首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 161 毫秒
1.
Alternative polyadenylation leads to mRNAs with variable 3′ ends. Since a 3′-untranslated region (3′-UTR) often contains cis elements that impact stability or localization of mRNA or translation, selection of poly(A) sites in a 3′-UTR is regulated in mammalian cells. However, the molecular basis for alternative poly(A) site selection within a 3′-UTR has been unclear. Here we show involvement of cleavage factor Im (CFIm) in poly(A) site selection within a 3′-UTR. CFIm is a heterodimeric 3′ end-processing complex, which functions to assemble other processing factors on pre-mRNA in vitro. We knocked down 25 kDa subunit of CFIm (CFIm25) in HeLa cells and analyzed alternative poly(A) site selection of TIMP-2, syndecan2, ERCC6 and DHFR genes by northern blotting. We observed changes in the distribution of mRNAs in CFIm25 depleted cells, suggesting a role for CFIm in alternative poly(A) site selection. Furthermore, tissue specific analysis demonstrated that the CFIm25 gene gave rise to 1.1, 2.0 and 4.6 kb mRNAs. The 4.6 kb mRNA was ubiquitously expressed, while the 1.1 and 2.0 kb mRNAs were expressed in a tissue specific manner. We found three likely poly(A) sites in the CFIm25 3′-UTR, suggesting alternative polyadenylation. Our results indicate that alternative poly(A) site selection is a well-regulated process in vivo.  相似文献   

2.
3.
The nonsense-mediated mRNA decay (NMD) pathway, present in most eukaryotic cells, is a specialized pathway that leads to the recognition and rapid degradation of mRNAs with premature termination codons and, importantly, some wild-type mRNAs. Earlier studies demonstrated that aberrant mRNAs with artificially extended 3′-untranslated regions (3′-UTRs) are degraded by NMD. However, the extent to which wild-type mRNAs with long 3′-UTRs are degraded by NMD is not known. We used a global approach to identify wild-type mRNAs in Saccharomyces cerevisiae that have longer than expected 3′-UTRs, and of these mRNAs tested, 91% were degraded by NMD. We demonstrate for the first time that replacement of the natural, long 3′-UTR from wild-type PGA1 mRNA, which encodes a protein that is important for cell wall biosynthesis, with a short 3′-UTR renders it immune to NMD. The natural PGA1 3′-UTR is sufficient to target a NMD insensitive mRNA for decay by the NMD pathway. Finally, we show that nmd mutants are sensitive to Calcofluor White, which suggests that the regulation of PGA1 and other cell wall biosynthesis proteins by NMD is physiologically significant.  相似文献   

4.
The mechanism of translational initiation differs between prokaryotes and eukaryotes. Prokaryotic mRNAs generally contain within their 5′-untranslated region (5′-UTR) a Shine-Dalgarno (SD) sequence that serves as a ribosome-binding site. Chloroplasts possess prokaryotic-like translation machinery, and many chloroplast mRNAs have an SD-like sequence, but its position is variable. Tobacco chloroplast atpB mRNAs contain no SD-like sequence and are U-rich in the 5′-UTR (−20 to −1 with respect to the start codon). In vitro translation assays with mutated mRNAs revealed that an unstructured sequence encompassing the start codon, the AUG codon and its context are required for translation. UV crosslinking experiments showed that a 50 kDa protein (p50) binds to the 5′-UTR. Insertion of an additional initiation region (SD-sequence and AUG) in the 5′-UTR, but not downstream, arrested translation from the authentic site; however, no inhibition was observed by inserting only an AUG triplet. We hypothesize for translational initiation of the atpB mRNA that the ribosome enters an upstream region, slides to the start codon and forms an initiation complex with p50 and other components.  相似文献   

5.
6.
7.
3′-Untranslated region (UTR) shortening of mRNAs via alternative polyadenylation (APA) has important ramifications for gene expression. By using proximal APA sites and switching to shorter 3′-UTRs, proliferating cells avoid miRNA-mediated repression. Such APA and 3′-UTR shortening events may explain the basis of some of the proto-oncogene activation cases observed in cancer cells. In this study, we investigated whether 17 β-estradiol (E2), a potent proliferation signal, induces APA and 3′-UTR shortening to activate proto-oncogenes in estrogen receptor positive (ER+) breast cancers. Our initial probe based screen of independent expression arrays suggested upregulation and 3′-UTR shortening of an essential regulator of DNA replication, CDC6 (cell division cycle 6), upon E2 treatment. We further confirmed the E2- and ER-dependent upregulation and 3′UTR shortening of CDC6, which lead to increased CDC6 protein levels and higher BrdU incorporation. Consequently, miRNA binding predictions and dual luciferase assays suggested that 3′-UTR shortening of CDC6 was a mechanism to avoid 3′-UTR-dependent negative regulations. Hence, we demonstrated CDC6 APA induction by the proliferative effect of E2 in ER+ cells and provided new insights into the complex regulation of APA. E2-induced APA is likely to be an important but previously overlooked mechanism of E2-responsive gene expression.  相似文献   

8.
9.
The product of the Drosophila embryonic lethal abnormal visual system is a conserved protein (ELAV) necessary for normal neuronal differentiation and maintenance. It possesses three RNA-binding domains and is involved in the regulation of RNA metabolism. The long elav 3′-untranslated region (3′-UTR) is necessary for autoregulation. We used RNA-binding assays and in vitro selection to identify the ELAV best binding site in the elav 3′-UTR. This site resembles ELAV-binding sites identified previously in heterologous targets, both for its nucleotide sequence and its significant affinity for ELAV (Kd 40 nM). This finding supports our model that elav autoregulation depends upon direct interaction between ELAV and elav RNA. We narrowed down the best binding site to a 20 nt long sequence A(U5)A(U3)G(U2)A(U6) in an alternative 3′ exon. We propose and test a model in which the regulated use of this alternative 3′ exon is involved in normal elav regulation. Found in NEurons (FNE), another neuronal RNA-binding protein paralogous to ELAV, also binds this site. These observations provide a molecular basis for the in vivo interactions reported previously between elav and fne.  相似文献   

10.
11.
12.
13.
14.
mRNAs containing premature translation termination codons (nonsense mRNAs) are targeted for deadenylation-independent degradation in a mechanism that depends on Upf1p, Upf2p and Upf3p. This decay pathway is often called nonsense- mediated mRNA decay (NMD). Nonsense mRNAs are decapped by Dcp1p and then degraded 5′ to 3′ by Xrn1p. In the yeast Saccharomyces cerevisiae, a significant number of wild-type mRNAs accumulate in upf mutants. Wild-type PPR1 mRNA is one of these mRNAs. Here we show that PPR1 mRNA degradation depends on the Upf proteins, Dcp1p, Xrn1p and Hrp1p. We have mapped an Upf1p-dependent destabilizing element to a region located within the 5′-UTR and the first 92 bases of the PPR1 ORF. This element targets PPR1 mRNA for Upf-dependent decay by a novel mechanism.  相似文献   

15.
16.
In metazoans, cell-cycle-dependent histones are produced from poly(A)-lacking mRNAs. The 3′ end of histone mRNAs is formed by an endonucleolytic cleavage of longer precursors between a conserved stem–loop structure and a purine-rich histone downstream element (HDE). The cleavage requires at least two trans-acting factors: the stem–loop binding protein (SLBP), which binds to the stem–loop and the U7 snRNP, which anchors to histone pre-mRNAs by annealing to the HDE. Using RNA structure-probing techniques, we determined the secondary structure of the 3′-untranslated region (3′-UTR) of mouse histone pre-mRNAs H4–12, H1t and H2a–614. Surprisingly, the HDE is embedded in hairpin structures and is therefore not easily accessible for U7 snRNP anchoring. Probing of the 3′-UTR in complex with SLBP revealed structural rearrangements leading to an overall opening of the structure especially at the level of the HDE. Electrophoretic mobility shift assays demonstrated that the SLBP-induced opening of HDE actually facilitates U7 snRNA anchoring on the histone H4–12 pre-mRNAs 3′ end. These results suggest that initial binding of the SLBP functions in making the HDE more accessible for U7 snRNA anchoring.  相似文献   

17.
18.
Previous work has demonstrated that iron-dependent variations in the steady-state concentration and translatability of sodB mRNA are modulated by the small regulatory RNA RyhB, the RNA chaperone Hfq and RNase E. In agreement with the proposed role of RNase E, we found that the decay of sodB mRNA is retarded upon inactivation of RNase E in vivo, and that the enzyme cleaves within the sodB 5′-untranslated region (5′-UTR) in vitro, thereby removing the 5′ stem–loop structure that facilitates Hfq and ribosome binding. Moreover, RNase E cleavage can also occur at a cryptic site that becomes available upon sodB 5′-UTR/RyhB base pairing. We show that while playing an important role in facilitating the interaction of RyhB with sodB mRNA, Hfq is not tightly retained by the RyhB–sodB mRNA complex and can be released from it through interaction with other RNAs added in trans. Unlike turnover of sodB mRNA, RyhB decay in vivo is mainly dependent on RNase III, and its cleavage by RNase III in vitro is facilitated upon base pairing with the sodB 5′-UTR. These data are discussed in terms of a model, which accounts for the observed roles of RNase E and RNase III in sodB mRNA turnover.  相似文献   

19.
Activated hepatic stellate cells produce increased type I collagen in hepatic fibrosis. The increase in type I collagen protein results from an increase in mRNA levels that is mainly mediated by increased mRNA stability. Protein–RNA interactions in the 3′-UTR of the collagen α1(I) mRNA correlate with stabilization of the mRNA during hepatic stellate cell activation. A component of the binding complex is αCP2. Recombinant αCP2 is sufficient for binding to the 3′-UTR of collagen α1(I). To characterize the binding affinity of and specificity for αCP2, we performed electrophoretic mobility shift assays using the poly(C)-rich sequence in the 3′-UTR of collagen α1(I) as probe. The binding affinity of αCP2 for the 3′-UTR sequence is ~2 nM in vitro and the wild-type 3′ sequence binds with high specificity. Furthermore, we demonstrate a system for detecting protein–nucleotide interactions that is suitable for high throughput assays using molecular beacons. Molecular beacons, developed for DNA–DNA hybridization, are oligonucleotides with a fluorophore and quencher brought together by a hairpin sequence. Fluorescence increases when the hairpin is disrupted by binding to an antisense sequence or interaction with a protein. Molecular beacons displayed a similar high affinity for binding to recombinant αCP2 to the wild-type 3′ sequence, although the kinetics of binding were slower.  相似文献   

20.
Barley yellow dwarf virus mRNA, which lacks both cap and poly(A) tail, has a translation element (3′-BTE) in its 3′-UTR essential for efficient translation initiation at the 5′-proximal AUG. This mechanism requires eukaryotic initiation factor 4G (eIF4G), subunit of heterodimer eIF4F (plant eIF4F lacks eIF4A), and 3′-BTE-5′-UTR interaction. Using fluorescence anisotropy, SHAPE (selective 2′-hydroxyl acylation analyzed by primer extension) analysis, and toeprinting, we found that (i) 40S subunits bind to BTE (Kd = 350 ± 30 nm), (ii) the helicase complex eIF4F-eIF4A-eIF4B-ATP increases 40S subunit binding (Kd = 120 ± 10 nm) to the conserved stem-loop I of the 3′-BTE by exposing more unpaired bases, and (iii) long distance base pairing transfers this complex to the 5′-end of the mRNA, where translation initiates. Although 3′-5′ interactions have been recognized as important in mRNA translation, barley yellow dwarf virus employs a novel mechanism utilizing the 3′-UTR as the primary site of ribosome recruitment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号