首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In order to identify the forces involved in the binding and to understand the mechanism involved, equilibrium and kinetic studies were performed on the binding of the winged bean acidic lectin to human erythrocytes. The magnitudes of delta S and delta H were positive and negative respectively, an observation differing markedly from the lectin-simple sugar interactions where delta S and delta H are generally negative. Analysis of the sign and magnitudes of these values indicate that ionic and hydrogen bonded interactions prevail over hydrophobic interactions resulting in net -ve delta H (-37.12 kJ.mol-1) and +ve delta S (14.4 J.mole-1 K-1 at 20 degrees C), thereby suggesting that this entropy driven reaction also reflects conformational changes in the lectin and/or the receptor. Presence of two kinds of receptors for WBA II on erythrocytes, as observed by equilibrium studies, is consistent with the biexponential dissociation rate constants (at 20 degrees C K1 = 1.67 x 10(-3) M-1 sec-1 and K2 = 11.1 x 10(-3) M-1 sec-1). These two rate constants differed by an order of magnitude accounting for the difference in the association constants of the two receptors of WBA II. However, the association process remains monoexponential suggesting no observable difference in the association rates of the lectin molecule with both the receptors, under the experimental conditions studied. The thermodynamic parameters calculated from kinetic data correlate well with those observed by equilibrium. A two-step binding mechanism is proposed based on the kinetic parameters for WBA II-receptor interaction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The amino acid sequence of the winged bean acidic lectin (WBA II) was determined by chemical means and by recombinant techniques. From the N- and C-terminal sequence, obtained chemically, primers were designed for PCR amplification of the genomic DNA. The PCR product was cloned and sequenced to get the complete primary structure of WBA II. Peptide fragments for sequencing were also obtained by tryptic cleavages of the native lectin. The WBA II sequence showed a high degree of homology with that of WBA I and Erythrina corallodendron lectin (ECorL), especially in the regions involved in subunit association, where there is a very high conservation of residues. This perhaps implies the importance of this particular region in subunit interactions in this lectin. In addition, many of the residues, involved in carbohydrate binding in legume lectins, appear to be conserved in WBA II. The distinct differences in anomeric specificity observed amongst WBA I, WBA II, ECorL and peanut agglutinin (PNA) may be explained by subtle differences in sequence/structure of their D-loops. WBA II binds adenine quite strongly; a putative adenine binding sequence has been identified.  相似文献   

3.
We have previously shown that the B4 lectin from Vicia villosa seeds interacts with N-acetylgalactosamine alpha-linked to serine or threonine in cell surface glycoproteins. In the present study, we show that the lectin also binds to Cad erythrocytes (0.44-2.78 X 10(6) sites/cell) with an association constant of 0.61-0.84 X 10(7)M-1. Variability in the number of B4 lectin binding sites in Cad erythrocytes from different individuals parallels reactivity of these erythrocytes with other N-acetylgalactosamine-binding lectins. Agglutination of Cad erythrocytes with B4 lectin is inhibited by urinary Tamm-Horsfall Sda-active glycoprotein. Since the Cad and Sda determinants share the terminal GalNAc beta 1.4----Gal sequence, our results indicate that Vicia villosa B4 lectin can also interact with terminal beta-linked N-acetylgalactosamine in closely-spaced oligosaccharide units of cell surface glycoproteins.  相似文献   

4.
Crude extracts from Salvia sclarea seeds were known to contain a lectin which specifically agglutinates Tn erythrocytes (Bird, G. W. G., and Wingham, G. (1974) Vox Sang. 26, 163-166). We have purified the lectin to homogeneity by ion-exchange chromatography and affinity chromatography. The agglutinin was found to be a glycoprotein of Mr = 50,000, composed of two identical subunits of Mr = 35,000 linked together by disulfide bonds. The purified lectin agglutinates specifically Tn erythrocytes and, at higher concentrations, also Cad erythrocytes. Native A, B, or O red blood cells are not agglutinated by the lectin and, even after treatment with sialidase or papain, these cells are not recognized. Tn red cells present 1.45 X 10(6) accessible sites to the lectin which binds to these erythrocytes with an association constant of 1.8 X 10(6) M-1. On Cad red cells, 1.73 X 10(6) sites are accessible to the lectin which binds with an association constant of 1.0 X 10(6) M-1. The carbohydrate specificity of the S. sclarea lectin has been determined in detail, using well defined monosaccharide, oligosaccharide, and glycopeptide structures. The lectin was found to be specific for terminal N-acetylgalactosamine (GalNAc) residues. It binds preferentially alpha GalNAc determinants either linked to Ser or Thr (as in Tn structures) or linked in 1-3 to a beta GalNAc or to an unsubstituted beta Gal. Although more weakly, the lectin binds beta GalNAc residues linked in 1-4 to a beta Gal (as in Cad structures). It does not recognize beta GalNAc determinants linked in 1-3 to a Gal (as in globoside) or the alpha GalNAc residues of blood group A structures.  相似文献   

5.
The binding of Artocarpus integrifolia lectin to N-dansylgalactosamine (where dansyl is 5-dimethylaminonaphthalene-1-sulfonyl) leads to a 100% increase in dansyl fluorescence with a concomitant blue shift in the emission maximum by 10 nm. This binding is carbohydrate-specific and has an association constant of 1.74 X 10(4) M-1 at 20 degrees C. The lectin has two binding sites for N-dansylgalactosamine. The values of -delta H and -delta S for the binding of N-dansylgalactosamine are in the range of values reported for several lectin-monosaccharide interactions, indicating an absence of nonpolar interaction of the dansyl moiety of the sugar with the combining region of the protein. Dissociation of the bound N-dansylgalactosamine from its complex with the lectin and the consequent change in its fluorescence on addition of nonfluorescent sugars allowed evaluation of the association constant for competing ligands. The thermodynamic parameters for the binding of monosaccharides suggest that the OH groups at C-2, C-3, C-4, and C-6 in the D-galactose configuration are important loci for interaction with the lectin. The acetamido group at C-2 of 2-acetamido-2-deoxygalactopyranose and a methoxyl group at C-1 of methyl-alpha-D-galactopyranoside are presumably also involved in binding through nonpolar and van der Waals' interactions. The T-antigenic disaccharide Gal beta 1----3GalNAc binds very strongly to the lectin when compared with methyl-beta-D-galactopyranoside, the beta(1----3)-linked disaccharides such as Gal beta 1----3GlcNAc, and the beta(1----4)-linked disaccharides, N-acetyllactosamine and lactose. The major stabilizing force for the avid binding of T-antigenic disaccharide appears to be a favorable enthalpic contribution. The combining site of the lectin is, therefore, extended. These data taken together suggest that the Artocarpus lectin is specific toward the Thomsen-Friedenreich (T) antigen. There are subtle differences in the overall topography of its combining site when compared with that of peanut (Arachis hypogaea) agglutinin. The results of stopped flow spectrometry for the binding of N-dansylgalactosamine tot he Artocarpus lectin are consistent with a simple single-step bimolecular association and unimolecular dissociation rate processes. The value of K+1 and K-1 at 21 degrees C are 8.1 X 10(5) M-1 s-1 and 50 s-1, respectively. The activation parameters indicate an enthalpy-controlled association process.  相似文献   

6.
L-Fucose, D-mannose-specific lectin (SFL 100-2) particles produced by Streptomyces no. 100-2 were labeled with N-succinimidyl-[2,3-3H]propionate to investigate quantitatively their binding properties to human erythrocytes. The labeling did not influence the physical properties or the hemagglutinating activity of the lectin particles. The binding studies suggested that two kinds of receptor sites were present on the erythrocytes. Association constants (Ka's) of the lectin particles to the receptor sites and the numbers of the receptor sites (n) on human O erythrocytes were calculated to be 4.60 X 10(8) M-1 and 3.17 X 10(4)/cell for high-affinity receptor sites, and 7.5 X 10(7) M-1 and 1.33 X 10(5)/cell for low-affinity ones. The inhibition constants (Ki's) for L-fucose, p-nitrophenyl (PNP)-beta-L-fucoside, D-mannose, and PNP-alpha-D-mannoside were calculated to be 1.20 X 10(3), 1.82 X 10(3), 1.82 X 10(2), and 2.40 X 10(2) M-1, respectively. The numbers of carbohydrate-binding sites (m) on the lectin particles were estimated to be 2.82, 2.18, 2.19, and 2.21 for L-fucose, PNP-beta-L-fucoside, D-mannose, and PNP-alpha-D-mannoside, respectively, suggesting that SFL 100-2 has two carbohydrate-binding sites per particle.  相似文献   

7.
Thermodynamic parameters associated with the unfolding of the legume lectin, WBA II, were determined by isothermal denaturation. The analysis of isothermal denaturation data provided values for conformational stability and heat capacity for WBA II unfolding. To explore the role of intersubunit contact in stability, we carried out similar studies under identical conditions on Concanavalin A, a legume lectin of nearly similar size, buried hydrophobic surface area and tertiary structure to that of WBA II but with a different oligomerization pattern. Both proteins showed a reversible two-state unfolding with guanidine hydrochloride. As expected, the change in heat capacity upon unfolding was similar for both proteins at 3.5 and 3.7 kcal mol(-1) K(-1) for Concanavalin A and WBA II, respectively. Although the deltaG(H20) at the maximum stability of both proteins is around 16 kcal/mol, Concanavalin A exhibits greater stability at higher temperatures. The T(g) obtained for Concanavalin A and WBA II were 21 degrees C apart at 87.2 and 66.6 degrees C, respectively. The higher conformational stability at higher temperatures and the T(g) of Concanavalin A as compared to that of WBA II are largely due to substantial differences in the degree of subunit contact in these dimeric proteins. Ionic interactions and hydrogen bonding between the monomers of the two proteins also seem to play a significant role in the observed stability differences between these two proteins.  相似文献   

8.
Agglutination and competition studies suggest that human erythrocyte Band 3 can interact with both mannose/glucose- and galactose-specific lectins. Purified Band 3 reconstituted into lipid vesicles binds concanavalin A, but the nonspecific binding component, measured in the presence of alpha-methylmannoside, is very high. This glycoprotein also carries binding sites for the galactose-specific lectin Ricinus communis agglutinin. Binding was inhibited poorly by lactose, but much more effectively by desialylated fetuin glycopeptides, suggesting that the lectin recognizes a complex oligosaccharide sequence on Band 3. The glycoprotein bears two separate classes of binding sites for R. communis agglutinin. High-affinity binding sites exist which show strong positive cooperativity and correspond in number to the outward-facing Band 3 molecules. A low-affinity binding mode is abolished by 40% ethyleneglycol, suggesting the involvement of hydrophobic lectin-glycoprotein interactions. Studies on binding of R. communis agglutinin to human erythrocytes indicate positively cooperative binding to 7 X 10(5) very-high-affinity sites per cell, and lectin binding is completely inhibitable by lactose. Based on its binding characteristics in vesicles, it seems likely that Band 3 forms the major receptor for this lectin in human erythrocytes. Properties such as positive cooperativity thus appear to be a common feature of the interaction of Band 3 with a variety of lectins of different specificity, both in erythrocytes and lipid bilayers.  相似文献   

9.
A lectin was isolated from Galactia lindenii seeds and characterised. The lectin, purified by affinity chromatography, readily agglutinated O(H) human erythrocytes and interacted weakly with rabbit and rat erythrocytes. Specificity towards blood group H-type determinants was established; among them H-type 2 (alpha-L-Fuc (1-2)-beta-D-Gal (1-4)-beta-D-GlcNAc-O-R) was recognised by the lectin. The binding to the glycoconjugate was partially inhibited by GalNAc and Me-beta-Gal. The protein is an M=104,256 tetramer which dissociates into identical M=26,064 subunits under non-reducing conditions. Its amino acid composition, pI, A(1%), and N-terminal sequence (23 residues) were determined. The N-terminal region showed a unique sequence found hitherto only in some lectins (designated type-II) from the Dioclea genus. This work presents the evidence concerning a distinct type of lectin found in the Diocleinae tribe able to recognise the H-type 2 human blood group determinant and clearly different from the Glc/Man-specific lectins. The protein is a potential tool in cellular and histochemical studies.  相似文献   

10.
Binding of the radioactive Vicia graminea lectin to human blood-group M and N erythrocytes and to horse erythrocytes was studied at pH 6-10. Binding of the lectin to untreated human erythrocytes and to those treated with Vibrio cholerae neuraminidase increased severalfold from pH 6 to pH 8 and was maintained at the maximal level up to pH 9/9.5. On the other hand, interaction of V. graminea lectin with native or desialylated horse erythrocytes was not significantly affected by pH and small differences in the binding were opposite to those found with human erythrocytes: the binding decreased when pH increased from 6 to 9.5. Binding of the lectin to all erythrocytes tested at pH 10 was lowered to about 80% of the maximal values. The differences in pH dependence of V. graminea lectin binding to human and horse erythrocytes most probably resulted from the presence of amino groups in human red-cell receptors and their absence from receptors of horse erythrocytes. The earlier data on the enhancing effect of amino group modification on the interaction of human red-cell glycopeptides with V. graminea lectin support the conclusion that an increase in the lectin binding to human erythrocytes at pH 6-8 is confined to the decreased protonization of the receptor amino groups. V. graminea lectin was irreversibly inactivated at pH 3 and was inactivated by EDTA at pH 7.4 and reactivated by Ca2+ or Mn2+. This suggested that the lectin is a metaloprotein, requiring bivalent cations for the full binding activity. Some quantitative differences between the binding properties of V. graminea lectin, prepared from different batches of seeds, are reported.  相似文献   

11.
 The winged bean (Psophocarpus tetragonolobus) agglutinin (total lectin) and its basic (WBA I) and acidic isoform (WBA II) were used to analyze capillaries in sections from human muscle. The microvessels were clearly labeled after incubation with the lectins in both normal muscle and in old muscles with age-related type II atrophy or muscle fiber grouping. Muscle fibers, nerves, and connective tissue remained unstained. The total lectin detected muscle capillaries from all blood group AB0 individuals. The isoform WBA I reacted only with blood vessels in blood group A and B individuals, while the blood vessels in blood group 0 individuals were demonstrated with WBA II. WBA I staining was inhibited by p-nitrophenyl α-galactopyranoside and N-acetylgalactosamine, whereas 2′-fucosyllactose and preincubation with an antibody against type-1 chain H abolished capillary staining with WBA II. The study demonstrates the usefulness of WBA as a marker of capillaries in human muscle. Accepted: 2 September 1996  相似文献   

12.
We have examined the carbohydrate binding specificity of the B4 lectin from Vicia villosa seeds. The B4 lectin agglutinates Tn-exposed erythrocytes specifically and binds to these erythrocytes (1.4 X 10(6) sites/cell) with an association constant of 4.2 X 10(7) M-1. The concentrations of saccharides and glycopeptides of defined structure which cause 50% inhibition of B4 lectin binding to Tn-exposed erythrocytes were determined. N-Acetylgalactosamine is the best monosaccharide inhibitor, causing 50% inhibition of binding at a concentration of 0.04 mM. Other monosaccharides inhibit lectin binding in the following order of decreasing potency: N-acetylgalactosamine greater than methyl-alpha-galactopyranoside greater than p-nitrophenyl-alpha- or beta-galactopyranoside greater than methyl-beta-galactopyranoside, galactose greater than galactosamine greater than mannose, N-acetylglucosamine. The disaccharide Gal beta 1,3GalNAc causes 50% inhibition of binding at a concentration of 2.8 mM, a concentration similar to that of the p-nitrophenyl-alpha- or beta-galactopyranosides. Glycopeptides containing O-glycosidically linked oligosaccharide units are significantly more potent inhibitors of lectin binding than the oligosaccharide units alone. The most potent glycopeptide inhibitor is a fetuin glycopeptide containing two alpha-linked N-acetylgalactosamine units. This glycopeptide causes 50% inhibition of lectin binding at a concentration of 0.00034 mM and probably closely resembles the B4 lectin binding site on Tn-exposed erythrocytes.  相似文献   

13.
A basic lectin (pI approximately 10.0) was purified to homogeneity from the seeds of winged bean (Psophocarpus tetragonolobus) by affinity chromatography on Sepharose 6-aminocaproyl-D-galactosamine. The lectin agglutinated trypsinized rabbit erythrocytes and had a relative molecular mass of 58,000 consisting of two subunits of Mr 29,000. The lectin binds to N-dansylgalactosamine, leading to a 15-fold increase in dansyl fluorescence with a concomitant 25-nm blue shift in the emission maximum. The lectin has two binding sites/dimer for this sugar and an association constant of 4.17 X 10(5) M-1 at 25 degrees C. The strong binding to N-dansylgalactosamine is due to a relatively positive entropic contribution as revealed by the thermodynamic parameters: delta H = -33.62 kJ mol-1 and delta S0 = -5.24 J mol-1 K-1. Binding of this sugar to the lectin shows that it can accommodate a large hydrophobic substituent on the C-2 carbon of D-galactose. Studies with other sugars indicate that a hydrophobic substituent in alpha-conformation at the anomeric position increases the affinity of binding. The C-4 and C-6 hydroxyl groups are critical for sugar binding to this lectin. Lectin difference absorption spectra in the presence of N-acetylgalactosamine indicate perturbation of tryptophan residues on sugar binding. The results of stopped flow kinetics with N-dansylgalactosamine and the lectin are consistent with a simple one-step mechanism for which k+1 = 1.33 X 10(4) M-1 s-1 and k-1 = 3.2 X 10(-2) s-1 at 25 degrees C. This k-1 is slower than any reported for a lectin-monosaccharide complex so far. The activation parameters indicate an enthalpically controlled association process.  相似文献   

14.
L-Fucose-specific lectin produced by Streptomyces no. 16-3 (SFL 16-3) was labeled with N- succinimidyl-[2, 3-3H]-propionate to quantitatively investigate its binding to human erythrocytes. The binding inhibition by sugars was competitive, and 5mM L-fucose or 20 mM d-mannose completely inhibited the binding. Among plant lectins, Lotus tetragonolobus, Ulex europeus I, soybean and wheat germ lectin showed competitive inhibition. The association constant and the average number of binding sites for human blood group O erythrocytes were approximately 3 × 107 M-1 and 1 × 106 cell-1, respectively. Trypsinization of erythrocytes preferentially increased the number of binding sites for human A and B erythrocytes but not for O erythrocytes.

Membrane components were extracted from human B and O erythrocytes and their binding activity for SFL 16-3 was tested using the hemagglutination-inhibition assay. Poly(glycosyl)-ceramide was the predominant receptor and its fucosyl residue was essential for binding. The crude glycoprotein fraction showed only slight inhibition activity.  相似文献   

15.
The mode of binding of Vicia graminea125I-labelled lectin to human M and N erythrocytes at 4°C has been investigated. The labelled lectin retained the full activity of native lectin. Lectin association at 4°C was characterized by a t12 of 3 to 5 min, reaching steady-state within 15 min. Incubation of cells for 15 min at 4°C with increasing concentrations of Vicia graminea125I-labelled lectin showed that saturation binding occurred. Scatchard analysis of equilibrium data determined over a wide range of lectin concentrations yielded a curvilinear plot with an upward concave slope; this representation indicated that there was not a single homogeneous class of noninteracting binding sites. This result could indicate two or more independent classes of binding sites or one class of interacting sites exhibiting negative cooperativity. Since unlabelled lectin, which at the concentration used, rapidly binds to available receptors, did not affect the dissociation rate of the labelled lectin and since identical Scatchard plots were found using native and formaldehyde-fixed erythrocytes we conclude that there are two classes of independent Vicia graminea binding sites on human erythrocytes. Computer analysis of the Scatchard plots gave high- and low-affinity constant (7.07±1.1) · 107 M?1 and (0.2±0.01) · 107 M?1, respectively, for N erythrocytes and (1.13±0.18) · 107 M?1 and (0.24±0.01) · 107 M?1, respectively for the M cells. N erythrocytes were estimated to have 0.085 · 105 high-affinity and 2.1 · 105 low-affinity sites and M erythrocytes, 0.011 · 105 high affinity and 0.13 · 105 low-affinity sites. N cells therefore have 10-times as many sites as M cells. Studies of the dissociation of 125I-labelled lectin from N and M cells in the presence of unlabelled lectin gave dissociation rate constants of 51 · 10?4 s?1 and 1.97 · 10?4 s?1 for the high- and low-affinity sites of N cells and 13 · 10?4 s?1 and 1.6 · 10?4 s?1 for the high- and low-affinitym sites of M cells, indicating that the binding of Vicia graminea lectin to human erythrocytes is reversible.  相似文献   

16.
Hemagglutinating activity can be identified in the plasma of different species of murrel fish. This activity may be divided into four types according to their agglutinability towards erythrocytes from different sources. Type I plasma agglutinates human blood group A erythrocytes, type II can agglutinate neuraminidase treated human A B O erythrocytes, type III shows no agglutinating activity towards human erythrocytes, while type IV agglutinates human erythrocytes non-specifically. All of them bind to DEAE-cellulose but elute out by different salt concentrations. Type IV plasma is found to be a combination of three separate hemagglutinins, which are separable by sequential binding to human A B O erythrocytes. Blood group A specific lectin activity is purified from this plasma using formalinised A group erythrocytes. The apparent homogeneity of this purified lectin is established by polyacrylamide gel electrophoresis, isoelectric focusing and immunodiffusion. This agglutinin is antigenically identical with that isolated from type I plasma by affinity chromatography on N-acetyl-D-galactosamine coupled to epoxy-activated cellulose column. Their molecular weights are also found to be identical (Mr 140,000) in polyacrylamide gel electrophoresis, having two identical subunits. Forssman glycolipid (0.03 mM) was found to be the most potent inhibitor of agglutination, although Gal beta 1-3 GalNAc (0.09 mM) is also a good inhibitor. Exhaustive dialysis of the purified lectin (hemagglutinin) against EDTA denatures it irreversibly by dissociating it to its subunit structure. Thus human A group agglutinating activity isolated from type I and type IV plasma are identical.  相似文献   

17.
Naturally occurring IgG autoantibody against Band 3 glycoprotein of human erythrocyte membrane (anti-Band 3) recognizes the erythrocytes modified with oxidizing or SH-blocking agents as well as senescent erythrocytes. Location of the antigenic determinants of Band 3 this autoantibody recognizes was investigated by competitive inhibition studies of the antibody binding to the modified cells. Autologous IgG binds to the modified erythrocytes, and purified Band 3 totally inhibits the binding. This inhibitory activity of Band 3 was not affected by digestion of Band 3 with various proteases. Treatment of Band 3 with endo-beta-galactosidase that destroys the poly-N-acetyllactosaminyl sugar chain of Band 3 or with neuraminidase resulted in loss of the inhibitory activity. Oligosaccharides released from Band 3 by hydrazinolysis effectively inhibited the binding of autologous IgG and 125I-labeled purified anti-Band 3 to the modified cells, whereas the oligosaccharides depleted of acidic components did not. Endo-beta-galactosidase and neuraminidase destroyed the activity of the oligosaccharides, but alpha-L-fucosidase did not. Furthermore, human lactoferrin that contains sialylated two N-acetyllactosaminyl units also exhibited potent inhibitory activity, and the activity was destroyed by endo-beta-galactosidase and neuraminidase. These results indicate that the antigenic determinants of Band 3 are located in sialylated poly-N-acetyllactosaminyl sugar chains. Based on this finding, mechanism of appearance of the antigen on senescent erythrocytes recognized by anti-Band 3 (senescent antigen) was discussed.  相似文献   

18.
Fluorescence and stopped-flow spectrophotometric studies on three plant lectins fromPsophocarpus tetragonolobus (winged bean),Glycine max (soybean) andArtocarpus integrifolia (jack fruit) have been studied usingN-dansylgalactosamine as a fluorescent ligand. The best monosaccharide for the winged bean agglutinin I (WBA I) and soybean (SBA) is Me-GalNAc and for jack fruit agglutinin (JFA) is Me-Gal. Examination of the percentage enhancement and association constants (1.51×106, 6.56×106 and 4.17×105 M–1 for SBA, WBA I and JFA, respectively) suggests that the combining regions of the lectins SBA and WBA I are apolar whereas that of JFA is polar. Thermodynamic parameters obtained for the binding of several monosaccharides to these lectins are enthalpically favourable. The binding of monosaccharides to these lectins suggests that the-OH groups at C-1, C-2, C-4 and C-6 in thed-galactose configuration are important loci for interaction with these lectins. An important finding is that the JFA binds specifically to Galß1-3GaINAc with much higher affinity than the other disaccharides which are structurally and topographically similar.The results of stopped-flow spectrometry on the binding ofN-dansylgalactosamine to these lectins are consistent with a bimolecular single step mechanism. The association rate constants (2.4×105, 1.3×104, and 11.7×105 M–1 sec–1 for SBA, WBA I and JFA, respectively) obtained are several orders of magnitude slower than the ones expected for diffusion controlled reactions. The dissociation rate constants (0.2, 3.2×10–2, 83.3 sec–1 for SBA, WBA I and JFA, respectively) obtained for the dissociation ofN-dansylgalactosamine from its lectin complex are slowest for SBA and WBA I when compared with any other lectin-ligand dissociation process.Abbreviations SBA Soybean agglutinin - WBA I Winged bean agglutinin (Basic) - JFA Jack fruit agglutinin - PNA Peanut agglutinin - Con A Concanavalin A - Dansyl (Dns) 5-dimethylaminonaphthalene-I-sulphonyl - 2GaINDns N-dansylgalactosamine - dGal 2-deoxygalactose - l-Ara l-arabinose - d-Fuc d-fucose - l-Rha l-rhamnose - N-acetyllactosamine Galß4GlcNAc - melibiose Gal6Glc  相似文献   

19.
The legume species of Cymbosema roseum of Diocleinae subtribe produce at least two different seed lectins. The present study demonstrates that C. roseum lectin I (CRL I) binds with high affinity to the "core" trimannoside of N-linked oligosaccharides. Cymbosema roseum lectin II (CRL II), on the other hand, binds with high affinity to the blood group H trisaccharide (Fucα1,2Galα1-4GlcNAc-). Thermodynamic and hemagglutination inhibition studies reveal the fine binding specificities of the two lectins. Data obtained with a complete set of monodeoxy analogs of the core trimannoside indicate that CRL I recognizes the 3-, 4- and 6-hydroxyl groups of the α(1,6) Man residue, the 3- and 4-hydroxyl group of the α(1,3) Man residue and the 2- and 4-hydroxyl groups of the central Man residue of the trimannoside. CRL I possesses enhanced affinities for the Man5 oligomannose glycan and a biantennary complex glycan as well as glycoproteins containing high-mannose glycans. On the other hand, CRL II distinguishes the blood group H type II epitope from the Lewis(x), Lewis(y), Lewis(a) and Lewis(b) epitopes. CRL II also distinguishes between blood group H type II and type I trisaccharides. CRL I and CRL II, respectively, possess differences in fine specificities when compared with other reported mannose and fucose recognizing lectins. This is the first report of a mannose-specific lectin (CRL I) and a blood group H type II-specific lectin (CRL II) from seeds of a member of the Diocleinae subtribe.  相似文献   

20.
Nitrobenzylthioinosine (NBMPR) was employed as a covalent probe of the erythrocyte nucleoside transporter. This nucleoside analogue, a potent inhibitor of nucleoside transport, binds tightly (KD = 10(-10) - 10(-9) M) but reversibly to specific sites on the carrier mechanism. High intensity UV irradiation of intact human erythrocytes, isolated "ghosts," and "protein-depleted" membranes in the presence of [3H]NBMPR and dithiothreitol (as a free radical scavenger) under nonequilibrium and equilibrium binding conditions resulted in selective covalent incorporation of 3H into the band 4.5 region of sodium dodecyl sulfate-polyacrylamide gels (Mr = 45,000-65,000). Covalent labeling of band 4.5 protein(s) under equilibrium binding conditions was inhibited by nitrobenzylthioguanosine, dipyridamole, uridine, and adenosine. A similar photolabeling pattern was observed using membranes from pig erythrocytes. In contrast, no incorporation of radioactivity into band 4.5 was observed under equilibrium binding conditions with membranes from nucleoside-impermeable sheep erythrocytes. These experiments suggest that the human and pig erythrocyte nucleoside transporters are band 4.5 polypeptides, a conclusion supported by previous isolation studies based on the assay of reversible [3H]NBMPR binding activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号