首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Expression of ligands of the immunoreceptor NKG2D such as MICA and MICB has been proposed to play an important role in the immunosurveillance of tumors. Proteolytic shedding of NKG2D ligands from cancer cells therefore constitutes an immune escape mechanism impairing anti-tumor reactivity by NKG2D-bearing cytotoxic lymphocytes. Serum levels of sMICA have been shown to be of diagnostic significance in malignant diseases of various origins. Here, we investigated the potential of soluble MICB, the sister molecule of MICA, as a marker in cancer and its correlation with soluble MICA. Analysis of MICB in sera of 512 individuals revealed slightly higher MICB levels in patients with various malignancies (N = 296; 95th percentile 216 pg/ml; P = 0.069) than in healthy individuals (N = 62; 95th percentile 51 pg/ml). Patients with benign diseases (N = 154; 95th percentile 198 pg/ml) exhibited intermediate MICB levels. In cancer patients, elevated MICB levels correlated significantly with cancer stage and metastasis (P = 0.007 and 0.007, respectively). Between MICB and MICA levels, only a weak correlation was found (r = 0.24). Combination of both markers resulted only in a slightly higher diagnostic power in the high specificity range. The reduction of MICA and MICB surface expression on cells by shedding and the effects of sMICA and sMICB in serum on host lymphocyte NKG2D expression might play a role in late stages of tumor progression by overcoming the confining effect of NK cells and CD8 T cells. While MICB levels are not suited for the diagnosis of cancer in early stages, they may provide additional information for the staging of cancer disease.Alexander Steinle and Helmut R. Salih contributed equally to this work.  相似文献   

2.

Background

Natural killer (NK) cells are an important resource of the innate immune system directly involved in the spontaneous recognition and lysis of virus-infected and tumor cells. An exquisite balance of inhibitory and activating receptors tightly controls the NK cell activity. At present, one of the best-characterized activating receptors is NKG2D, which promotes the NK-mediated lysis of target cells by binding to a family of cell surface ligands encoded by the MHC class I chain-related (MIC) genes, among others. The goal of this study was to describe the expression pattern of MICA and MICB at the molecular and cellular levels in human cervical cancer cell lines infected or not with human papillomavirus, as well as in a non-tumorigenic keratinocyte cell line.

Results

Here we show that MICA and MICB exhibit differential expression patterns among HPV-infected (SiHa and HeLa) and non-infected cell lines (C33-A, a tumor cell line, and HaCaT, an immortalized keratinocyte cell line). Cell surface expression of MICA was higher than cell surface expression of MICB in the HPV-positive cell lines; in contrast, HPV-negative cells expressed lower levels of MICA. Interestingly, the MICA levels observed in C33-A cells were overcome by significantly higher MICB expression. Also, all cell lines released higher amounts of soluble MICB than of soluble MICA into the cell culture supernatant, although this was most pronounced in C33-A cells. Additionally, Real-Time PCR analysis demonstrated that MICA was strongly upregulated after genotoxic stress.

Conclusions

This study provides evidence that even when MICA and MICB share a high degree of homology at both genomic and protein levels, differential regulation of their expression and cell surface appearance might be occurring in cervical cancer-derived cells.  相似文献   

3.
The activating immunoreceptor NKG2D promotes elimination of infected or malignant cells by cytotoxic lymphocytes through engagement of stress-induced MHC class I-related ligands. The human cytomegalovirus (HCMV)-encoded immunoevasin UL16 subverts NKG2D-mediated immune responses by retaining a select group of diverse NKG2D ligands inside the cell. We report here the crystal structure of UL16 in complex with the NKG2D ligand MICB at 1.8 Å resolution, revealing the molecular basis for the promiscuous, but highly selective, binding of UL16 to unrelated NKG2D ligands. The immunoglobulin-like UL16 protein utilizes a three-stranded β-sheet to engage the α-helical surface of the MHC class I-like MICB platform domain. Intriguingly, residues at the center of this β-sheet mimic a central binding motif employed by the structurally unrelated C-type lectin-like NKG2D to facilitate engagement of diverse NKG2D ligands. Using surface plasmon resonance, we find that UL16 binds MICB, ULBP1, and ULBP2 with similar affinities that lie in the nanomolar range (12–66 nM). The ability of UL16 to bind its ligands depends critically on the presence of a glutamine (MICB) or closely related glutamate (ULBP1 and ULBP2) at position 169. An arginine residue at this position however, as found for example in MICA or ULBP3, would cause steric clashes with UL16 residues. The inability of UL16 to bind MICA and ULBP3 can therefore be attributed to single substitutions at key NKG2D ligand locations. This indicates that selective pressure exerted by viral immunoevasins such as UL16 contributed to the diversification of NKG2D ligands.  相似文献   

4.
Human CMV infection results in MHC class I down-regulation and induction of NKG2D ligand expression favoring NK recognition of infected cells. However, human CMV-encoded UL16 counteracts surface expression of several NKG2D ligands by intracellular retention. Interestingly, UL16 interacts with MICB, but not with the closely related MICA, and with UL16-binding proteins (ULBP) ULBP1 and ULBP2, which are only distantly related to MICB, but not with ULPB3 or ULBP4, although all constitute ligands for NKG2D. Here, we dissected the molecular basis of MICA-MICB discrimination by UL16 to elucidate its puzzling binding behavior. We report that the UL16-MICB interaction is independent of glycosylation and demonstrate that selective MICB recognition by UL16 is governed by helical structures of the MICB alpha2 domain. Transplantation of the MICB alpha2 domain confers UL16 binding capacity to MICA, and thus, diversification of the MICA alpha2 domain may have been driven by the selective pressure exerted by UL16.  相似文献   

5.
6.
Infection by human CMV induces expression of the cellular MHC class I-related chain A (MICA) and chain B (MICB) surface proteins, which function as ligands for the activating NKG2D receptor. Engagement of NKG2D triggers NK cells and costimulates Ag-specific effector CD8 alphabeta T cells. The potency of MHC class I-related chain-NKG2D in stimulating these anti-viral immune responses may be countered by a CMV-encoded transmembrane glycoprotein, UL16, which specifically binds MICB as well as two of the UL16-binding proteins that are ligands of NKG2D. However, the function and significance of these interactions are undefined. Using a stably transfected B cell line, we show that expression of UL16 results in loss of surface MICB. This effect is caused by the failure of newly synthesized MICB to mature and transit the secretory pathway due to physical association with UL16. The intracellular retention of these protein complexes is mediated by a tyrosine-based motif in the cytoplasmic tail sequence of UL16, which determines localization to or retrieval from the trans-Golgi network. Deletion of this motif restores surface expression of MICB, whereas UL16 may be redirected to endosomal compartments. Predictably, the retention of MICB abrogates the stimulatory function of NKG2D. These results suggest a potential mechanism of viral immune evasion. However, this activity remains to be confirmed with CMV-infected fibroblasts or endothelial cells, in particular because MICB is normally coexpressed with MICA, which is not retained by UL16.  相似文献   

7.
The influence of intrauterine environment on the risk of endometriosis is still controversial. Whether birth weight modifies the risk of endometriosis in adulthood remains an open question. For this purpose, we designed a case-control study involving 743 women operated on for benign gynecological indications from January 2004 to December 2011. Study group included 368 patients with histologically proven endometriosis: 54 superficial endometriosis (SUP), 79 endometriomas (OMA) and 235 deep infiltrating endometriosis (DIE). Control group included 375 patients without endometriosis as surgically checked. Mean birth weights were compared between patients and controls, according to endometriosis groups and rAFS stages. Mean birth weight was significantly lower for patients with endometriosis as compared to controls (3,119g ± 614 and 3,251g ± 557 respectively; p = 0.002). When compared to controls, patients with DIE had the lowest birth weight with a highly significant difference (3,103g ± 620, p = 0.002). In univariate analysis, patients with low birth weight (LBW), defined as a BW < 2,500g, had a higher risk of endometriosis, especially DIE, as compared to the reference group (OR = 1.5, 95%CI: 1.0-2.3 and OR = 1.7, 95%CI: 1.0-2.7, respectively). Multivariate analysis, adjusted on ethnicity and smoking status, showed the persistence of a significant association between endometriosis and LBW with a slight increase in the magnitude of the association (aOR = 1.7, 95%CI: 1.0-2.6 for endometriosis, aOR = 1.8; 95%CI: 1.1-2.9 for DIE). In conclusion, LBW is independently associated with the risk of endometriosis in our population. Among patients with LBW, the risk is almost two-times higher to develop DIE. This association could reflect common signaling pathways between endometriosis and fetal growth regulation. There is also the possibility of a role played by placental insufficiency on the development of the neonate’s pelvis and the occurrence of neonatal uterine bleeding that could have consequences on the risk of severe endometriosis.  相似文献   

8.

Objective

Presepsin is highlighted as a diagnostic and prognostic marker of sepsis. Little information is available regarding the accurate association between presepsin levels and the degree of kidney function. We analyzed presepsin levels in patients with a glomerular filtration rate (GFR) in the categories G1 to G5, evaluated via inulin renal clearance test, and receiving hemodialysis (HD).

Methods

Patients who were not receiving HD were included if they had undergone inulin renal clearance measurements for the accurate measurement of GFR (measured GFR), and patients who were receiving hemodialysis (HD) were included if they had anuria. Exclusion criteria were infection, cancer, liver disease, autoimmune disorders, or steroid or immunosuppressant use. GFR category was defined as follows; G1: GFR ≥ 90 ml/min/1.73m2, G2: GFR = 60 to 90 ml/min/1.73m2, G3: GFR = 30 to 60 ml/min/1.73m2, G4: GFR = 15 to 30 ml/min/1.73m2, G5: GFR ≤ 15 ml/min/1.73m2.

Results

Seventy-one patients were included. The median (IQR) presepsin values of patients in each GFR category were as follows: G1 + G2: 69.8 (60.8–85.9) pg/ml; G3: 107.0 (68.7–150.0) pg/ml; G4: 171.0 (117.0–200.0) pg/ml; G5: 251.0 (213.0–297.5) pg/ml; and HD: 1160.0 (1070.0–1400.0) pg/ml. The log-transformed presepsin values, excluding patients receiving HD, inversely correlated with the measured GFR (Pearson’s correlation coefficient = -0.687, P < 0.001). The multivariate analysis revealed that measured GFR and hemoglobin levels significantly correlated with elevated presepsin levels.

Conclusion

Presepsin levels were markedly high in patients receiving HD, similar to values seen in patients with severe sepsis or septic shock. In patients who were not receiving HD, presepsin levels increased as GFR decreased. Thus, the evaluation of presepsin levels in patients with chronic kidney disease requires further consideration, and a different cutoff value is needed for diagnosing sepsis in such patients.  相似文献   

9.
RNA interference (RNAi) acts constitutively to silence the innate immune response, and innate immunity genes are misregulated in Dicer-deficient Caenorhabditis elegans. Here, we show that inhibition of Dicer expression by RNAi in human cells up-regulates major histocompatibility complex class I-related molecules A and B (MICA and MICB). MICA and MICB are innate immune system ligands for the NKG2D receptor expressed by natural killer cells and activated CD8(+)T cells. We reveal that knockdown of Dicer elicits DNA damage. Up-regulation of MICA and MICB by Dicer knockdown is prevented by pharmacologic or genetic inhibition of DNA damage pathway components, including ataxia telangiectasia mutated (ATM) kinase, ATM- and Rad3-related kinase, or checkpoint kinase 1. Therefore we conclude that up-regulation of MICA and MICB is the result of DNA damage response activation caused by Dicer knockdown. Our results suggest that RNAi is indirectly linked to the human innate immune system via the DNA damage pathway.  相似文献   

10.

Background

There is limited understanding of the dysregulation of the innate immune system in multiple myeloma (MM). We analysed the expression of the activating receptor NKG2D on NK cells and T cells of MM patients and investigated the impact of soluble versus membrane-bound NKG2D ligands on the expression of NKG2D.

Design

NKG2D expression on NK cells and CD8+ αβ T cells from patients with MM or monoclonal gammopathy of uncertain significance and healthy controls was examined flow-cytometrically. Sera from patients and controls were analysed for soluble NKG2D ligands (sNKG2D ligands).

Results

Significantly fewer NK cells and CD8+ αβ T cells from patients expressed NKG2D compared to healthy controls (NK cells: median 54% interquartile range (IQR) 32–68 versus 71% IQR 44–82%, P = 0.017, CD8+ αβ T cells: median 63% IQR 52–81 versus 77% IQR 71–90%, P = 0.018). The sNKG2D ligand sMICA was increased in patients [median 175 (IQR 87–295) pg/ml] versus controls [median 80 (IQR 32–129) pg/ml, P < 0.001], but levels of sMICA did not correlate with NKG2D expression on effector cells. To elucidate the mechanism of NKG2D down-regulation, we incubated lymphocytes from healthy donors in the presence of sNKG2D ligands or in co-culture with MM cell lines. sNKG2D ligands in clinically relevant concentrations did not down-regulate NKG2D expression, but co-culture of effector cells with myeloma cells with high surface expression of NKG2D ligands reduced NKG2D expression significantly.

Conclusions

These results indicate that MM is associated with a significant reduction in NKG2D expression which may be contact-mediated rather than caused by soluble NKG2D ligands.  相似文献   

11.
NKG2D is an activating receptor that is expressed on most natural killer (NK) cells, CD8 alphabeta T cells, and gammadelta T cells. Among its ligands is the distant major histocompatibility complex class I homolog MICA, which has no function in antigen presentation but is induced by cellular stress. To extend previous functional evidence, the NKG2D-MICA interaction was studied in isolation. NKG2D homodimers formed stable complexes with monomeric MICA in solution, demonstrating that no other components were required to facilitate this interaction. MICA glycosylation was not essential but enhanced complex formation. Soluble NKG2D also bound to cell surface MICB, which has structural and functional properties similar to those of MICA. Moreover, NKG2D stably interacted with surface molecules encoded by three newly identified cDNA sequences (N2DL-1, -2, and -3), which are identical to the human ULBP proteins and may represent homologs of the mouse retinoic acid-early inducible family of NKG2D ligands. Because of the substantial sequence divergence among these molecules, these results indicated promiscuous modes of receptor binding. Comparison of allelic variants of MICA revealed large differences in NKG2D binding that were associated with a single amino acid substitution at position 129 in the alpha2 domain. Varying affinities of MICA alleles for NKG2D may affect thresholds of NK-cell triggering and T-cell modulation.  相似文献   

12.
NKG2D plays a major role in controlling immune responses through the regulation of natural killer (NK) cells, αβ and γδ T-cell function. This activating receptor recognizes eight distinct ligands (the MHC Class I polypeptide-related sequences (MIC) A andB, and UL16-binding proteins (ULBP)1–6) induced by cellular stress to promote recognition cells perturbed by malignant transformation or microbial infection. Studies into human cytomegalovirus (HCMV) have aided both the identification and characterization of NKG2D ligands (NKG2DLs). HCMV immediate early (IE) gene up regulates NKGDLs, and we now describe the differential activation of ULBP2 and MICA/B by IE1 and IE2 respectively. Despite activation by IE functions, HCMV effectively suppressed cell surface expression of NKGDLs through both the early and late phases of infection. The immune evasion functions UL16, UL142, and microRNA(miR)-UL112 are known to target NKG2DLs. While infection with a UL16 deletion mutant caused the expected increase in MICB and ULBP2 cell surface expression, deletion of UL142 did not have a similar impact on its target, MICA. We therefore performed a systematic screen of the viral genome to search of addition functions that targeted MICA. US18 and US20 were identified as novel NK cell evasion functions capable of acting independently to promote MICA degradation by lysosomal degradation. The most dramatic effect on MICA expression was achieved when US18 and US20 acted in concert. US18 and US20 are the first members of the US12 gene family to have been assigned a function. The US12 family has 10 members encoded sequentially through US12–US21; a genetic arrangement, which is suggestive of an ‘accordion’ expansion of an ancestral gene in response to a selective pressure. This expansion must have be an ancient event as the whole family is conserved across simian cytomegaloviruses from old world monkeys. The evolutionary benefit bestowed by the combinatorial effect of US18 and US20 on MICA may have contributed to sustaining the US12 gene family.  相似文献   

13.
Endometriosis, defined as the presence of endometrium outside the uterus, is one of the most frequent gynecological diseases. It has been suggested that modifications of both endometrial and peritoneal factors could be implicated in this disease. Endometriosis is a multifactorial disease in which angiogenesis and proteolysis are dysregulated. MicroRNAs (miRNAs) are small non-coding RNAs that regulate the protein expression and may be the main regulators of angiogenesis. Our hypothesis is that peritoneal fluid from women with endometriosis could modify the expression of several miRNAs that regulate angiogenesis and proteolysis in the endometriosis development. The objective of this study has been to evaluate the influence of endometriotic peritoneal fluid on the expression of six miRNAs related to angiogenesis, as well as several angiogenic and proteolytic factors in endometrial and endometriotic cell cultures from women with endometriosis compared with women without endometriosis.

Methods

Endometrial and endometriotic cells were cultured and treated with endometriotic and control peritoneal fluid pools. We have studied the expression of six miRNAs (miR-16, -17-5p, -20a, -125a, -221, and -222) by RT-PCR and protein and mRNA levels of vascular endothelial growth factor-A, thrombospondin-1, urokinase plasminogen activator and plasminogen activator inhibitor-1 by ELISA and qRT-PCR respectively.

Results

Control and endometriotic peritoneal fluid pools induced a significant reduction of all miRNAs levels in endometrial and endometriotic cell cultures. Moreover, both peritoneal fluids induced a significant increase in VEGF-A, uPA and PAI-1 protein levels in all cell cultures without significant increase in mRNA levels. Endometrial cell cultures from patients treated with endometriotic peritoneal fluid showed lower expression of miRNAs and higher expression of VEGF-A protein levels than cultures from controls. In conclusion, this “in vitro” study indicates that peritoneal fluid from women with endometriosis modulates the expression of miRNAs that could contribute to the angiogenic and proteolytic disequilibrium observed in this disease.  相似文献   

14.
15.

Background

The role of pulmonary hypertension as a cause of mortality in sickle cell disease (SCD) is controversial.

Methods and Results

We evaluated the relationship between an elevated estimated pulmonary artery systolic pressure and mortality in patients with SCD. We followed patients from the walk-PHaSST screening cohort for a median of 29 months. A tricuspid regurgitation velocity (TRV)≥3.0 m/s cuttof, which has a 67–75% positive predictive value for mean pulmonary artery pressure ≥25 mm Hg was used. Among 572 subjects, 11.2% had TRV≥3.0 m/sec. Among 582 with a measured NT-proBNP, 24.1% had values ≥160 pg/mL. Of 22 deaths during follow-up, 50% had a TRV≥3.0 m/sec. At 24 months the cumulative survival was 83% with TRV≥3.0 m/sec and 98% with TRV<3.0 m/sec (p<0.0001). The hazard ratios for death were 11.1 (95% CI 4.1–30.1; p<0.0001) for TRV≥3.0 m/sec, 4.6 (1.8–11.3; p = 0.001) for NT-proBNP≥160 pg/mL, and 14.9 (5.5–39.9; p<0.0001) for both TRV≥3.0 m/sec and NT-proBNP≥160 pg/mL. Age >47 years, male gender, chronic transfusions, WHO class III–IV, increased hemolytic markers, ferritin and creatinine were also associated with increased risk of death.

Conclusions

A TRV≥3.0 m/sec occurs in approximately 10% of individuals and has the highest risk for death of any measured variable.

The study is registered in ClinicalTrials.gov with identifier

NCT00492531  相似文献   

16.

Objective

To determine the association between the presence of oligohydramnios, determined as an amniotic fluid index ≤ 5 cm and the intra-amniotic inflammatory response, fetal inflammatory response and neonatal outcomes in actively managed preterm prelabor rupture of membranes (PPROM).

Methods

Women with singleton pregnancies complicated by PPROM at a gestational age of between 24+0 and 36+6 weeks were included in the study. Ultrasound assessments of the amniotic fluid index and evaluation of the amniotic fluid interleukin (IL)-6 levels were performed at admission. The umbilical cord blood IL-6 levels were evaluated after delivery.

Results

In total, 74 women were included. The women with oligohydramnios did not have different amniotic fluid IL-6 levels [with oligohydramnios: median 342 pg/mL, interquartile range (IQR) 110-1809 vs. without oligohydramnios: median 256 pg/mL, IQR 122–748; p = 0.71] or umbilical cord blood IL-6 levels (with oligohydramnios: median 8.2 pg/mL, IQR 3.8–146.9 vs. without oligohydramnios: median 5.9 pg/mL, IQR 2.1–27.9; p = 0.14) than those without oligohydramnios. No association between oligohydramnios and neonatal morbidity was found. A correlation between the amniotic fluid index and the interval from rupture of membranes to amniocentesis was observed (rho = −0.34; p = 0.003).

Conclusion

The presence of oligohydramnios is not associated with an adverse outcome in actively managed PPROM in singleton pregnancies in the absence of other complications.  相似文献   

17.

Introduction

Pulmonary vascular endothelial activation has been implicated in acute respiratory distress syndrome (ARDS), yet little is known about the presence and role of endothelial activation markers in the alveolar space in ARDS. We hypothesized that endothelial activation biomarkers would be differentially expressed in bronchoalveolar lavage fluid from patients with ARDS compared with healthy volunteers, and that biomarker concentrations would be associated with ARDS severity.

Methods

We performed a cross-sectional analysis of data from 26 intubated patients with ARDS undergoing evaluation for clinically suspected ventilator-associated pneumonia and five healthy volunteers. Patients underwent bronchoalveolar lavage a median of five days after intubation. Healthy volunteers also underwent bronchoalveolar lavage. Endothelial activation biomarkers (soluble vascular cell adhesion molecule-1 [sVCAM-1], soluble endothelial selectin [sESEL], angiopoietin-1 [Ang-1] and angiopoietin-2 [Ang-2]) were measured in bronchoalveolar lavage fluid. Clinically suspected ventilator-associated pneumonia was confirmed with microbiologic culture data.

Results

Patients with ARDS had significantly higher median sVCAM-1 concentrations in the bronchoalveolar lavage fluid compared with healthy volunteers (985 vs 119 pg/mL, p = 0.03). Additionally, there was a trend toward greater bronchoalveolar lavage fluid sVCAM-1 concentrations among patients with moderate/severe compared to mild ARDS (1395 vs 209 pg/mL, p = 0.06). We did not detect significant differences in bronchoalveolar lavage fluid levels of sESEL, Ang-1 or Ang-2 between patients with ARDS and healthy volunteers. Median bronchoalveolar lavage fluid biomarker levels did not differ between patients with and without microbiologically-confirmed ventilator-associated pneumonia.

Conclusions

sVCAM-1 concentrations were significantly higher in the bronchoalveolar lavage fluid of patients with ARDS compared to healthy controls, and tended to be higher in moderate/severe ARDS compared to mild ARDS. Our findings add to the growing evidence supporting the concept that endothelial activation plays an important mechanistic role in the pathogenesis of ARDS. Further studies are necessary to characterize the role and/or clinical significance of sVCAM-1 and other endothelial activation markers present in the alveolar space in ARDS.  相似文献   

18.
Natural killer (NK) cells are stimulated by ligands on virus-infected cells. We have recently demonstrated that NK cells respond to human immunodeficiency virus type-1 (HIV-1)-infected autologous T-cells, in part, through the recognition of ligands for the NK cell activating receptor NKG2D on the surface of the infected cells. Uninfected primary CD4pos T-cell blasts express little, if any, NKG2D ligands. In the present study we determined the mechanism through which ligands for NKG2D are induced on HIV-1-infected cells. Our studies reveal that expression of vpr is necessary and sufficient to elicit the expression of NKG2D ligands in the context of HIV-1 infection. Vpr specifically induces surface expression of the unique-long 16 binding proteins (ULBP)-1 and ULBP-2, but not ULBP-3, MHC class I-related chain molecules (MIC)-A or MIC-B. In these studies we also demonstrated that Vpr increases the level of ULBP-1 and ULBP-2 mRNA in primary CD4pos T-cell blasts. The presence of ULBP-1 and ULBP-2 on HIV-1 infected cells is dependent on the ability of Vpr to associate with a protein complex know as Cullin 4a (Cul4a)/damaged DNA binding protein 1 (DDB1) and Cul4a-associated factor-1(DCAF-1) E3 ubiquitin ligase (Cul4aDCAF-1). ULBP-1 and -2 expression by Vpr is also dependent on activation of the DNA damage sensor, ataxia telangiectasia and rad-3-related kinase (ATR). When T-cell blasts are infected with a vpr-deficient HIV-1, NK cells are impaired in killing the infected cells. Thus, HIV-1 Vpr actively triggers the expression of the ligands to the NK cell activation receptor.  相似文献   

19.
Human cytomegalovirus (HCMV) employs a variety of strategies to modify or evade the host immune response, and natural killer (NK) cells play a crucial role in controlling cytomegalovirus infections in mice and humans. Activation of NK cells through the receptor NKG2D/DAP10 leads to killing of NKG2D ligand-expressing cells. We have previously shown that HCMV is able to down-regulate the surface expression of some NKG2D ligands, ULBP1, ULBP2, and MICB via the viral glycoprotein UL16. Here, we show that the viral gene product UL142 is able to down-regulate another NKG2D ligand, MICA, leading to protection from NK cytotoxicity. UL142 is not able to affect surface expression of all MICA alleles, however, which may reflect selective pressure on the host to thwart viral immune evasion, further supporting an important role for the MICA-NKG2D interaction in immune surveillance.  相似文献   

20.
Overexpression of the receptor tyrosine kinases HER2 and HER3 is associated with a poor prognosis in several types of cancer. Presently, HER2- as well as HER3-targeted therapies are in clinical practice or evaluated within clinical trials, including treatment with mAbs mediating growth inhibition and/or activation of Ab-induced innate or adaptive cellular immunity. A better understanding of how HER2/HER3 signaling in tumors influences cellular immune mechanisms is therefore warranted. In this study, we demonstrate that HER2/HER3 signaling regulates the expression of MHC class I-related chain A and B (MICA and MICB) in breast cancer cell lines. The MICA and MICB (MICA/B) molecules act as key ligands for the activating receptor NK group 2, member D (NKG2D) and promote NK cell-mediated recognition and cytolysis. Genetic silencing of HER3 but not HER2 downregulated the expression of MICA/B, and HER3 overexpression significantly enhanced MICA expression. Among the major pathways activated by HER2/HER3 signaling, the PI3K/AKT pathway was shown to predominantly regulate MICA/B expression. Treatment with the HER3-specific ligand neuregulin 1β promoted the expression in a process that was antagonized by pharmacological and genetic interference with HER3 but not by the ataxia-telangiectasia-mutated (ATM) and ATM and Rad3-related protein kinases inhibitor caffeine. These observations further emphasize that HER2/HER3 signaling directly, and not via genotoxic stress, regulates MICA/B expression. As anticipated, stimulating HER2/HER3 enhanced the NKG2D-MICA/B-dependent NK cell-mediated cytotoxicity. Taken together, we conclude that signaling via the HER2/HER3 pathway in breast carcinoma cell lines may lead to enhanced NKG2D-MICA/B recognition by NK cells and T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号