response to gal-1. The pivotal role of the JNK/c-Jun/AP-1 pathway for gal-1-induced apoptosis was documented by reduction of DNA fragmentation after inhibition JNK by SP600125 (20 μM) or inhibition of AP-1 activation by curcumin (2 μM). Gal-1 failed to induce AP-1 activation and DNA fragmentation in CD3-deficient Jurkat 31-13 cells. In Jurkat E6.1 cells gal-1 induced a proapoptotic signal pattern as indicated by decreased antiapoptotic Bcl-2 expression, induction of proapoptotic Bad, and increased Bcl-2 phosphorylation. The results provide evidence that the JNK/c-Jun/AP-1 pathway plays a key role for T-cell death regulation in response to gal-1 stimulation.  相似文献   

19.
Mammalian orthoreoviruses induce apoptosis in vivo and in vitro; however, the specific mechanism by which apoptosis is induced is not fully understood. Recent studies have indicated that the reovirus outer capsid protein μ1 is the primary determinant of reovirus-induced apoptosis. Ectopically expressed μ1 induces apoptosis and localizes to intracellular membranes. Here we report that ectopic expression of μ1 activated both the extrinsic and intrinsic apoptotic pathways with activation of initiator caspases-8 and -9 and downstream effector caspase-3. Activation of both pathways was required for μ1-induced apoptosis, as specific inhibition of either caspase-8 or caspase-9 abolished downstream effector caspase-3 activation. Similar to reovirus infection, ectopic expression of μ1 caused release into the cytosol of cytochrome c and smac/DIABLO from the mitochondrial intermembrane space. Pancaspase inhibitors did not prevent cytochrome c release from cells expressing μ1, indicating that caspases were not required. Additionally, μ1- or reovirus-induced release of cytochrome c occurred efficiently in Bax(-/-)Bak(-/-) mouse embryonic fibroblasts (MEFs). Finally, we found that reovirus-induced apoptosis occurred in Bax(-/-)Bak(-/-) MEFs, indicating that reovirus-induced apoptosis occurs independently of the proapoptotic Bcl-2 family members Bax and Bak.  相似文献   

20.
Virus-induced activation of nuclear factor-kappa B (NF-B) is required for Type 3 (T3) reovirus-induced apoptosis. We now show that NF-B is also activated by the prototypic Type 1 reovirus strain Lang (T1L), which induces significantly less apoptosis than T3 viruses, indicating that NF-B activation alone is not sufficient for apoptosis in reovirus-infected cells. A second phase of virus-induced NF-B regulation, where NF-B activation is inhibited at later times following infection with T3 Abney (T3A), is absent in T1L-infected cells. This suggests that inhibition of NF-B activation at later times post infection also contributes to reovirus-induced apoptosis. Reovirus-induced inhibition of stimulus-induced activation of NF-B is significantly associated with apoptosis following infection of HEK293 cells with reassortant reoviruses and is determined by the T3 S1 gene segment, which is also the primary determinant of reovirus-induced apoptosis. Inhibition of stimulus-induced activation of NF-B also occurs following infection of primary cardiac myocytes with apoptotic (8B) but not non-apoptotic (T1L) reoviruses. Expression levels of the NF-B-regulated cellular FLICE inhibitory protein (cFLIP) reflect NF-B activation in reovirus-infected cells. Further, inhibition of NF-B activity and cFLIP expression promote T1L-induced apoptosis. These results demonstrate that inhibition of stimulus-induced activation of NF-B and the resulting decrease in cFLIP expression promote reovirus-induced apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号