首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the Mediterranean, habitat-forming corals often characterize essential fish habitats. While their distribution is sufficiently known for the western basin, few data are available from the Central-Eastern Mediterranean Sea (CEM). This study fills this gap supplying the largest dataset ever built on the geographical and bathymetric distribution of the most relevant habitat-forming corals (Eunicella cavolini, Eunicella verrucosa, Eunicella singularis, Leptogorgia sarmentosa, Paramuricea clavata, Corallium rubrum and Savalia savaglia) of the CEM. Information collected from different sources such as literature, citizen science, and from the World Wide Web (WWW) was combined. Videos published on the WWW provided additional information on the presence of fishing lines and signs of damage, as well as on the distribution of purple and yellow-purple colonies of Paramuricea clavata. The study highlighted the impressive amount of information that the WWW can offer to scientists, termed here as Web Ecological Knowledge (WEK). The WEK is constantly fuelled by internauts, representing a free, refreshable, long-term exploitable reservoir of information. A quick and easy method to retrieve data from the WWW was illustrated. In addition, the distribution of corals was overlapped to marine protected areas and to the distribution of environmental conditions suitable for coralligenous habitats, fragile biogenic Mediterranean structures hosting complex assemblages in need of strict protection. The collected data allowed identifying priority areas with high species diversity and sites that are impacted by fishing activities. Supplied data can correctly address conservation and restoration policies in the CEM, adding an important contribution to ecosystem-based marine spatial planning.  相似文献   

2.
Acceptance of marine protected areas (MPAs) as fishery and conservation tools has been hampered by lack of direct evidence that MPAs successfully seed unprotected areas with larvae of targeted species. For the first time, we present direct evidence of large-scale population connectivity within an existing and effective network of MPAs. A new parentage analysis identified four parent-offspring pairs from a large, exploited population of the coral-reef fish Zebrasoma flavescens in Hawai'i, revealing larval dispersal distances ranging from 15 to 184 km. In two cases, successful dispersal was from an MPA to unprotected sites. Given high adult abundances, the documentation of any parent-offspring pairs demonstrates that ecologically-relevant larval connectivity between reefs is substantial. All offspring settled at sites to the north of where they were spawned. Satellite altimetry and oceanographic models from relevant time periods indicated a cyclonic eddy that created prevailing northward currents between sites where parents and offspring were found. These findings empirically demonstrate the effectiveness of MPAs as useful conservation and management tools and further highlight the importance of coupling oceanographic, genetic, and ecological data to predict, validate and quantify larval connectivity among marine populations.  相似文献   

3.
Understanding the biological processes involved in genetic differentiation and divergence between populations within species is a pivotal aim in evolutionary biology. One particular phenomenon that requires clarification is the maintenance of genetic barriers despite the high potential for gene flow in the marine environment. Such patterns have been attributed to limited dispersal or local adaptation, and to a lesser extent to the demographic history of the species. The corkwing wrasse (Symphodus melops) is an example of a marine fish species where regions of particular strong divergence are observed. One such genetic break occurred at a surprisingly small spatial scale (FST ~0.1), over a short coastline (<60 km) in the North Sea‐Skagerrak transition area in southwestern Norway. Here, we investigate the observed divergence and purported reproductive isolation using genome resequencing. Our results suggest that historical events during the post‐glacial recolonization route can explain the present population structure of the corkwing wrasse in the northeast Atlantic. While the divergence across the break is strong, we detected ongoing gene flow between populations over the break suggesting recent contact or negative selection against hybrids. Moreover, we found few outlier loci and no clear genomic regions potentially being under selection. We concluded that neutral processes and random genetic drift e.g., due to founder events during colonization have shaped the population structure in this species in Northern Europe. Our findings underline the need to take into account the demographic process in studies of divergence processes.  相似文献   

4.
The genetic differentiation of many marine fish species is low. Yet local adaptation may be common in marine fish species as the vast and changing marine environment provides more chances for natural selection. Here, we used anonymous as well as known protein gene linked microsatellites and mitochondrial DNA to detect the population structure of the small yellow croaker (Larimichthys polyactis) in the Northwest Pacific marginal seas. Among these loci, we detected at least two microsatellites, anonymous H16 and HSP27 to be clearly under diversifying selection in outlier tests. Sequence cloning and analysis revealed that H16 was located in the intron of BAHCC1 gene. Landscape genetic analysis showed that H16 mutations were significantly associated with temperature, which further supported the diversifying selection at this locus. These marker types presented different patterns of population structure: (i) mitochondrial DNA phylogeny showed no evidence of genetic divergence and demonstrated only one glacial linage; (ii) population differentiation using putatively neutral microsatellites presented a pattern of high gene flow in the L. polyactis. In addition, several genetic barriers were identified; (iii) the population differentiation pattern revealed by loci under diversifying selection was rather different from that revealed by putatively neutral loci. The results above suggest local adaptation in the small yellow croaker. In summary, population genetic studies based on different marker types disentangle the effects of demographic history, migration, genetic drift and local adaptation on population structure and also provide valuable new insights for the design of management strategies in L. polyactis.  相似文献   

5.
Identifying microevolutionary processes acting in populations of marine species with larval dispersal is a challenging but crucial task because of its conservation implications. In this context, recent improvements in the study of spatial genetic structure (SGS) are particularly promising because they allow accurate insights into the demographic and evolutionary processes at stake. Using an exhaustive sampling and a combination of image processing and population genetics, we highlighted significant SGS between colonies of Corallium rubrum over an area of half a square metre, which sheds light on a number of aspects of its population biology. Based on this SGS, we found the mean dispersal range within sites to be between 22.6 and 32.1 cm, suggesting that the surveyed area approximately corresponded to a breeding unit. We then conducted a kinship analysis, which revealed a complex half‐sib family structure and allowed us to quantify the level of self‐recruitment and to characterize aspects of the mating system of this species. Furthermore, significant temporal variations in allele frequencies were observed, suggesting low genetic drift. These results have important conservation implications for the red coral and further our understanding of the microevolutionary processes acting within populations of sessile marine species with a larval phase.  相似文献   

6.
L Thomas  J J Bell 《Heredity》2013,111(4):345-354
Connectivity is widely recognized as an important component in developing effective management and conservation strategies. Although managers are generally most interested in demographic, rather than genetic connectivity, new analytic approaches are able to provide estimates of both demographic and genetic connectivity measures from genetic data. Combining such genetic data with mathematical models represents a powerful approach for accurately determining patterns of population connectivity. Here, we use microsatellite markers to investigate the genetic population structure of the New Zealand Rock Lobster, Jasus edwardsii, which has one of the longest known larval durations of all marine species (>2 years), a very large geographic range (>5500 km), and has been the subject of extensive dispersal modeling. Despite earlier mitochondrial DNA studies finding homogeneous genetic structure, the mathematical model suggests that there are source-sink dynamics for this species. We found evidence of genetic structure in J. edwardsii populations with three distinct genetic groups across New Zealand and a further Australian group; these groups and patterns of gene flow were generally congruent with the earlier mathematical model. Of particular interest was the consistent identification of a self-recruiting population/region from both modeling and genetic approaches. Although there is the potential for selection and harvesting to influence the patterns we observed, we believe oceanographic processes are most likely responsible for the genetic structure observed in J. edwardsii. Our results, using a species at the extreme end of the dispersal spectrum, demonstrate that source-sink population dynamics may still exist for such species.  相似文献   

7.
Understanding seabird habitat preferences is critical to future wildlife conservation and threat mitigation in California. The objective of this study was to investigate drivers of seabird habitat selection within the Gulf of the Farallones and Cordell Bank National Marine Sanctuaries to identify areas for targeted conservation planning. We used seabird abundance data collected by the Applied California Current Ecosystem Studies Program (ACCESS) from 2004–2011. We used zero-inflated negative binomial regression to model species abundance and distribution as a function of near surface ocean water properties, distances to geographic features and oceanographic climate indices to identify patterns in foraging habitat selection. We evaluated seasonal, inter-annual and species-specific variability of at-sea distributions for the five most abundant seabirds nesting on the Farallon Islands: western gull (Larus occidentalis), common murre (Uria aalge), Cassin’s auklet (Ptychorampus aleuticus), rhinoceros auklet (Cerorhinca monocerata) and Brandt’s cormorant (Phalacrocorax penicillatus). The waters in the vicinity of Cordell Bank and the continental shelf east of the Farallon Islands emerged as persistent and highly selected foraging areas across all species. Further, we conducted a spatial prioritization exercise to optimize seabird conservation areas with and without considering impacts of current human activities. We explored three conservation scenarios where 10, 30 and 50 percent of highly selected, species-specific foraging areas would be conserved. We compared and contrasted results in relation to existing marine protected areas (MPAs) and the future alternative energy footprint identified by the California Ocean Uses Atlas. Our results show that the majority of highly selected seabird habitat lies outside of state MPAs where threats from shipping, oil spills, and offshore energy development remain. This analysis accentuates the need for innovative marine spatial planning efforts and provides a foundation on which to build more comprehensive zoning and management in California’s National Marine Sanctuaries.  相似文献   

8.
Seahorses are iconic charismatic species that are often used to ‘champion’ marine conservation causes around the world. As they are threatened in many countries by over-exploitation and habitat loss, marine protected areas (MPAs) could help with their protection and recovery. MPAs may conserve seahorses through protecting essential habitats and removing fishing pressures. Populations of White''s seahorse, Hippocampus whitei, a species endemic to New South Wales, Australia, were monitored monthly from 2006 to 2009 using diver surveys at two sites within a no-take marine protected areas established in 1983, and at two control sites outside the no-take MPA sites. Predators of H. whitei were also identified and monitored. Hippocampus whitei were more abundant at the control sites. Seahorse predators (3 species of fish and 2 species of octopus) were more abundant within the no-take MPA sites. Seahorse and predator abundances were negatively correlated. Substantial variability in the seahorse population at one of the control sites reinforced the importance of long-term monitoring and use of multiple control sites to assess the outcomes of MPAs for seahorses. MPAs should be used cautiously to conserve seahorse populations as there is the risk of a negative impact through increased predator abundance.  相似文献   

9.
Defining the scale of connectivity among marine populations and identifying the barriers to gene flow are tasks of fundamental importance for understanding the genetic structure of populations and for the design of marine reserves. Here, we investigated the population genetic structure at three spatial scales of the red gorgonian Paramuricea clavata (Cnidaria, Octocorallia), a key species dwelling in the coralligenous assemblages of the Mediterranean Sea. Colonies of P. clavata were collected from 39 locations across the Mediterranean Sea from Morocco to Turkey and analysed using microsatellite loci. Within three regions (Medes, Marseille and North Corsica), sampling was obtained from multiple locations and at different depths. Three different approaches (measures of genetic differentiation, Bayesian clustering and spatially explicit maximum‐difference algorithm) were used to determine the pattern of genetic structure. We identified genetic breaks in the spatial distribution of genetic diversity, which were concordant with oceanographic conditions in the Mediterranean Sea. We revealed a high level of genetic differentiation among populations and a pattern of isolation by distance across the studied area and within the three regions, underlining short effective larval dispersal in this species. We observed genetic differentiation among populations in the same locality dwelling at different depths, which may be explained by local oceanographic conditions and which may allow a process of local adaptation of the populations to their environment. We discuss the implications of our results for the conservation of the species, which is exposed to various threats.  相似文献   

10.
While there are persistent calls for developing more marine protected areas (MPAs) for Asian horseshoe crab conservation in response to population declines in Asia–Pacific region, most existing horseshoe crab MPAs were designated without prior comprehensive population assessment and habitat characterization. This study collected biological and habitat information in Hong Kong, in order to identify priority sites for conservation and management of Asian horseshoe crab populations. The territory-wide surveys at 18 spawning/nursery beaches displayed a persistently low mean juvenile density from 0.16 to 2.19 ind/100 m2 in 2012 and 0.08 to 1.41 ind/100 m2 in 2014. These density data were within the same range of that in 2002 and 2007 (0.10–1.97 ind/100 m2), apart from a low survey return of 0.08–0.31 ind/100 m2 in 2004. The current population of juvenile T. tridentatus and C. rotundicauda in Hong Kong is estimated about 2100–4300 and 2400–3000 individuals, respectively. From the 2012–2014 data, no new recruitments of 1st–3rd instar juveniles were found, as the shores were occupied mostly by 6th–9th instar juveniles of prosomal width between 23 and 45 mm, in which considerably high mortality rates were noted. The present findings of existing small and discrete juvenile populations, coupled with relatively few recruits, suggest that the status of juvenile horseshoe crabs in Hong Kong is fragile and vulnerable to local extirpation, especially if no urgent protection measures are implemented. Based on available population data and habitat characteristics, three MPAs, ranging from 5 to 7 km2, are proposed, so as to conserve over 60 and 70 % of the existing juvenile populations of T. tridentatus and C. rotundicauda, respectively. The approach adopted in this study may serve as a case study for proposing other horseshoe crab MPAs in Asia, where increasing human disturbances and over-harvest are imminent.  相似文献   

11.
Despite the significance of marine habitat-forming organisms, little is known about their large-scale distribution and abundance in deeper waters, where they are difficult to access. Such information is necessary to develop sound conservation and management strategies. Kelps are main habitat-formers in temperate reefs worldwide; however, these habitats are highly sensitive to environmental change. The kelp Ecklonia radiate is the major habitat-forming organism on subtidal reefs in temperate Australia. Here, we provide large-scale ecological data encompassing the latitudinal distribution along the continent of these kelp forests, which is a necessary first step towards quantitative inferences about the effects of climatic change and other stressors on these valuable habitats. We used the Autonomous Underwater Vehicle (AUV) facility of Australia’s Integrated Marine Observing System (IMOS) to survey 157,000 m2 of seabed, of which ca 13,000 m2 were used to quantify kelp covers at multiple spatial scales (10–100 m to 100–1,000 km) and depths (15–60 m) across several regions ca 2–6° latitude apart along the East and West coast of Australia. We investigated the large-scale geographic variation in distribution and abundance of deep-water kelp (>15 m depth) and their relationships with physical variables. Kelp cover generally increased with latitude despite great variability at smaller spatial scales. Maximum depth of kelp occurrence was 40–50 m. Kelp latitudinal distribution along the continent was most strongly related to water temperature and substratum availability. This extensive survey data, coupled with ongoing AUV missions, will allow for the detection of long-term shifts in the distribution and abundance of habitat-forming kelp and the organisms they support on a continental scale, and provide information necessary for successful implementation and management of conservation reserves.  相似文献   

12.
Protection of natural environments sought through management plans varies greatly between countries; characterizing these differences and what motivates them can inform future regional and international conservation efforts. This research builds on previous work addressing the spatial distribution of marine protected areas in the Mediterranean Sea. Particularly, it examines the relationship between a “protection level” (PL) score and a set of variables pertaining to each country's conservation efforts, economic conditions and human impact along the coast using regression analysis. Four sets of models demonstrated country characteristics that correlate with higher protection levels within marine protected areas (MPAs). Certain contextual factors – economic dependence on the marine environment, efforts at terrestrial conservation and greater human impact – were found to be significantly associated with higher PLs among the northern littoral countries of the Mediterranean. Such findings can inform policy makers about where efforts and investments should be directed for marine conservation.  相似文献   

13.
Patterns of genetic connectivity are increasingly considered in the design of marine protected areas (MPAs) in both shallow and deep water. In the New Zealand Exclusive Economic Zone (EEZ), deep-sea communities at upper bathyal depths (<2000 m) are vulnerable to anthropogenic disturbance from fishing and potential mining operations. Currently, patterns of genetic connectivity among deep-sea populations throughout New Zealand’s EEZ are not well understood. Using the mitochondrial Cytochrome Oxidase I and 16S rRNA genes as genetic markers, this study aimed to elucidate patterns of genetic connectivity among populations of two common benthic invertebrates with contrasting life history strategies. Populations of the squat lobster Munida gracilis and the polychaete Hyalinoecia longibranchiata were sampled from continental slope, seamount, and offshore rise habitats on the Chatham Rise, Hikurangi Margin, and Challenger Plateau. For the polychaete, significant population structure was detected among distinct populations on the Chatham Rise, the Hikurangi Margin, and the Challenger Plateau. Significant genetic differences existed between slope and seamount populations on the Hikurangi Margin, as did evidence of population differentiation between the northeast and southwest parts of the Chatham Rise. In contrast, no significant population structure was detected across the study area for the squat lobster. Patterns of genetic connectivity in Hyalinoecia longibranchiata are likely influenced by a number of factors including current regimes that operate on varying spatial and temporal scales to produce potential barriers to dispersal. The striking difference in population structure between species can be attributed to differences in life history strategies. The results of this study are discussed in the context of existing conservation areas that are intended to manage anthropogenic threats to deep-sea benthic communities in the New Zealand region.  相似文献   

14.
Biodiversity is increasingly declining as a result of direct human impact and structural alteration of ecosystems resulting from changes in human life styles. Itasenpara bittering (Acheilognathus longipinnis), which has been maintained in floodplain and paddy fields, is a threatened cyprinid fish endemic to central Japan. To aid in the preservation of this species, information on genetic diversity and demographic variables in wild and captive populations was obtained using microsatellite DNA analysis. Temporal changes in genetic diversity and effective population size (N e) tended to be relatively stable in the wild Moo River population, although lower values were detected in the wild Busshouji River population, suggesting an extremely high risk of extinction in the latter. Captive populations derived from the Busshouji River population demonstrated significant genetic divergence even among intrapopulational cohorts, suggesting the influence of genetic drift caused by geographic isolation and small population size. Active maintenance of genetic diversity in captive population is a necessary part of conservation programs, as are continuous addition of wild individuals and replacement of individuals among captive populations. In addition, increasing or maintaining suitable floodplain areas and artificial habitats such as paddy fields might contribute to the conservation of genetic diversity in the Itasenpara bittering.  相似文献   

15.
The genetic diversity and structure of 12 populations of Megaleranthis saniculifolia, a rare endemic Korean plant, were analyzed using 14 allozyme loci coding 10 enzymes and 78 ISSR loci using seven primers. The genetic diversity of M. saniculifolia at the species level was similar to that observed in out-crossing and long-lived perennials, while at the population level, it was significantly low. The high F IS value of many populations as well as homozygote excess occurred relatively evenly in many populations in relation to the Hardy-Weinberg expectation, suggesting that inbreeding was occurring within the M. saniculifolia populations. The degree of genetic differentiation based on the two markers was high, and there was no correlation between geographic and genetic distance. Bayesian cluster analysis did not reveal any remarkable geographic trends. Positive correlations were observed between genetic diversity (H e and h) and population size. Therefore, low genetic diversity within the population and high population differentiation of M. saniculifolia were closely related to the influence of genetic drift, particularly in highly isolated populations. In addition, the fixation of the main alleles at several loci in the opposite direction provided good evidence for genetic drift. The genetic diversity of M. saniculifolia could be compromised if the distribution area or the size of the population were further reduced. In particular, the isolated populations that are fragmented within an area could be at high risk of extinction due to accelerated inbreeding or genetic drift. Considering this, a close monitoring of the population size and of the changes in the genetic structure must be performed. Some practical measures for genetic conservation are also proposed.  相似文献   

16.
Animal parasitic nematodes can cause serious diseases and their emergence in new areas can be an issue of major concern for biodiversity conservation and human health. Their ability to adapt to new environments and hosts is likely to be affected by their degree of genetic diversity, with gene flow between distinct populations counteracting genetic drift and increasing effective population size. The raccoon roundworm (Baylisascaris procyonis), a gastrointestinal parasite of the raccoon (Procyon lotor), has increased its global geographic range after being translocated with its host. The raccoon has been introduced multiple times to Germany, but not all its populations are infected with the parasite. While fewer introduced individuals may have led to reduced diversity in the parasite, admixture between different founder populations may have counteracted genetic drift and bottlenecks. Here, we analyse the population genetic structure of the roundworm and its raccoon host at the intersection of distinct raccoon populations infected with B. procyonis. We found evidence for two parasite clusters resulting from independent introductions. Both clusters exhibited an extremely low genetic diversity, suggesting small founding populations subjected to inbreeding and genetic drift with no, or very limited, genetic influx from population admixture. Comparison of the population genetic structures of both host and parasite suggested that the parasite spread to an uninfected raccoon founder population. On the other hand, an almost perfect match between cluster boundaries also suggested that the population genetic structure of B. procyonis has remained stable since its introduction, mirroring that of its raccoon host.  相似文献   

17.
Protecting populations in their natural habitat allows for the maintenance of naturally evolved adaptations and ecological relationships. However, the conservation of genetic resources often requires complementary practices like gene banks, translocations or reintroductions. In order to minimize inbreeding depression and maximize the adaptive potential of future populations, populations chosen for ex situ conservation should be selected according to criteria that will result in a reduction of global coancestry in the population. Generally, large populations should reveal lower coancestry and higher genetic variation than small populations. If detailed knowledge about coancestry is lacking, census population number (N c ) can be used as a proxy for required characteristics. However, a simple measure of N c may be misleading in particular cases as genetic processes rely on effective population size (N e ) rather than N c and these two measures may differ substantially due to demographic processes. We used an example of English yew to address whether N c can be a good predictor of genetic parameters when used in conservation programs. Using microsatellite markers, we estimated allelic richness, inbreeding and coancestry coefficients of six relatively large yew populations in Poland. Each population was characterized by N e using the linkage disequilibrium method. Our results showed that populations of English yew were subject to substantial divergence and genetic drift, with both being inversely proportional to the effective subpopulation size (N e ). Additionally, allelic richness appeared proportional to N e but not to N c . However, the N e /N ratio differed greatly among populations, which was possibly due to different population histories. From the results we concluded that choosing source populations based only on their census size can be fairly misleading. Implications for conservation are briefly discussed.  相似文献   

18.
A peripheral population of mountain sucker, Pantosteus jordani, located in the Black Hills of South Dakota, USA, represents the eastern-most range of the species and is completely isolated from other populations. Over the last 50 years, mountain sucker populations have declined in the Black Hills, and now only occur in 40 % of the historic local range, with densities decreasing by more than 84 %.We used microsatellite DNA markers to estimate genetic diversity and to assess population structure across five streams where mountain suckers persist. We evaluated results in the context of recent ecological surveys to inform decisions about mountain sucker conservation. Significant allele frequency differences existed among sample streams (Global FST = 0.041) but there was no evidence of isolation by distance. Regionally, genetic effective size, Ne, was estimated to be at least 338 breeding individuals, but Ne within streams was expected to be less. Despite almost complete demographic isolation and reduced population size, there appears to be little evidence of inbreeding, but genetic drift and local isolation due to fragmentation probably best explains genetic structure in this peripheral mountain sucker population. Recommended strategies for population enhancement include restoration of stream connectivity and habitat improvement. Moreover, repatriation and assisted movement (i.e., gene flow) of fishes should maximize genetic diversity in stream fragments in the Black Hills region.  相似文献   

19.
The evolution of island populations in natural systems is driven by local adaptation and genetic drift. However, evolutionary pathways may be altered by humans in several ways. The wild boar (WB) (Sus scrofa) is an iconic game species occurring in several islands, where it has been strongly managed since prehistoric times. We examined genomic diversity at 49 803 single-nucleotide polymorphisms in 99 Sardinian WBs and compared them with 196 wild specimens from mainland Europe and 105 domestic pigs (DP; 11 breeds). High levels of genetic variation were observed in Sardinia (80.9% of the total number of polymorphisms), which can be only in part associated to recent genetic introgression. Both Principal Component Analysis and Bayesian clustering approach revealed that the Sardinian WB population is highly differentiated from the other European populations (FST=0.126–0.138), and from DP (FST=0.169). Such evidences were mostly unaffected by an uneven sample size, although clustering results in reference populations changed when the number of individuals was standardized. Runs of homozygosity (ROHs) pattern and distribution in Sardinian WB are consistent with a past expansion following a bottleneck (small ROHs) and recent population substructuring (highly homozygous individuals). The observed effect of a non-random selection of Sardinian individuals on diversity, FST and ROH estimates, stressed the importance of sampling design in the study of structured or introgressed populations. Our results support the heterogeneity and distinctiveness of the Sardinian population and prompt further investigations on its origins and conservation status.  相似文献   

20.
Marine species with pelagic larvae typically exhibit little population structure, suggesting long‐distance dispersal and high gene flow. Directly quantifying dispersal of marine fishes is challenging but important, particularly for the design of marine protected areas (MPAs). Here, we studied kelp rockfish (Sebastes atrovirens) sampled along ~25 km of coastline in a boundary current‐dominated ecosystem and used genetic parentage analysis to identify dispersal events and characterize them, because the distance between sedentary parents and their settled offspring is the lifetime dispersal distance. Large sample sizes and intensive sampling are critical for increasing the likelihood of detecting parent–offspring matches in such systems and we sampled more than 6,000 kelp rockfish and analysed them with a powerful set of 96 microhaplotype markers. We identified eight parent–offspring pairs with high confidence, including two juvenile fish that were born inside MPAs and dispersed to areas outside MPAs, and four fish born in MPAs that dispersed to nearby MPAs. Additionally, we identified 25 full‐sibling pairs, which occurred throughout the sampling area and included all possible combinations of inferred dispersal trajectories. Intriguingly, these included two pairs of young‐of‐the‐year siblings with one member each sampled in consecutive years. These sibling pairs suggest monogamy, either intentional or accidental, which has not been previously demonstrated in rockfishes. This study provides the first direct observation of larval dispersal events in a current‐dominated ecosystem and direct evidence that larvae produced within MPAs are exported both to neighbouring MPAs and to proximate areas where harvest is allowed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号