首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Niemann-Pick C1-like 1 protein (NPC1L1) is the putative intestinal sterol transporter and the molecular target of ezetimibe, a potent inhibitor of cholesterol absorption. To address the role of NPC1L1 in cholesterol trafficking in intestine, the regulation of cholesterol trafficking by ezetimibe was studied in the human intestinal cell line, CaCo-2. Ezetimibe caused only a modest decrease in the uptake of micellar cholesterol, but markedly prevented its esterification. Cholesterol trafficking from the plasma membrane to the endoplasmic reticulum was profoundly disrupted by ezetimibe without altering the trafficking of cholesterol from the endoplasmic reticulum to the plasma membrane. Cholesterol oxidase-accessible cholesterol at the apical membrane was increased by ezetimibe. Cholesterol synthesis was modestly increased. Although the amount of cholesteryl esters secreted at the basolateral membrane was markedly decreased by ezetimibe, the transport of lipids and the number of lipoprotein particles secreted were not altered. NPC1L1 gene and protein expression were decreased by sterol influx, whereas cholesterol depletion enhanced NPC1L1 gene and protein expression. These results suggest that NPC1L1 plays a role in cholesterol uptake and cholesterol trafficking from the plasma membrane to the endoplasmic reticulum. Interfering with its function will profoundly decrease the amount of cholesterol transported into lymph.  相似文献   

2.
A number of hereditary diseases are caused by defective protein trafficking due to a folding defect resulting from point mutations in proteins. Ligands that bind to the folding intermediates of such mutant proteins and rescue their trafficking defects, known as pharmacological chaperones, have promise for the treatment of certain genetic diseases, including Fabry disease, cystic fibrosis, and Niemann-Pick disease type C. Here we show that this pharmacological chaperone effect can be used for ligand screening, that is, binding of candidate ligands can be detected by monitoring the ligand-mediated correction of a localization defect caused by artificially introduced point mutations of the protein of interest. Using this method, we discovered novel steroidal ligands of Niemann-Pick type C1-like 1 (NPC1L1), an intestinal cholesterol transporter that is the target of the cholesterol absorption inhibitor ezetimibe, and conducted structure–activity relationship studies. We also present data indicating that the binding site of the new ligands is distinct from both the N-terminal sterol-binding domain and the ezetimibe-binding site.  相似文献   

3.
Niemann-Pick disease type C1 (NPC1), caused by mutations of NPC1 gene, is an inherited lysosomal lipid storage disorder. Loss of functional NPC1 causes the accumulation of free cholesterol (FC) in endocytic organelles that comprised the characteristics of late endosomes and/or lysosomes. In this study we analyzed the pathogenic effect of 103 nsSNPs reported in NPC1 using computational methods. Rl186C, S940L, R958Q and I1061T mutations were predicted as most deleterious and disease associated with NPC1 using SIFT, Polyphen 2.0, PANTHER, PhD-SNP, Pmut and MUTPred tools which were also endorsed with previous in vivo experimental studies. To understand the atomic arrangement in 3D space, the native and disease associated mutant (Rl186C, S940L, R958Q and I1061T) structures were modeled. Quantitative structural and flexibility analysis was conceded to observe the structural consequence of prioritized disease associated mutations (R1186C, S940L, R958Q and I1061T). Accessible surface area (ASA), free folding energy (FFE) and hydrogen bond (NH bond) showed more flexibility in 3D space in mutant structures. Based on the quantitative assessment and flexibility analysis of NPC1 variants, I1061T showed the most deleterious effect. Our analysis provides a clear clue to wet laboratory scientists to understand the structural and functional effect of NPCI gene upon mutation.  相似文献   

4.
5.
Recently, we showed that holo HDL particle uptake and resecretion occur in physiologically relevant cell lines and that HDL uptake is mediated by scavenger receptor class B type I (SR-BI). Furthermore, we established that HDL resecretion is accompanied by [(3)H]cholesterol efflux. This study shows that HDL uptake and resecretion occur even when LDL uptake and cholesterol trafficking are disturbed. First, we used a set of inhibitors that block cholesterol transport out of the lysosome: chloroquine, imipramine, U18666A, and monensin. In all cases, HDL retroendocytosis occurred and HDL resecretion mediated [(3)H]cholesterol efflux, although to a lesser extent. Second, cell lines carrying somatic mutations in intracellular cholesterol transport were used: CHO 2-2 and CHO 3-6 cells accumulated LDL-derived lipid in the lysosome but showed all components of HDL retroendocytosis. SR-BI overexpression increased HDL uptake and resecretion and [(3)H]cholesterol efflux in these mutant cells. Finally, we used Niemann-Pick type C (NPC) patient fibroblast cells, which carry a defect in cholesterol transfer out of the lysosome. NPC fibroblast cells accumulate cholesterol in the lysosome as a result of a mutation in the NPC1 gene. Despite disturbed intracellular cholesterol transfer, NPC fibroblast cells exhibited HDL retroendocytosis and [(3)H]cholesterol efflux via HDL resecretion, although to a lesser extent. Thus, [(3)H]cholesterol efflux via HDL resecretion is independent of the cholesterol uptake pathway via the LDL receptor and may be an alternative way to remove excess cholesterol.  相似文献   

6.
Niemann-Pick type C2 (NPC2) proteins in arthropods have been extensively differentiated and possibly duplicated according to environmental conditions and are probable to have different functions. The participation of NPC2 proteins in chemical communication in arthropods brings new objectives in environmental-friendly strategies for pest population control. In this study, NPC2 gene in Macrocentrus cingulum (McinNPC2) was newly identified by rapid amplification cDNA ends (RACE) technology. McinNPC2 amino acid sequence alignment with other representative NPC2 annotates to evaluate the highly conserved consensus amino acids, but with odorant binding proteins in M. cingulum show that only one consensus amino acid. Primary six-cysteine structures that are same to odorant binding proteins in M. cingulum were observed in McinNPC2. Phylogenetic analysis of McinNPC2 indicated that the nearest monophyletic group forming one clade with high posterior probability values clusters as Cyphomyrmex costatus (CcosNPC2) whereas the nearest evolutionary relation group as some odorant binding proteins. Moreover, quantitative real-time PCR (qPCR) measurements show that the McinNPC2 gene expression level in various tissues of the female is significantly and ubiquitously higher than in male, whereas the highest expression level in female antennae. We further explore the binding characterization of recombinant McinNPC2 to candidate odor molecules and did the modeling and docking simulations. The results showed ligands binding specificity and docking tests results indicate that β-ionone, an aroma compound commonly found in essential oils, can strongly bind with McinNPC2. In conclusion, we proposed that McinNPC2 may be involved in chemical communication and play roles in perception of plant volatiles.  相似文献   

7.
Niemann-Pick disease type C (NPC) is a juvenile neurodegenerative disorder characterized by premature neuronal loss and altered cholesterol metabolism. Previous reports applying an 8-h exposure of U18666A, a cholesterol transport-inhibiting agent, demonstrated a dose-dependent reduction in beta-amyloid (Abeta) deposition and secretion in cortical neurons, with no significant cell injury. In the current study, we examined the chronic effect of 24-72h of U18666A treatment on primary cortical neurons and several cell lines. Our results showed caspase-3 activation and cellular injury in U18666A-treated cortical neurons but not in the cell lines, suggesting cell death by apoptosis only occurred in cortical neurons after chronic exposure to U18666A. We also demonstrated through filipin staining the accumulation of intracellular cholesterol in cortical neurons treated with U18666A, indicating the phenotypic mimic of NPC by U18666A. However, additions of 10 and 25microM pravastatin with 0.5microg/ml U18666A significantly attenuated toxicity. Taken together, these data showed for the first time that U18666A induces cell death by apoptosis and suggested an important in vitro model system to study NPC.  相似文献   

8.
9.
Niemann-Pick disease type C is a fatal, progressive neurodegenerative disease mostly caused by mutations in Nieamnn-Pick type C1 (NPC1), a late endosomal membrane protein that is essential for intracellular cholesterol transport. The most prevalent mutation, I1061T (Ile to Thr), interferes with the protein folding process. Consequently, mutated but intrinsically functional NPC1 proteins are prematurely degraded via proteasome, leading to loss of NPC1 function. Previously, we reported sterol derivatives as pharmacological chaperones for NPC1, and showed that these derivatives can normalize folding-defective phenotypes of I1061T NPC1 mutant by directly binding to, and stabilizing, the protein. Here, we report a series of compounds containing a phenanthridin-6-one scaffold as the first class of non-steroidal pharmacological chaperones for NPC1. We also examined their structure-activity relationships.  相似文献   

10.
11.
12.
13.
Abstract

NPC1 is a 25-exon gene located on the long arm of chromosome 18q11.2 and encodes NPC1, a transmembrane protein comprising 1278 amino acid residues. Mutations in the NPC1 gene can cause Niemann-Pick disease type C (NP-C), a rare autosomal-recessive neurovisceral disease. We assessed mutant protein folding using computer-based molecular dynamics (MD) simulations and molecular docking of the three most common NPC1 mutations, all of which result in changes in a cysteine-rich luminal loop region of the protein: a) I1061T is the most commonly detected variant in patients with NP-C worldwide; b) P1007A is the second most common variant, frequently detected in Portuguese, British and German patients; c) G992W occurs most often in patients of Acadian descent. Analyses of molecular structural information and related cellular physiological processes revealed that mutant NPC1 proteins exhibited altered function despite being far from the N-terminal domain cholesterol binding. MD simulations revealed that mutant I1061T protein shows remarkable instability in comparison the WT and also de other mutants, and interestingly this mutant has been identified as the most common variant. In the case of the mutant P1007A, it is presumed that this substitution promotes larger structural changes than proline due to their greater hydrophobic properties.

Structural changes related to the G992W mutation may affect the physicochemical space of G992W variant protein because tryptophan induces hydrophobic interactions. Cholesterol docking studies focused on binding recognition showed differences in the binding positions of variants versus the wild-type protein that go some way to explaining the molecular pathogenesis.

Communicated by Ramaswamy H. Sarma  相似文献   

14.
15.
Abstract: Apolipoprotein D (apoD), a member of the lipocalin superfamily of ligand transporters, has been implicated in the transport of several small hydrophobic molecules including sterols and steroid hormones. We have previously established that apoD is a secreted protein from cultured mouse astrocytes and that treatment with the oxysterol 25-hydroxycholesterol markedly stimulates apoD release. Here, we have investigated expression and cellular processing of apoD in the Niemann-Pick type C (NPC) mouse, an animal model of human NPC, which is a genetic disorder affecting cellular cholesterol transport. NPC is phenotypically characterized by symptoms of chronic progressive neurodegeneration. ApoD gene expression was up-regulated in cultured NPC astrocytes and in NPC brain. ApoD protein levels were also increased in NPC brain with up to 30-fold higher apoD content in the NPC cerebellum compared with control mice. Subcellular fractionation of NPC brain homogenates revealed that most of the apoD was associated with the myelin fraction. ApoD was found to be a secreted protein from cultured normal astrocytes and treatment with the oxysterol, 25-hydroxycholesterol, markedly stimulated apoD release (by five- to 10-fold). By contrast, secretion of apoD from NPC astrocytes was markedly reduced and could not be stimulated by oxysterol treatment. Secretion of apoE, another apolipoprotein normally produced by astrocytes, was similar in NPC and control cells. Furthermore, apoE secretion was not potentiated by oxysterol treatment in either cell type. Plasma levels of apoD were sixfold higher in NPC, whereas hepatic levels were substantially reduced compared with controls, possibly reflecting reduced hepatic clearance of the circulating protein. These results reveal hitherto unrecognized defects in apoD metabolism in NPC that appear to be linked to the known defects in cholesterol homeostasis in this disorder.  相似文献   

16.
Dehydrodolichyl diphosphate (DedolPP) synthase catalyzes the sequential condensation of isopentenyl diphosphate with farnesyl diphosphate to synthesize DedolPP, a biosynthetic precursor for dolichol which plays an important role as a sugar-carrier lipid in the biosynthesis of glycoprotein in eukaryotic cells. During certain pathological processes like Alzheimer's disease or some neurological disorders, dolichol has been shown to accumulate in human brain. In order to understand the regulatory mechanism of dolichol in eukaryotes, we performed a yeast two-hybrid screen using full length human DedolPP synthase gene [Endo et al. BBA 1625 (2003) 291] as a bait to find some proteins specifically interacting with the enzyme. We identified Niemann-Pick Type C2 protein (NPC2) to show a specific interaction with human DedolPP synthase. This interaction was further confirmed by in vitro co-immunoprecipitation experiment, indicating the possible physiological interaction between NPC2 and DedolPP synthase proteins in human.  相似文献   

17.
18.
Niemann-Pick type C disease (NPC) is a neurodegenerative and lipid storage disorder for which no effective treatment is known. We previously reported that neural stem cells derived from NPC1 mice showed impaired self-renewal and differentiation. We examined whether valproic acid (VPA), a histone deacetylase inhibitor, could enhance neuronal differentiation and recover defective cholesterol metabolism in neural stem cells (NSCs) from NPC1-deficient mice (NPC1(-/-)). VPA could induce neuronal differentiation and restore impaired astrocytes in NSCs from NPC1(-/-) mice. Importantly, an increasing level of cholesterol within NSCs from NPC1(-/-) mice could be reduced by VPA. Moreover, essential neurotrophic genes (TrkB, BDNF, MnSoD, and NeuroD) were up-regulated through the repression of the REST/NRSF and HDAC complex by the VPA treatment. Up-regulated neurotrophic genes were able to enhance neural differentiation and cholesterol homeostasis in neural stem cells from NPC1(-/-) mice. In this study, we suggested that, along with cholesterol homeostasis, impaired neuronal differentiation and abnormal morphology of astrocytes could be rescued by the inhibition of HDAC and REST/NRSF activity induced by VPA treatment.  相似文献   

19.
These studies investigated the role of gangliosides in governing the steady-state concentration and turnover of unesterified cholesterol in normal tissues and in those of mice carrying the NPC1 mutation. In animals lacking either GM2/GD2 or GM3 synthase, tissue cholesterol concentrations and synthesis rates were normal in nearly all organs, and whole-animal sterol pools and turnover also were not different from control animals. Mice lacking both synthases, however, had small elevations in cholesterol concentrations in several organs, and the whole-animal cholesterol pool was marginally elevated. None of these three groups, however, had changes in any parameter of cholesterol homeostasis in the major regions of the central nervous system. When either the GM2/GD2 or GM3 synthase activity was deleted in mice lacking NPC1 function, the clinical phenotype was not changed, but lifespan was shortened. However, the abnormal cholesterol accumulation seen in the tissues of the NPC1 mouse was unaffected by loss of either synthase, and clinical and molecular markers of hepatic and cerebellar disease also were unchanged. These studies demonstrate that hydrophobic interactions between cholesterol and various gangliosides do not play an important role in determining cellular cholesterol concentrations in the normal animal or in the mouse with the NPC1 mutation.  相似文献   

20.
During endocytosis, membrane components move to intraluminal vesicles of the endolysosomal compartment for digestion. At the late endosomes, cholesterol is sorted out mainly by two sterol-binding proteins, Niemann-Pick protein type C (NPC)1 and NPC2. To study the NPC2-mediated intervesicular cholesterol transfer, we developed a liposomal assay system. (Abdul-Hammed, M., B. Breiden, M. A. Adebayo, J. O. Babalola, G. Schwarzmann, and K. Sandhoff. 2010. Role of endosomal membrane lipids and NPC2 in cholesterol transfer and membrane fusion. J. Lipid Res. 51: 1747–1760.) Anionic lipids stimulate cholesterol transfer between liposomes while SM inhibits it, even in the presence of anionic bis(monoacylglycero)phosphate (BMP). Preincubation of vesicles containing SM with acid sphingomyelinase (ASM) (SM phosphodiesterase, EC 3.1.4.12) results in hydrolysis of SM to ceramide (Cer), which enhances cholesterol transfer. Besides SM, ASM also cleaves liposomal phosphatidylcholine. Anionic phospholipids derived from the plasma membrane (phosphatidylglycerol and phosphatidic acid) stimulate SM and phosphatidylcholine hydrolysis by ASM more effectively than BMP, which is generated during endocytosis. ASM-mediated hydrolysis of liposomal SM was also stimulated by incorporation of diacylglycerol (DAG), Cer, and free fatty acids into the liposomal membranes. Conversely, phosphatidylcholine hydrolysis was inhibited by incorporation of cholesterol, Cer, DAG, monoacylglycerol, and fatty acids. Our data suggest that SM degradation by ASM is required for physiological secretion of cholesterol from the late endosomal compartment, and is a key regulator of endolysosomal lipid digestion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号