首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Obligate intracellular bacteria are privileged soldiers on the battlefield that represent host-pathogen interactions. Microarrays are a powerful technology that can increase our knowledge about how bacteria respond to and interact with their hosts. This review summarizes the limitations inherent to host-pathogen interaction studies and essential strategies to improve microarray investigations of intracellular bacteria. We have compiled the comparative genomic and gene expression analyses of obligate intracellular bacteria currently available from microarrays. In this review we explore ways in which microarrays can be used to identify polymorphisms in different obligate intracellular bacteria such as Coxiella burnetii, Chlamydia trachomatis, Ehrlichia chaffeensis, Rickettsia prowazekii and Tropheryma whipplei. These microarray studies reveal that, while genomic content is highly conserved in obligate intracellular bacteria, genetic polymorphisms can potentially occur to increase bacterial pathogenesis. Additionally, changes in the gene expression of C. trachomatis throughout its life cycle, as well as changes in the gene expression profile of the pathogens R. prowazekii, Rickettsia rickettsii, Rickettsia typhi, T. whipplei and C. trachomatis following environmental changes, are discussed. Finally, an in vivo model of Rickettsia conorii within the skin is discussed. The gene expression analyses highlight the capacity of obligate intracellular bacteria to adapt to environmental changes and potentially to thwart the host response.  相似文献   

2.
3.
4.
Recently, we showed that antisense peptide nucleic acids (PNA) containing a short pyrimidine stretch (C(4)TC(3)) invade Ha-ras mRNA hairpin structures to form highly stable duplex and triplex complexes that contribute to the arrest of translation elongation. The antisense PNA targeted to codon 74 of Ha-ras was designed to bind in antiparallel configuration (the N-terminal of the PNA faces the 3'-end of target mRNA), as PNA/RNA duplexes are most stable in this configuration. In order to show that different sequences in the coding region could be targeted successfully with antisense PNAs, we extended our study to three other purine-rich targets. We show that the tridecamer PNA (targeted to codon 149) containing a CTC(3)T pyrimidine stretch forms with the complementary oligoribonucleotide (ORN) a stable (PNA)(2)/ORN triplex at neutral pH (T(m) = 50 degrees C) and arrests Ha-ras mRNA translation elongation. Interestingly, the thermal stability of triplexes formed with PNAs designed to bind to the complementary ORN in a parallel orientation (the N-terminal of the PNA faces the 5'-end of target) was higher than that formed with antiparallel oriented PNAs (T(m) = 58 degrees C). Because parallel and antiparallel PNAs form stable triplexes with target sequence, they act as translation elongation blockers. These duplex-forming and partly triplex-forming PNAs targeted to Ha-ras mRNA also arrested translation elongation at specific polypurine sites contained in the mRNA coding for HIV-integrase protein. Furthermore, the tridecamer PNA containing the C(3)TC(4) motif was more active than a bis-PNA in which the Hoogsteen recognizing strand was linked to the Watson-Crick recognizing strand by a flexible linker. Pyrimidine-rich, short PNAs that form very stable duplexes with target Ha-ras mRNA inhibit translation by a mechanism that does not involve ribosome elongation arrest, whereas PNAs forming duplex and triplex structures arrest ribosome elongation. The remarkable efficacy of the tridecamer PNAs in arresting translation elongation of HIV-1 integrase mRNA is explained by their ability to form stable triplexes at neutral pH with short purine sequences.  相似文献   

5.
The obligate intracellular bacteria, Rickettsia rickettsii and Coxiella burnetii, are the potential agents of bio-warfare/bio-terrorism. Here C3H/HeN mice were immunized with a recombinant protein fragment rOmp-4 derived from outer membrane protein B, a major protective antigen of R. rickettsii, combined with chloroform-methanol residue (CMR) extracted from phase I C. burnetii organisms, a safer Q fever vaccine. These immunized mice had significantly higher levels of IgG1 and IgG2a to rOmpB-4 and interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α), two crucial cytokines in resisting intracellular bacterial infection, as well as significantly lower rickettsial loads and slighter pathological lesions in organs after challenge with R. rickettsii, compared with mice immunized with rOmpB-4 or CMR alone. Additionally, after challenge with C. burnetii, the coxiella loads in the organs of these mice were significantly lower than those of mice immunized with rOmpB-4 alone. Our results prove that CMR could markedly potentiate enhance the rOmpB-4-specific immunoprotection by promoting specific and non-specific immunoresponses and the immunization with the protective antigen of R. rickettsii combined with CMR of C. burnetii could confer effective protection against infection of R. rickettsii or C. burnetii.  相似文献   

6.
7.
BackgroundCurrent knowledge on Rickettsia felis infection in humans is based on sporadic case reports. Here we conducted a retrospective seroepidemiological survey of R. felis infection among febrile patients visiting a medical center in Taipei.Methodology/Principal findingsA total of 122 patients with suspected rickettsioses presenting with fever of unknown origin (FUO) but tested negative for scrub typhus, murine typhus, or Q fever were retrospectively identified during 2009 to 2010. The archived serum samples were examined for the presence of antibodies against R. felis, Rickettsia japonica, and Rickettsia typhi using microimmunofluorescence (MIF) assay. Serological evidence of Rickettsia exposure was found in 23 (19%, 23/122) patients. Eight patients had antibodies reactive to R. felis, including four with current infection (a ≥4-fold increase in IgG titer between acute and convalescent sera). The clinical presentations of these four patients included fever, skin rash, lymphadenopathy, as well as more severe conditions such as pancytopenia, hepatomegaly, elevated liver enzymes/bilirubin, and life-threatening acute respiratory distress syndrome. One of the patients died after doxycycline was stopped after being tested negative for scrub typhus, Q fever, and murine typhus.ConclusionsRickettsia felis is a neglected flea-borne pathogen in Taiwan, and its infection can be life-threatening. Further prospective studies of the prevalence of R. felis among patients with FUO and compatible clinical manifestations are warranted.  相似文献   

8.
Bacterial Sec7-domain-containing proteins (RalF) are known only from species of Legionella and Rickettsia, which have facultative and obligate intracellular lifestyles, respectively. L. pneumophila RalF, a type IV secretion system (T4SS) effector, is a guanine nucleotide exchange factor (GEF) of ADP-ribosylation factors (Arfs), activating and recruiting host Arf1 to the Legionella-containing vacuole. In contrast, previous in vitro studies showed R. prowazekii (Typhus Group) RalF is a functional Arf-GEF that localizes to the host plasma membrane and interacts with the actin cytoskeleton via a unique C-terminal domain. As RalF is differentially encoded across Rickettsia species (e.g., pseudogenized in all Spotted Fever Group species), it may function in lineage-specific biology and pathogenicity. Herein, we demonstrate RalF of R. typhi (Typhus Group) interacts with the Rickettsia T4SS coupling protein (RvhD4) via its proximal C-terminal sequence. RalF is expressed early during infection, with its inactivation via antibody blocking significantly reducing R. typhi host cell invasion. For R. typhi and R. felis (Transitional Group), RalF ectopic expression revealed subcellular localization with the host plasma membrane and actin cytoskeleton. Remarkably, R. bellii (Ancestral Group) RalF showed perinuclear localization reminiscent of ectopically expressed Legionella RalF, for which it shares several structural features. For R. typhi, RalF co-localization with Arf6 and PI(4,5)P2 at entry foci on the host plasma membrane was determined to be critical for invasion. Thus, we propose recruitment of PI(4,5)P2 at entry foci, mediated by RalF activation of Arf6, initiates actin remodeling and ultimately facilitates bacterial invasion. Collectively, our characterization of RalF as an invasin suggests that, despite carrying a similar Arf-GEF unknown from other bacteria, different intracellular lifestyles across Rickettsia and Legionella species have driven divergent roles for RalF during infection. Furthermore, our identification of lineage-specific Arf-GEF utilization across some rickettsial species illustrates different pathogenicity factors that define diverse agents of rickettsial diseases.  相似文献   

9.
DNA and RNA oligomers that contain stretches of guanines can associate to form stable secondary structures including G-quadruplexes. Our study shows that the (UUAAAAGAAAAGGGGGGAU) RNA sequence, from the human immunodeficiency virus type 1 (HIV-1 polypurine tract or PPT sequence) forms in vitro a stable folded structure involving the G-run. We have investigated the ability of pyrimidine peptide nucleic acid (PNA) oligomers targeted to the PPT sequence to invade the folded RNA and exhibit biological activity at the translation level in vitro and in cells. We find that PNAs can form stable complexes even with the structured PPT RNA target at neutral pH. We show that T-rich PNAs, namely the tridecamer-I PNA (C4T4CT4) forms triplex structures whereas the C-rich tridecamer-II PNA (TC6T4CT) likely forms a duplex with the target RNA. Interestingly, we find that both C-rich and T-rich PNAs arrested in vitro translation elongation specifically at the PPT target site. Finally, we show that T-rich and C-rich tridecamer PNAs that have been identified as efficient and specific blockers of translation elongation in vitro, specifically inhibit translation in streptolysin-O permeabilized cells where the PPT target sequence has been introduced upstream the reporter luciferase gene.  相似文献   

10.
11.
Sensitive, specific and rapid diagnostic tests for the detection of Orientia tsutsugamushi (O. tsutsugamushi) and Rickettsia typhi (R. typhi), the causative agents of scrub typhus and murine typhus, respectively, are necessary to accurately and promptly diagnose patients and ensure that they receive proper treatment. Recombinase polymerase amplification (RPA) assays using a lateral flow test (RPA-nfo) and real-time fluorescent detection (RPA-exo) were developed targeting the 47-kDa gene of O. tsutsugamushi or 17 kDa gene of R. typhi. The RPA assay was capable of detecting O. tsutsugamushi or R. typhi at levels comparable to that of the quantitative PCR method. Both the RPA-nfo and RPA-exo methods performed similarly with regards to sensitivity when detecting the 17 kDa gene of R. typhi. On the contrary, RPA-exo performed better than RPA-nfo in detecting the 47 kDa gene of O. tsutsugamushi. The clinical performance of the O. tsutsugamushi RPA assay was evaluated using either human patient samples or infected mouse samples. Eight out of ten PCR confirmed positives were determined positive by RPA, and all PCR confirmed negative samples were negative by RPA. Similar results were obtained for R. typhi spiked patient sera. The assays were able to differentiate O. tsutsugamushi and R. typhi from other phylogenetically related bacteria as well as mouse and human DNA. Furthermore, the RPA-nfo reaction was completed in 20 minutes at 37oC followed by a 10 minute incubation at room temperature for development of an immunochromatographic strip. The RPA-exo reaction was completed in 20 minutes at 39oC. The implementation of a cross contamination proof cassette to detect the RPA-nfo fluorescent amplicons provided an alternative to regular lateral flow detection strips, which are more prone to cross contamination. The RPA assays provide a highly time-efficient, sensitive and specific alternative to other methods for diagnosing scrub typhus or murine typhus.  相似文献   

12.
Consistent with the effects of HIV on cell‐mediated immunity, an increased susceptibility to intracellular microorganisms has been observed. Rickettsiae are obligate intracellular microorganisms. The aim of this study was to examine Rickettsia typhi and Rickettsia felis infections in HIV+ population. Sera of 341 HIV+ patients were evaluated by indirect immunofluorescent assay. Age, sex, residential locality, risk behavior, stage according to criteria of the Center for Disease Control and Prevention, CD4+/CD8+ T cells, Hepatitis B antigen, and Hepatitis C serology were surveyed. Seroprevalences of R. typhi and R. felis infection were 7.6% and 4.4%, respectively. No associations were found between seropositivities and the assessed variables. Findings were similar to those obtained in healthy subjects from the same region.  相似文献   

13.
The potential use of peptide nucleic acid (PNA) as a sequence-specific inhibitor of RNA translation is investigated in this report. Three different regions of the PML/RARalpha oncogene, including two AUG potential start codons, were studied as targets of translation inhibition by antisense PNA in a cell-free system. A PNA targeted to the second AUG start codon, which was shown previously to be able to suppress in vitro translation from that site completely, was used alone or in combination with another PNA directed to the first AUG, and a third PNA within the 5'-untranslated region (5'-UTR) of mRNA. When used alone, no PNA was able to completely block the synthesis of the PML/RARalpha protein. The 5'-UTR PNA was the most potent translation inhibitor when used as single agent. However, a near complete (>/=90%) specific inhibition of the PML/RARalpha gene was obtained when the three PNAs were used in combination, thus obtaining an additive antisense effect.  相似文献   

14.
Recently, we have shown that peptide nucleic acid (PNA) tridecamers targeted to the codon 74, 128 and 149 regions of Ha-ras mRNA arrested translation elongation in vitro. Our data demonstrated for the first time that PNAs with mixed base sequence targeted to the coding region of a messenger RNA could arrest the translation machinery and polypeptide chain elongation. The peculiarity of the complexes formed with PNA tridecamers and Ha-ras mRNA rests upon the stability of PNA-mRNA hybrids, which are not dissociated by cellular proteins or multiple denaturing conditions. In the present study, we show that shorter PNAs such as a dodecamer or an undecamer targeted to the codon 74 region arrest translation elongation in vitro. The 13, 12, and 11-mer PNAs contain eight and the 10-mer PNA seven contiguous pyrimidine residues. Upon binding with parallel Hoogsteen base-pairing to the PNA-RNA duplex, six of the cytosine bases and one thymine base of a second PNA can form C.G*C(+) and T.A*T triplets. Melting experiments show two well-resolved transitions corresponding to the dissociation of the third strand from the core duplex and to melting of duplex at higher temperature. The enzymatic structure mapping of a target 27-mer RNA revealed a hairpin structure that is disrupted upon binding of tri-, dodeca-, undeca- and decamer PNAs. We show that the non-bonded nucleobase overhangs on the RNA stabilize the PNA-RNA hybrids and probably assist the PNA in overcoming the stable secondary structure of the RNA target. The great stability of PNA-RNA duplex and triplex structures allowed us to identify both 1:1 and 2:1 PNA-RNA complexes using matrix-assisted laser desorption/ionization time-of -flight mass spectrometry. Therefore, it is possible to successfully target mixed sequences in structured regions of messenger RNA with short PNA oligonucleotides that form duplex and triplex structures that can arrest elongating ribosomes.  相似文献   

15.
Antisense properties of duplex- and triplex-forming PNAs.   总被引:12,自引:3,他引:9       下载免费PDF全文
The potential of peptide nucleic acids (PNAs) as specific inhibitors of translation has been studied. PNAs with a mixed purine/pyrimidine sequence form duplexes, while homopyrimidine PNAs form (PNA)2/RNA triplexes with complementary sequences on RNA. We show here that neither of these PNA/RNA structures are substrates for RNase H. Translation experiments in cell-free extracts showed that a 15mer duplex-forming PNA blocked translation in a dose-dependent manner when the target was 5'-proximal to the AUG start codon on the RNA, whereas similar 10-, 15- or 20mer PNAs had no effect when targeted towards sequences in the coding region. Triplex-forming 10mer PNAs were efficient and specific antisense agents with a target overlapping the AUG start codon and caused arrest of ribosome elongation with a target positioned in the coding region of the mRNA. Furthermore, translation could be blocked with a 6mer bisPNA or with a clamp PNA, forming partly a triplex, partly a duplex, with its target sequence in the coding region of the mRNA.  相似文献   

16.
Peptide nucleic acid (PNA) is a synthetic DNA analogue that is resistant to nucleases and proteases and binds with exceptional affinity to RNA. Because of these properties PNA has the potential to become a powerful therapeutic agent to be used in vivo. Until now, however, the use of PNA in vivo has not been much investigated. Here, we have attempted to reduce the expression of the bcr/abl oncogene in chronic myeloid leukaemia KYO-1 cells using a 13mer PNA sequence (asPNA) designed to hybridise to the b2a2 junction of bcr/abl mRNA. To enhance cellular uptake asPNA was covalently linked to the basic peptide VKRKKKP (NLS-asPNA). Moreover, to investigate the cellular uptake by confocal microscopy, both PNAs were linked by their N-terminus to fluorescein (FL). Studies of uptake, carried out at 4 and 37°C on living KYO-1 cells stained with hexidium iodide, showed that both NLS-asPNA-FL and asPNA-FL were taken up by the cells, through a receptor-independent mechanism. The intracellular amount of NLS-asPNA-FL was about two to three times higher than that of asPNA-FL. Using a semi-quantitative RT– PCR technique we found that 10 µM asPNA and NLS-asPNA reduced the level of b2a2 mRNA in KYO-1 cells to 20 ± 5% and 60 ± 10% of the control, respectively. Western blot analysis showed that asPNA promoted a significant inhibition of p210BCR/ABL protein: residual protein measured in cells exposed for 48 h to asPNA was ~35% of the control. Additionally, asPNA impaired cell growth to 50 ± 5% of the control and inhibited completion of the cell cycle. In summary, these results demonstrate that a PNA 13mer is taken up by KYO-1 cells and is capable of producing a significant and specific down-regulation of the bcr/abl oncogene involved in leukaemogenesis.  相似文献   

17.
Rickettsia prowazekii, the causative agent of epidemic typhus, is an obligate intracellular bacterium that replicates only within the cytosol of a eukaryotic host cell. Despite the barriers to genetic manipulation that such a life style creates, rickettsial mutants have been generated by transposon insertion as well as by homologous recombination mechanisms. However, progress is hampered by the length of time required to identify and isolate R. prowazekii transformants. To reduce the time required and variability associated with propagation and harvesting of rickettsiae for each transformation experiment, characterized frozen stocks were used to generate electrocompetent rickettsiae. Transformation experiments employing these rickettsiae established that fluorescent rickettsial populations could be identified using a fluorescence activated cell sorter within one week following electroporation. Early detection was improved with increasing amounts of transforming DNA. In addition, we demonstrate that heterogeneous populations of rickettsiae-infected cells can be sorted into distinct sub-populations based on the number of rickettsiae per cell. Together our data suggest the combination of fluorescent reporters and cell sorting represent an important technical advance that will facilitate isolation of distinct R. prowazekii mutants and allow for closer examination of the effects of infection on host cells at various infectious burdens.  相似文献   

18.
We have previously described the rational design of mutation-selective antisense oligonucleotides targeted to codon 12 of oncogenic Ha-ras mRNA. In order to further improve the biological efficacy of these unmodified oligonucleotides, we have studied three different classes of modifications: peptide nucleic acid backbone (PNA), sugar modification (2'-O-methyl) and phosphoramidate linkage (PN). We show that PNA is unique among the investigated steric blocking agents in its ability to specifically inhibit the translation of Ha-ras mRNA in vitro. The PNA-RNA hybrid (Tm=86 degrees C), which is not dissociated by cellular proteins and resists phenol extraction and urea denaturing conditions, specifically blocks the translation of mutated Ha-ras mRNA. A PNA tridecamer which forms with wild-type Ha-ras mRNA a duplex with a central mismatch had little effect on mRNA translation. Codon 12 is located close to the translation initiation site and hybridization of the PNA at this position may interfere with the assembly of the translation initiation complex. To test whether polypeptide chain elongation can also be blocked, we have targeted PNA tridecamers to codons in the 74, 128 and 149 regions. These PNAs form equally stable duplexes as that formed by the PNA targeted to the codon 12 region (ten G.C base-pairs out of 13). We show that PNA-RNA duplexes block the progression of the 80 S ribosome. Therefore, it is possible to arrest translation with concomitant production of a truncated protein by using duplex-forming PNA oligonucleotides targeted to a G+C-rich sequences. Our data demonstrate for the first time that a non-covalent duplex can arrest the translation machinery and polypeptide chain elongation.  相似文献   

19.
20.
Rickettsia (R.) typhi is the causative agent of endemic typhus, an emerging febrile disease that is associated with complications such as pneumonia, encephalitis and liver dysfunction. To elucidate how innate immune mechanisms contribute to defense and pathology we here analyzed R. typhi infection of CB17 SCID mice that are congenic to BALB/c mice but lack adaptive immunity. CB17 SCID mice succumbed to R. typhi infection within 21 days and showed high bacterial load in spleen, brain, lung, and liver. Most evident pathological changes in R. typhi-infected CB17 SCID mice were massive liver necrosis and splenomegaly due to the disproportionate accumulation of neutrophils and macrophages (MΦ). Both neutrophils and MΦ infiltrated the liver and harbored R. typhi. Both cell populations expressed iNOS and produced reactive oxygen species (ROS) and, thus, exhibited an inflammatory and bactericidal phenotype. Surprisingly, depletion of neutrophils completely prevented liver necrosis but neither altered bacterial load nor protected CB17 SCID mice from death. Furthermore, the absence of neutrophils had no impact on the overwhelming systemic inflammatory response in these mice. This response was predominantly driven by activated MΦ and NK cells both of which expressed IFNγ and is considered as the reason of death. Finally, we observed that iNOS expression by MΦ and neutrophils did not correlate with R. typhi uptake in vivo. Moreover, we demonstrate that MΦ hardly respond to R. typhi in vitro. These findings indicate that R. typhi enters MΦ and also neutrophils unrecognized and that activation of these cells is mediated by other mechanisms in the context of tissue damage in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号