首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 176 毫秒
1.
Relationships were analyzed between sea surface temperature (SST) and annual growth characteristics (density, extension rate and calcification rate) of the Caribbean reef-building coral Montastraea annularis. Colonies were collected from 12 localities in the Gulf of Mexico and the Caribbean Sea. Two well-separated relationships were found, one for the Gulf of Mexico and the other for the Caribbean Sea. Calcification rate and skeletal density increased with increasing SST in both regions, while extension rate tended to decrease. Calcification rate increased ∼0.57 g cm−2 year−1 for each 1 °C increase in SST. Zero calcification was projected to occur at 23.7 °C in corals from the Gulf of Mexico and at 25.5 °C in corals from the Caribbean Sea. The 24 °C annual average SST isotherm marks the northern limit of distribution of M. annularis. Montastraea annularis populations of the Gulf of Mexico are isolated from those of the Caribbean Sea, and results indicate that corals from the Gulf of Mexico are adapted to growth at lower minimum and average annual SST. Corals from both the Gulf of Mexico and the Caribbean Sea, growing at lower SSTs and having lower calcification rates, extend their skeletons the same or more than those growing at higher SSTs. They achieve this by putting more of their calcification resources into extension and less into thickening, i.e., by sacrificing density.  相似文献   

2.
Gridded SST products developed particularly for offshore regions are increasingly being applied close to the coast for biogeographical applications. The purpose of this paper is to demonstrate the dangers of doing so through a comparison of reprocessed MODIS Terra and Pathfinder v5.2 SSTs, both at 4 km resolution, with instrumental in situ temperatures taken within 400 m from the coast. We report large biases of up to +6°C in places between satellite-derived and in situ climatological temperatures for 87 sites spanning the entire ca. 2 700 km of the South African coastline. Although biases are predominantly warm (i.e. the satellite SSTs being higher), smaller or even cold biases also appear in places, especially along the southern and western coasts of the country. We also demonstrate the presence of gradients in temperature biases along shore-normal transects — generally SSTs extracted close to the shore demonstrate a smaller bias with respect to the in situ temperatures. Contributing towards the magnitude of the biases are factors such as SST data source, proximity to the shore, the presence/absence of upwelling cells or coastal embayments. Despite the generally large biases, from a biogeographical perspective, species distribution retains a correlative relationship with underlying spatial patterns in SST, but in order to arrive at a causal understanding of the determinants of biogeographical patterns we suggest that in shallow, inshore marine habitats, temperature is best measured directly.  相似文献   

3.
Each spring, millions of monarch butterflies (Danaus plexippus) migrate from overwintering sites in Mexico to recolonize eastern North America. However, few monarchs are found along the east coast of the USA until mid-summer. Brower (Brower, L. P. 1996 J. Exp. Biol. 199, 93–103.) proposed that east coast recolonization is accomplished by individuals migrating from the west over the Appalachians, but to date no evidence exists to support this hypothesis. We used hydrogen (δD) and carbon (δ13C) stable isotope measurements to estimate natal origins of 90 monarchs sampled from 17 sites along the eastern United States coast. We found the majority of monarchs (88%) originated in the mid-west and Great Lakes regions, providing, to our knowledge, the first direct evidence that second generation monarchs born in June complete a (trans-) longitudinal migration across the Appalachian mountains. The remaining individuals (12%) originated from parents that migrated directly from the Gulf coast during early spring. Our results provide evidence of a west to east longitudinal migration and provide additional rationale for conserving east coast populations by identifying breeding sources.  相似文献   

4.
Over the past two decades, the two most anomalous years for water properties on the west Florida continental shelf were 1998 and 2010. In both instances, the shelf was ventilated by relatively cold, nutrient-rich waters of deep ocean origin, which reset the background state underlying shelf ecology. The ventilation in both of these years derived from prolonged interactions of the Gulf of Mexico Loop Current with the shelf slope near the Dry Tortugas located on the southwest corner of the shelf. By contacting relatively shallow isobaths, the boundary current interactions there set the entire shelf into motion, facilitating upwelling across the shelf break, even to DeSoto Canyon some 500 km away, and then across the shelf to the near shore. Such prolonged and intense upwelling of nutrient-rich water in 2010 contrasted with the more typically occurring locally wind driven upwelling conditions, whereby waters upwelled at the near shore are from the inner shelf, versus the deep ocean. Thus not all upwelling scenarios have similar consequences. Whereas the typical wind driven upwelling scenario is necessary for Karenia brevis red tide blooms to manifest along the coastline, the rarer, deep ocean induced upwelling scenario (as occurred in 1998 and particularly in 2010) acts to suppress K. brevis red tides because of the elevated inorganic nutrient conditions that they facilitate. Hence, minimal cell counts above background were observed in 1998, and no cell counts above background were observed in 2010. We conclude that the lack of red tide along the west coast of Florida in 2010 was due to anomalously large and protracted upwelling of nutrient-rich waters of deep ocean origin caused by Loop Current and eddy interactions with the shelf slope.  相似文献   

5.
Seaside Sparrows (Ammodramus maritimus) along the Gulf of Mexico are currently recognized as four subspecies, including taxa in Florida (A. m. juncicola and A. m. peninsulae) and southern Texas (Ammodramus m. sennetti), plus a widespread taxon between them (A. m. fisheri). We examined population genetic structure of this “Gulf Coast” clade using microsatellite and mtDNA data. Results of Bayesian analyses (Structure, GeneLand) of microsatellite data from nine locations do not entirely align with current subspecific taxonomy. Ammodramus m. sennetti from southern Texas is significantly differentiated from all other populations, but we found evidence of an admixture zone with A. m. fisheri near Corpus Christi. The two subspecies along the northern Gulf Coast of Florida are significantly differentiated from both A. m. sennetti and A. m. fisheri, but are not distinct from each other. We found a weak signal of isolation by distance within A. m. fisheri, indicating this population is not entirely panmictic throughout its range. Although continued conservation concern is warranted for all populations along the Gulf Coast, A. m. fisheri appears to be more secure than the far smaller populations in south Texas and the northern Florida Gulf Coast. In particular, the most genetically distinct populations, those in Texas south of Corpus Christi, occupy unique habitats within a very small geographic range.  相似文献   

6.
Located at the shortest overland route between the Gulf of Mexico and the Pacific Ocean, Mexico's Tehuantepec Isthmus is a globally important migratory corridor for many terrestrial bird species. The Pacific coast of the Isthmus also contains a significant wetland complex that supports large multi‐species aggregations of non‐breeding waterbirds during the boreal winter. In recent years, extensive wind energy development has occurred in the plains bordering these wetlands, directly along the migratory flyway. Using recent studies of movement patterns of three marine‐associated bird species – reddish egrets Egretta rufescens, brown pelicans Pelecanus occidentalis, and red knots Calidris canutus – from the northern Gulf of Mexico, we assess the use of the isthmus as a migratory corridor. Our data provide evidence that marine birds from the Gulf region regularly overwinter along the Pacific coast of Mexico and use the isthmus as a migratory corridor, creating the potential for interaction with terrestrial wind farms during non‐breeding. This study is the first to describe migration by marine‐associated bird species between the Gulf of Mexico and Pacific coast. These data contribute new information toward ongoing efforts to understand the complex migration patterns of mobile marine species, with the goal of informing integrated conservation efforts for species whose year‐round habitat needs cross ecoregional and geopolitical boundaries.  相似文献   

7.
The Atlantic sturgeon, Acipenser oxyrinchus, consists of two subspecies distributed along the Atlantic coast of North America from Labrador to the east coast of Florida (Atlantic sturgeon subspecies – A. o. oxyrinchus) and along the Gulf of Mexico from Florida Bay, Florida to the mouth of the Mississippi River (Gulf sturgeon subspecies – A. o. desotoi). The species has been exploited throughout its range with landings peaking around the turn of the 20th century followed by drastic declines shortly thereafter. During recent years, landings in Canadian waters have increased substantially (approximately 129 metric tons in 1993) while in the United States landings are more controlled or prohibited (approximately 22–24 metric tons in 1993). Recently, the Atlantic States Marine Fisheries Commission developed a Fishery management plan for Atlantic sturgeon, and the United States Fish & Wildlife Service and Gulf States Marine Fisheries Commission drafted a Gulf Sturgeon Recovery/Management Plan. Fishery managers in Canada are in the process of establishing more stringent fishery regulations for sturgeon. Thus, the impact on populations due to harvesting should be substantially reduced. Current research focus includes: life history and population status studies, stock delineation, and development of culture and stock enhancement techniques. Implementation of the findings of such studies may be helpful in the restoration of depleted stocks.  相似文献   

8.
The Gulf of Mexico is a conspicuous feature of the Neotropical–Nearctic bird migration system. Traveling long distances across ecological barriers comes with considerable risks, and mortality associated with intercontinental migration may be substantial, including that caused by storms or other adverse weather events. However, little, if anything, is known about how migratory birds respond to disturbance‐induced changes in stopover habitat. Isolated, forested cheniere habitat along the northern coast of the Gulf of Mexico often concentrate migrants, during weather conditions unfavorable for northward movement or when birds are energetically stressed. We expected hurricane induced degradation of this habitat to negatively affect the abundance, propensity to stopover, and fueling trends of songbirds that stopover in coastal habitat. We used spring banding data collected in coastal Louisiana to compare migrant abundance and fueling trends before (1993–1996 and 1998–2005) and after hurricanes Rita (2006) and Ike (2009). We also characterized changes in vegetative structure before (1995) and after (2010) the hurricanes. The hurricanes caused dramatic changes to the vegetative structure, which likely decreased resources. Surprisingly, abundance, propensity to stopover, and fueling trends of most migrant species were not influenced by hurricane disturbance. Our results suggest that: 1) the function of chenieres as a refuge for migrants after completing a trans‐Gulf flight may not have changed despite significant changes to habitat and decreases in resource availability, and 2) that most migrants may be able to cope with habitat disturbance during stopover. The fact that migrants use disturbed habitat points to their conservation value along the northern coast of the Gulf of Mexico.  相似文献   

9.
We examined the relationship between the longitude of peak arrival of trans-Gulf migrants on the northern coast of the Gulf of Mexico in spring and wind trajectories over the Gulf at three different altitudes (500, 1,500, and 2,500 m above ground level). We used data from 10 WSR-88D radars (weather surveillance radar-1988-Doppler) from Brownsville, Texas, to Key West, Florida, to record the time and longitude of peak arrival on the northern Gulf coast for four spring migrations (2001–2004). We used the National Oceanic Atmospheric Administration Air Resources Laboratory HYSPLIT transport and dispersion model at the READY Web site to generate backward, 24-h atmospheric trajectories based on archived atmospheric data for each trans-Gulf flight. The trajectories began at the geographic location where radar indicated the greatest concentrations of arriving migrants. Although the longitude of peak arrival varied, peak densities of most trans-Gulf migrants arrived on the northern coast near longitude 95°W. Regression analyses showed that the relationship between the longitude of peak trans-Gulf arrival and the direction of atmospheric trajectory was significant but weak at the 500-m level, where few migrants occurred, and was insignificant for the 1,500- and 2,500-m altitudes, where migrant densities were greater. We conclude that winds aloft over the Gulf have little influence on the longitude of peak trans-Gulf arrival on the northern coast of the Gulf of Mexico, and we speculate that the arrival pattern may reflect the trans-Gulf migration pathways that evolved during the Last Glacial Maximum.  相似文献   

10.
White and orange mats are ubiquitous on surface sediments associated with gas hydrates and cold seeps in the Gulf of Mexico. The goal of this study was to determine the predominant pathways for carbon cycling within an orange mat in Green Canyon (GC) block GC 234 in the Gulf of Mexico. Our approach incorporated laser-scanning confocal microscopy, lipid biomarkers, stable carbon isotopes, and 16S rRNA gene sequencing. Confocal microscopy showed the predominance of filamentous microorganisms (4 to 5 μm in diameter) in the mat sample, which are characteristic of Beggiatoa. The phospholipid fatty acids extracted from the mat sample were dominated by 16:1ω7c/t (67%), 18:1ω7c (17%), and 16:0 (8%), which are consistent with lipid profiles of known sulfur-oxidizing bacteria, including Beggiatoa. These results are supported by the 16S rRNA gene analysis of the mat material, which yielded sequences that are all related to the vacuolated sulfur-oxidizing bacteria, including Beggiatoa, Thioploca, and Thiomargarita. The δ13C value of total biomass was −28.6‰; those of individual fatty acids were −29.4 to −33.7‰. These values suggested heterotrophic growth of Beggiatoa on organic substrates that may have δ13C values characteristic of crude oil or on their by-products from microbial degradation. This study demonstrated that integrating lipid biomarkers, stable isotopes, and molecular DNA could enhance our understanding of the metabolic functions of Beggiatoa mats in sulfide-rich marine sediments associated with gas hydrates in the Gulf of Mexico and other locations.  相似文献   

11.
Textularia agglutinans d’Orbigny is a non-symbiont bearing and comparatively large benthic foraminiferal species with a widespread distribution across all oceans. In recent years, its populations have considerably expanded along the Israeli Mediterranean coast of the eastern Levantine basin. Despite its exceptionally widespread occurrence, no molecular data have yet been obtained. This study provides the first ribosomal DNA sequences of T. agglutinans complemented with morphological and ecological characterization, which are based on material collected during environmental monitoring of the hard bottom habitats along the Israeli Mediterranean coast, and from the Gulf of Elat (northern Red Sea). Our phylogenetic analyses reveal that all specimens from both provinces belong to the same genetic population, regardless their morphological variability. These results indicate that modern population of T. agglutinans found on the Mediterranean coast of Israel is probably Lessepsian. Our study also reveals that T. agglutinans has an epiphytic life mode, which probably enabled its successful colonization of the hard bottom habitats, at the Mediterranean coast of Israel, which consist of a diverse community of macroalgae. Our study further indicates that the species does not tolerate high SST (> 35°C), which will probably prevent its future expansion in the easternmost Mediterranean in light of the expected rise in temperatures.  相似文献   

12.
Profiling floats equipped with bio-optical sensors well complement ship-based and satellite ocean color measurements by providing highly-resolved time-series data on the vertical structure of biogeochemical processes in oceanic waters. This is the first study to employ an autonomous profiling (APEX) float in the Gulf of Mexico for measuring spatiotemporal variability in bio-optics and hydrography. During the 17-month deployment (July 2011 to December 2012), the float mission collected profiles of temperature, salinity, chlorophyll fluorescence, particulate backscattering (bbp), and colored dissolved organic matter (CDOM) fluorescence from the ocean surface to a depth of 1,500 m. Biogeochemical variability was characterized by distinct depth trends and local “hot spots”, including impacts from mesoscale processes associated with each of the water masses sampled, from ambient deep waters over the Florida Plain, into the Loop Current, up the Florida Canyon, and eventually into the Florida Straits. A deep chlorophyll maximum (DCM) occurred between 30 and 120 m, with the DCM depth significantly related to the unique density layer ρ = 1023.6 (R2 = 0.62). Particulate backscattering, bbp, demonstrated multiple peaks throughout the water column, including from phytoplankton, deep scattering layers, and resuspension. The bio-optical relationship developed between bbp and chlorophyll (R2 = 0.49) was compared to a global relationship and could significantly improve regional ocean-color algorithms. Photooxidation and autochthonous production contributed to CDOM distributions in the upper water column, whereas in deep water, CDOM behaved as a semi-conservative tracer of water masses, demonstrating a tight relationship with density (R2 = 0.87). In the wake of the Deepwater Horizon oil spill, this research lends support to the use of autonomous drifting profilers as a powerful tool for consideration in the design of an expanded and integrated observing network for the Gulf of Mexico.  相似文献   

13.
Research on Karenia brevis blooms in the Gulf of Mexico started with the 1946–1947 red tide along the Florida west coast. Early research was on the organism itself, its tolerances and requirements, and the environment in which it lived and grew. Control of blooms, as a management option, was pursued in the 1950s with little success. However, in the 1960s–1970s, new regulation of shellfish growing areas was a public health management success. Research on K. brevis blooms followed funding cycles and was sporadic until the late 1990s when the National Oceanic and Atmospheric Administration (NOAA) and the Environmental Protection Agency (EPA) funded the Ecology and Oceanography of Harmful Algal Blooms (ECOHAB) and NOAA Monitoring and Event Response of Harmful Algal Blooms (MERHAB) programs. These particular funding programs, augmented by State of Florida appropriations, provided the opportunity to study K. brevis blooms on different temporal-spatial scales and consequently advanced the science. This review looks at historical research results in the light of today's advances.  相似文献   

14.
The planktonic foraminifera Pulleniatina obliquiloculata (Parker and Jones) undergoes several climatically controlled disappearances and reappearances in the equatorial Atlantic and Caribbean sediments during Late Quaternary time. One such disappearance occurs near the middle of the last glacial (Middle Wisconsin, middle Y zone, O16 stage 3). The age of this disappearances is time transgressive from approximately 60, 000 yr in the Gulf of Mexico, to 50, 000 yr in the western Caribbean, to 35, 000 yr in the equatorial Atlantic. The time-transgressive transgressive nature of P. obliquiloculata's disappearance from the Atlantic is thought to represent the decreasing “width” of P. obliquiloculata's adaptive zone as surface water salinities progressively increased during the glacial intervals due to expanding continental glaciers. A simple ecologic model predicts that P. obliquiloculata should disappear first from areas of high salinity and is consistent with observations that both modern sea-surface salinity and the age of the P. obliquiloculata biohorizon increase from the equatorial Atlantic to the Gulf of Mexico.The biohorizon, YP. obliq, is a subdivision of Ericson's Y zone and occurs throughout the western equatorial Atlantic as well as throughout most of the Caribbean and Gulf of Mexico. Here, the horizon is useful for correlating and determining accumulation rates in continental margin sediments where rapid deposition often prevents piston cores from penetrating through the last glacial interval. Along the coast of Africa, in areas of coastal upwelling and the equatorward transport of cold water, the biohorizon does not occur.  相似文献   

15.
One of the major flow phenomena associated with low Reynolds number flow is the formation of separation bubbles on an airfoil’s surface. NACA4415 airfoil is commonly used in wind turbines and UAV applications. The stall characteristics are gradual compared to thin airfoils. The primary criterion set for this work is the capture of laminar separation bubble. Flow is simulated for a Reynolds number of 120,000. The numerical analysis carried out shows the advantages and disadvantages of a few turbulence models. The turbulence models tested were: one equation Spallart Allmars (S-A), two equation SST K-ω, three equation Intermittency (γ) SST, k-kl-ω and finally, the four equation transition γ-Reθ SST. However, the variation in flow physics differs between these turbulence models. Procedure to establish the accuracy of the simulation, in accord with previous experimental results, has been discussed in detail.  相似文献   

16.
Standardized aerial surveys were used to document the winter (December–March) distribution of North Atlantic right whales in their calving area off the coasts of Georgia and northeastern Florida (1991–1998). Survey data were collected within four survey zones in and adjacent to federally designated critical habitat. These data, including whale‐sighting locations and sampling effort, were used to describe right whale distribution in relation to sea‐surface temperature (SST) from satellite‐derived images. Locations where whales were sighted (n= 609) had an overall mean SST of 14.3°C ± 2.1° (range 8°–22°C). Data from two survey zones having sufficient data (including the “early warning system” (EWS) zone and the Florida nearshore) were pooled by season and stratified by month to investigate changes in monthly ambient SST and fine‐scale distribution patterns of right whales in relation to SST within spatially explicit search areas. Using Monte Carlo techniques, SSTs and latitudes (means and standard deviations) of locations where whales were sighted were compared to a sampling distribution of each variable derived from daily‐search areas. Overall, results support a nonrandom distribution of right whales in relation to SST: during resident months (January and February), whales exhibited low variability in observed SST and a suggested southward shift in whale distribution toward warmer SSTs in the EWS zone; while in the relatively warmer and southernmost survey zone (Florida nearshore), right whales were concentrated in the northern, cooler portion. Our results support that warm Gulf Stream waters, generally found south and east of delineated critical habitat, represent a thermal limit for right whales and play an important role in their distribution within the calving grounds. These results affirm the inclusion of SST in a multivariate predictive model for right whale distribution in their southeastern habitat.  相似文献   

17.
18.
The adaptive radiation of the seven‐spined gobies (Gobiidae: Gobiosomatini) represents a classic example of how ecological specialization and larval retention can drive speciation through local adaptation. However, geographically widespread and phenotypically uniform species also do occur within Gobiosomatini. This lack of phenotypic variation across large geographic areas could be due to recent colonization, widespread gene flow, or stabilizing selection acting across environmental gradients. We use a phylogeographic approach to test these alternative hypotheses in the naked goby Gobiosoma bosc, a widespread and phenotypically invariable intertidal fish found along the Atlantic Coast of North America. Using DNA sequence from 218 individuals sampled at 15 localities, we document marked intraspecific genetic structure in mitochondrial and nuclear genes at three main geographic scales: (i) between Gulf of Mexico and Atlantic Coast, (ii) between the west coast of the Florida peninsula and adjacent Gulf of Mexico across the Apalachicola Bay, and (iii) at local scales of a few hundred kilometers. Clades on either side of Florida diverged about 8 million years ago, whereas some populations along the East Cost show divergent phylogroups that have differentiated within the last 200,000 years. The absence of noticeable phenotypic or ecological differentiation among lineages suggests the role of stabilizing selection on ancestral phenotypes, together with isolation in allopatry due to reduced dispersal and restricted gene flow, as the most likely explanation for their divergence. Haplotype phylogenies and spatial patterns of genetic diversity reveal frequent population bottlenecks followed by rapid population growth, particularly along the Gulf of Mexico. The magnitude of the genetic divergence among intraspecific lineages suggests the existence of cryptic species within Gobiosoma and indicates that modes of speciation can vary among lineages within Gobiidae.  相似文献   

19.
Mangrove forests in the Gulf of California, Mexico represent the northernmost populations along the Pacific coast and thus they are likely to be source populations for colonization at higher latitudes as climate becomes more favorable. Today, these populations are relatively small and fragmented and prior research has indicated that they are poor in genetic diversity. Here we set out to investigate whether the low diversity in this region was a result of recent colonization, or fragmentation and genetic drift of once more extensive mangroves due to climatic changes in the recent past. By sampling the two major mangrove species, Rhizophora mangle and Avicennia germinans, along the Pacific and Atlantic coasts of Mexico, we set out to test whether concordant genetic signals could elucidate recent evolution of the ecosystem. Genetic diversity of both mangrove species showed a decreasing trend toward northern latitudes along the Pacific coast. The lowest levels of genetic diversity were found at the range limits around the Gulf of California and the outer Baja California peninsula. Lack of a strong spatial genetic structure in this area and recent northern gene flow in A. germinans suggest recent colonization by this species. On the other hand, lack of a signal of recent northern dispersal in R. mangle, despite the higher dispersal capability of this species, indicates a longer presence of populations, at least in the southern Gulf of California. We suggest that the longer history, together with higher genetic diversity of R. mangle at the range limits, likely provides a gene pool better able to colonize northwards under climate change than A. germinans.  相似文献   

20.
The whale shark (Rhincodon typus) is a wide-ranging, filter-feeding species typically observed at or near the surface. This shark’s sub-surface habits and behaviors have only begun to be revealed in recent years through the use of archival and satellite tagging technology. We attached pop-up satellite archival transmitting tags to 35 whale sharks in the southeastern Gulf of Mexico off the Yucatan Peninsula from 2003–2012 and three tags to whale sharks in the northeastern Gulf off Florida in 2010, to examine these sharks’ long-term movement patterns and gain insight into the underlying factors influencing their vertical habitat selection. Archived data were received from 31 tags deployed on sharks of both sexes with total lengths of 5.5–9 m. Nine of these tags were physically recovered facilitating a detailed long-term view into the sharks’ vertical movements. Whale sharks feeding inshore on fish eggs off the northeast Yucatan Peninsula demonstrated reverse diel vertical migration, with extended periods of surface swimming beginning at sunrise followed by an abrupt change in the mid-afternoon to regular vertical oscillations, a pattern that continued overnight. When in oceanic waters, sharks spent about 95% of their time within epipelagic depths (<200 m) but regularly undertook very deep (“extreme”) dives (>500 m) that largely occurred during daytime or twilight hours (max. depth recorded 1,928 m), had V-shaped depth-time profiles, and comprised more rapid descents (0.68 m sec-1) than ascents (0.50 m sec-1). Nearly half of these extreme dives had descent profiles with brief but conspicuous changes in vertical direction at a mean depth of 475 m. We hypothesize these stutter steps represent foraging events within the deep scattering layer, however, the extreme dives may have additional functions. Overall, our results demonstrate complex and dynamic patterns of habitat utilization for R. typus that appear to be in response to changing biotic and abiotic conditions influencing the distribution and abundance of their prey.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号