首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
We have studied the binding of radioiodinated human factor VII and its activated form, factor VIIa, to monolayers of a human bladder carcinoma cell line (J82) that expresses functional cell surface tissue factor. The binding of factors VII and VIIa to these cells was found to be time-, temperature-, and calcium-dependent. In addition, the binding of each protein to J82 cells was specific, dose-dependent, and saturable. The binding isotherms for factors VII and VIIa were hyperbolic, and Scatchard plots of the binding data obtained at 37 degrees C indicated a single class of binding sites for each protein with Kd values of 3.20 +/- 0.51 and 3.25 +/- 0.31 nM, respectively. Factors VII and VIIa, respectively, interacted with 256,000 +/- 39,000 and 320,000 +/- 31,000 binding sites/cell. Competition experiments suggested a common receptor for factors VII and VIIa. Binding of factor VIIa to the cells was completely blocked by preincubation of the cells with polyclonal anti-tissue factor IgG, whereas binding of factor VII was inhibited approximately 90%, suggesting the presence of a small number of tissue factor-independent binding sites specific for factor VII on this cell. Functional studies revealed that factor X activation by increasing amounts of cell-bound factor VII or VIIa was hyperbolic in nature. Half-maximal rates of factor Xa formation occurred at factor VII and VIIa concentrations of 3.7 +/- 0.47 and 3.2 +/- 0.31 nM, respectively. No factor VII- or VIIa-mediated activation of factor X was observed when cells were preincubated with anti-tissue factor IgG. Two-chain 125I-factor VIIa recovered from the cells was identical to the offered ligand as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. In contrast, the offered single-chain 125I-factor VII was progressively converted to two-chain 125I-factor VIIa upon binding to the cells. When the J82 cells were pretreated with anti-tissue factor IgG, both factor VII recovered from the cells and factor VII in the supernatant were in the single-chain form, indicating that cell-surface tissue factor was essential for the activation of factor VII on these cells. These data indicate that binding of factor VII to tissue factor appears to be a prerequisite for its conversion to factor VIIa and the initiation of the extrinsic pathway of coagulation on these cells.  相似文献   

2.
We recently showed that single-chain zymogen factor VII is converted to two-chain factor VIIa in an autocatalytic manner following complex formation with either cell-surface or solution-phase relipidated tissue factor apoprotein (Nakagaki, T., Foster, D. C., Berkner, K. L., and Kisiel, W. (1991) Biochemistry 30, 10819-10824). We have now performed a detailed kinetic analysis of the autoactivation of human plasma factor VII in the presence of relipidated recombinant tissue factor apoprotein and calcium. Incubation of factor VII with equimolar amounts of relipidated tissue factor apoprotein resulted in the formation of factor VIIa amidolytic activity coincident with the conversion of factor VII to factor VIIa. The time course for the generation of factor VIIa amidolytic activity in this system was sigmoidal, characterized by an initial lag phase followed by a rapid linear phase until activation was complete. The duration of the lag phase was decreased by the addition of exogenous recombinant factor VIIa. Relipidated tissue factor apoprotein was essential for factor VII autoactivation. No factor VII activation was observed following complex formation between factor VII and a recombinant soluble tissue factor apoprotein construct consisting of the aminoterminal extracellular domain in the presence or absence of phospholipids. Kinetic analyses revealed that factor VII activation in the presence of relipidated tissue factor apoprotein can be defined by a second-order reaction mechanism in which factor VII is activated by factor VIIa with an apparent second-order rate constant of 7.2 x 10(3) M-1 S-1. Benzamidine inhibited factor VII autoactivation with an apparent Ki of 1.8 mM, which is identical to the apparent Ki for the inhibition of factor VIIa amidolytic activity by this active site competitive inhibitor. Our data are consistent with a factor VII autoactivation mechanism in which trace amounts of factor VIIa rapidly activate tissue factor-bound factor VII by limited proteolysis.  相似文献   

3.
The activation of human blood coagulation factor VII can occur by the feedback activity of either factor VIIa (autoactivation) or factor Xa. Both of these reactions are known to be enhanced by the presence of tissue factor, an integral membrane protein and the cofactor for factor VIIa. We examine here the activation of 125I-factor VII by both factor VIIa and factor Xa employing a mutant soluble form of tissue factor which has had its transmembrane and cytoplasmic domains deleted (sTF1-219). This mutant soluble tissue factor retains cofactor activity toward factor VIIa in a single-stage clotting assay but shows a strong dependence on initial plasma levels of factor VIIa (from 1 to 10,000 ng/ml) when compared to wild-type tissue factor. We show that this dependence is due to a deficiency of sTF1-219 in ability to both promote autoactivation and enhance the factor Xa-catalyzed activation of 125I-factor VII. sTF1-219 does not, however, inhibit the tissue factor-independent activation of 125I-factor VII by factor Xa. The results strongly suggest that the phospholipid anchoring region of tissue factor is essential for autoactivation and beneficial for factor Xa-catalyzed activation of 125I-factor VII. In addition, when taken together with the dependence of clotting times on initial factor VIIa levels observed with sTF1-219, these results indicate that factor VII autoactivation may be of greater importance in the initiation of blood coagulation via tissue factor than has been previously realized.  相似文献   

4.
Factor VII is a multidomain, vitamin K-dependent plasma glycoprotein that participates in the extrinsic pathway of blood coagulation. Earlier studies demonstrated a novel disaccharide (Xyl-Glc) or trisaccharide (Xyl2-Glc) O-glycosidically linked to serine 52 in human plasma factor VII (Nishimura, H., Kawabata, S., Kisiel, W., Hase, S., Ikenaka, T., Shimonishi, Y., and Iwanaga, S. (1989) J. Biol. Chem. 264, 20320-20325). In the present study, human plasma and recombinant factor VII were isolated and subjected to enzymatic fragmentation. Peptides comprising residues 48-62 of the first epidermal growth factor-like domain of each factor VII preparation were isolated for comparative analysis. Using a combined strategy of amino acid sequencing, carbohydrate and amino acid composition analysis, and mass spectrometry, three different glycan structures consisting of either glucose, glucose-xylose, or glucose-(xylose)2 were detected O-glycosidically linked to serine 52 in plasma and recombinant factor VII. Approximately equal amounts of the three glycan structures were observed in plasma factor VII, whereas in recombinant factor VII the glucose and the glucose-(xylose)2 structures predominated. In addition to the O-linked glycan structures observed at serine 52, a single fucose was found to be covalently linked at serine 60 in both human plasma and recombinant factor VII. Carbohydrate and mass spectrometry analyses indicated that the fucosylation of serine 60 was virtually quantitative. Metabolic labeling studies using [14C]fucose confirmed the presence of O-linked fucose at serine 60. In order to assess whether the carbohydrate moiety at serine 52 contributes to the biological activity of factor VII, we have constructed a site-specific mutant of recombinant factor VII in which serine 52 has been replaced with an alanine residue. Mutant factor VIIa exhibited approximately 60% of the coagulant activity of wild-type factor VIIa in a clotting assay. The amidolytic activity of mutant factor VIIa was indistinguishable from that observed for recombinant wild-type factor VIIa. In addition, the ability of mutant factor VIIa in complex with either purified relipidated tissue factor apoprotein or tissue factor on the surface of a human bladder carcinoma cell line (J82) to activate either factor X or factor IX was virtually identical to that observed for wild-type factor VIIa. These results indicate that the carbohydrate moiety O-glycosidically linked to serine 52 does not appear to be involved either in the interaction of factor VIIa with tissue factor, or the expression of its proteolytic activity toward factor X or factor IX following complex formation with tissue factor.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
P Wildgoose  K L Berkner  W Kisiel 《Biochemistry》1990,29(13):3413-3420
Coagulation factor VII circulates in blood as a single-chain zymogen of a serine protease and is converted to its activated two-chain form, factor VIIa, by cleavage of an internal peptide bond located at Arg152-Ile153. Previous studies using serine protease active-site inhibitors suggest that zymogen factor VII may possess sufficient proteolytic activity to initiate the extrinsic pathway of blood coagulation. In order to assess the putative intrinsic proteolytic activity of single-chain factor VII, we have constructed a site-specific mutant of recombinant human factor VII in which arginine-152 has been replaced with a glutamic acid residue. Mutant factor VII was purified in a single step from culture supernatants of baby hamster kidney cells transfected with a plasmid containing the sequence for Arg152----Glu factor VII using a calcium-dependent, murine anti-factor VII monoclonal antibody column. Purified mutant factor VII was indistinguishable from plasma-derived or recombinant wild-type factor VII by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and migrated as a single band with an apparent molecular weight of 50,000. The average specific activity of several mutant factor VII preparations was 0.00025 unit/micrograms, or 0.01% of that observed for recombinant wild-type factor VII preparations. The clotting activity of mutant factor VII was, however, completely inhibited following incubation with dansyl-Glu-Gly-Arg chloromethyl ketone, suggesting that the apparent clotting activity of mutant factor VII was due to a contaminating serine protease.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Tissue kallikrein and factor Xa were found to activate tissue plasminogen activator (t-PA) at a rate comparable with that of plasmin. During the activation reaction, the single-chain molecule was converted into a two-chain form. A slight t-PA activating activity was also found in plasma kallikrein. Other activated coagulation factors, factor XIIa, factor XIa, factor IXa, factor VIIa, thrombin and activated protein C had no effect on t-PA activation. t-PA was also activated by a tissue kallikrein-like enzyme that was isolated from the culture medium of melanoma cells. These results indicate that tissue kallikrein and factor Xa may participate in the extrinsic pathway of human fibrinolysis.  相似文献   

7.
Autoactivation of human recombinant coagulation factor VII   总被引:3,自引:0,他引:3  
Single-chain human recombinant factor VII produced by transfected baby hamster kidney cells was purified to homogeneity in the presence of benzamidine. The amidolytic activity of single-chain recombinant factor VII with a peptidylnitroanilide substrate, methoxycarbonyl-D-cyclohexanylglycyl-L-arginine-p-nitroanilide, was less than 1% of that obtained with factor VIIa. Purified single-chain recombinant factor VII spontaneously activated in the absence of inhibitor. The activation reaction was enhanced by at least 2 orders of magnitude in the presence of a positively charged surface, provided either as an anion-exchange matrix or as poly(D-lysine). The progress curve for factor VIIa generation was sigmoidal. Benzamidine inhibits recombinant factor VIIa activity and factor VII activation with identical inhibition constants (Ki) of 11 mM. In contrast, benzamidine inhibition of bovine factor Xa and bovine factor IIa was observed at Ki values equal to 0.3 and 0.5 mM, respectively. Bovine factors Xa and IIa are known activators of factor VII and the most likely contaminants of our recombinant factor VII preparations. Single-chain recombinant factor VII purified from cells cultured in the absence of bovine serum activated at the same rate as factor VII from cells cultured in the presence of bovine serum. This also excluded the possibility that the activation reaction was caused by contaminating bovine proteases. On the basis of these observations, we propose that factor VII is autoactivated in vitro in the presence of a positively charged surface.  相似文献   

8.
The intrinsic pathway of coagulation is initiated when zymogen factor VII binds to its cell surface receptor tissue factor to form a catalytic binary complex. Both the activation of factor VIIa and the expression of serine protease activity of factor VIIa are dependent on factor VII binding to tissue factor lipoprotein. To better understand the molecular basis of these rate-limiting events, the interaction of zymogen factor VII and tissue factor was investigated using as probes both a murine monoclonal antibody and a monospecific rabbit antiserum to human factor VII. To measure factor VIIa functional activity, a two-stage chromogenic assay was used; an assay which measures the factor Xa generated by the activation of factor VII to factor VIIa. Purified immunoglobulin from murine monoclonal antibody 231-7, which was shown to be reactive with amino acid residues 51-88 of the first epidermal growth factor-like (EGF) domain of human factor VII, inhibited the activation of factor VII to factor VIIa in a dose-dependent manner. The mechanism of this inhibition was demonstrated using a novel solid-phase ELISA which quantitatively measured the binding of purified factor VII zymogen to tissue factor adsorbed onto microtiter wells. Thus, the binding of factor VII zymogen to immobilized tissue factor was inhibited by antibody 231-7, again in a dose-dependent manner. Similar results were obtained using a monospecific rabbit antiserum to human factor VII which also reacted with the beta-galactosidase fusion proteins containing amino acid residues 51-88 (exon 4) of human factor VII. We conclude therefore that the exon 4-encoded amino acids of the first EGF domain of human factor VII constitute an essential domain participating in the binding of factor VII to tissue factor.  相似文献   

9.
Tissue factor is the cell membrane-anchored cofactor for factor VIIa and triggers the coagulation reactions. The initial step is the conversion of factor VII to factor VIIa which, in vitro, is efficiently catalyzed by low concentrations of factor Xa. To identify the tissue factor region that interacts with the activator factor Xa during this process, we evaluated a panel of soluble tissue factor (1-219) mutants for their ability to support factor Xa-mediated activation of factor VII. The tissue factor residues identified as most important for this interaction (Tyr157, Lys159, Ser163, Gly164, Lys165, Lys166, and Tyr185) were identical to those found to be important for the interaction of substrate factor X with the tissue factor.factor VIIa complex. The residues form a continuous surface-exposed patch with an area of about 500 A(2), which appears to be located outside the tissue factor-factor VII contact zone. In agreement, the two monoclonal antibodies 5G6 and D3H44-F(ab')(2), whose epitopes overlap with this identified region, inhibited the rates of factor VII activation by 86% and 95%, respectively. These antibodies also strongly inhibited the conversion of (125)I-labeled factor VII when cell membrane-expressed, full-length tissue factor (1-263) was employed. Together the results suggest the usage of a common surface region of tissue factor in its dual role-as a cofactor for factor Xa-mediated factor VII activation and as a cofactor for factor VIIa-mediated factor X activation. The finding that factor Xa and factor X may engage in similar, if not identical, molecular interactions with tissue factor further indicates that factor Xa and factor X are similarly oriented toward their respective interaction partners in the ternary catalytic complexes.  相似文献   

10.
The activation of human coagulation factor IX by human tissue factor.factor VIIa.PCPS.Ca2+ (TF.VIIa.PCPS.Ca2+) and factor Xa.PCPS.Ca2+ enzyme complexes was investigated. Reactions were performed in a highly purified system consisting of isolated human plasma proteins and recombinant human tissue factor with synthetic phospholipid vesicles (PCPS: 75% phosphatidylcholine (PC), 25% phosphatidylserine (PS)). Factor IX activation was evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, [3H]factor IX activation peptide assay, colorimetric substrate thiobenzyl benzyloxycarbonyl-L-lysinate (Z-Lys-SBzl) hydrolysis, and specific incorporation of a fluorescent peptidyl chloromethyl ketone. Factor IX activation by the TF.VIIa.PCPS.Ca2+ enzyme complex was observed to proceed through the obligate non-enzymatic intermediate species factor IX alpha. The simultaneous activation of human coagulation factors IX and X by the TF.VIIa.PCPS.Ca2+ enzyme complex were investigated. When factors IX and X were presented to the TF.VIIa complex, at equal concentrations, it was observed that the rate of factor IX activation remained unchanged while the rate of factor X activation slowed by 45%. When the proteolytic cleavage products of this reaction were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, it was observed that the intermediate species factor IX alpha was generated more rapidly when factor X was present in the reaction mixture. When factor IX was treated with factor Xa.PCPS in the presence of Ca2+, it was observed that factor IX was rapidly converted to factor IX alpha. The activation of factor IX alpha by the TF.VIIa.PCPS.Ca2+ complex was evaluated, and it was observed that factor IX alpha was activated more rapidly by the TF.VIIa.PCPS.Ca2+ complex than was factor IX itself. These data suggest that factors IX and X, when presented to the TF.VIIa.PCPS.Ca2+ enzyme complex, are both rapidly activated and that factor Xa, which is generated in the initial stages of the extrinsic pathway, participates in the first proteolytic step in the activation of factor IX, the generation of factor IX alpha.  相似文献   

11.
Hemophilia A and B coagulation defects, which are caused by deficiencies of Factor VIII and Factor IX, respectively, can be bypassed by administration of recombinant Factor VIIa. However, the short half-life of recombinant Factor VIIa in vivo negates its routine clinical use. We report here an in vivo method for the continuous generation of Factor VIIa. The method depends on the implantation of a porous chamber that contains Factor Xa or XIIa, and continuously generates Factor VIIa bypass activity from the subject's own Factor VII, which enters the chamber by diffusion. Once inside, the Factor VII is cleaved to Factor VIIa by the immobilized Factor Xa or XIIa. The newly created Factor VIIa diffuses out of the chamber and back into the circulation, where it can bypass the deficient Factors VIII or IX, and enable coagulation to occur. In vitro, this method generates sufficient Factor VIIa to substantially correct Factor VIII-deficient plasma when assessed by the classical aPTT coagulation assay. In vivo, a Factor XIIa peritoneal implant generates bypass activity for up to one month when tested in rhesus monkeys. Implantation of such a chamber in a patient with hemophilia A or B could eventually provide a viable alternative to replacement therapies using exogenous coagulation factors.  相似文献   

12.
Blood coagulation can be initiated when factor VII(a) binds to its cofactor tissue factor. This factor VIIa/tissue factor complex proteolytically activates factors IX and X, which eventually leads to the formation of a fibrin clot. Plasma contains a lipoprotein-associated coagulation inhibitor (LACI) which inhibits factor Xa directly and, in a Xa-dependent manner, also inhibits the factor VIIa/tissue factor complex. Here we report the cloning of the human LACI gene and the elucidation of its intron-exon organization. The LACI gene, which spans about 70 kb, consists of nine exons separated by eight introns. As has been found for other Kunitz-type protease inhibitors, the domain structure of human LACI is reflected in the intron-exon organization of the gene. The 5' terminus of the LACI mRNA has been determined by primer extension and S1 nuclease mapping. The putative promoter was examined and found to contain two consensus sequences for AP-1 binding and one for NF-1 binding, but no TATA consensus promoter element.  相似文献   

13.
We have developed a model of the extrinsic blood coagulation system that includes the stoichiometric anticoagulants. The model accounts for the formation, expression, and propagation of the vitamin K-dependent procoagulant complexes and extends our previous model by including: (a) the tissue factor pathway inhibitor (TFPI)-mediated inactivation of tissue factor (TF).VIIa and its product complexes; (b) the antithrombin-III (AT-III)-mediated inactivation of IIa, mIIa, factor VIIa, factor IXa, and factor Xa; (c) the initial activation of factor V and factor VIII by thrombin generated by factor Xa-membrane; (d) factor VIIIa dissociation/activity loss; (e) the binding competition and kinetic activation steps that exist between TF and factors VII and VIIa; and (f) the activation of factor VII by IIa, factor Xa, and factor IXa. These additions to our earlier model generate a model consisting of 34 differential equations with 42 rate constants that together describe the 27 independent equilibrium expressions, which describe the fates of 34 species. Simulations are initiated by "exposing" picomolar concentrations of TF to an electronic milieu consisting of factors II, IX, X, VII, VIIa, V, and VIIII, and the anticoagulants TFPI and AT-III at concentrations found in normal plasma or associated with coagulation pathology. The reaction followed in terms of thrombin generation, proceeds through phases that can be operationally defined as initiation, propagation, and termination. The generation of thrombin displays a nonlinear dependence upon TF, AT-III, and TFPI and the combination of these latter inhibitors displays kinetic thresholds. At subthreshold TF, thrombin production/expression is suppressed by the combination of TFPI and AT-III; for concentrations above the TF threshold, the bolus of thrombin produced is quantitatively equivalent. A comparison of the model with empirical laboratory data illustrates that most experimentally observable parameters are captured, and the pathology that results in enhanced or deficient thrombin generation is accurately described.  相似文献   

14.
We have examined initial assembly of the extrinsic pathway of blood coagulation on cell surfaces with radiolabeled human factor VIIa and a human fetal lung cell line possessing abundant functional tissue factor activity. Binding of factor VIIa to these cells was observed and was time- and temperature-dependent. Binding of factor VIIa was quantitatively equivalent at 37 and 6 degrees C, although the kinetics of binding differed. The radiolabeled ligand bound by the cell was indistinguishable by sodium dodecyl sulfate-polyacrylamide gel analysis from the factor VIIa offered. Factor VIIa binding was influenced by calcium ions. The binding appears to involve at least two classes of calcium-dependent binding sites. Optimal binding occurred at 2 mM calcium for both classes of sites, and there was inhibition of binding to the high affinity sites at higher calcium. Association of factor VIIa was specific, saturable, had a Kd of 123 +/- 37 pm, and factor VIIa interacted with about 100,000 binding sites per cell. Once established, specific binding was rapidly reversible. Direct cellular binding of human factor X also was observed and was calcium, time- and temperature-dependent. Factor X binding was specific and saturable with half-maximal binding at 87.6 +/- 27.4 nM to 6.03 +/- 1.03 X 10(6) sites per cell. Specific high affinity binding of factor VIIa correlated with generation of factor Xa. A direct linear relationship was observed at low factor VIIa binding; however, at higher bound factor VIIa, the relationship was nonstoichiometric, i.e. less factor Xa was formed per mole of factor VIIa. Expression of specific binding sites for factors VIIa and X provides further substantiation for the molecular assembly hypothesized to initiate the extrinsic coagulation protease cascade on cells.  相似文献   

15.
Tissue factor is a lipoprotein, expressed on the surface of cells, which binds coagulation Factor VII or VIIa, leading to activation of Factors X and IX with subsequent fibrin generation. Cellular tissue factor activity is important in pathophysiologic processes such as inflammation and disseminated intravascular coagulation. In this study, the long-chain base sphingosine inhibited coagulation initiated by lipopolysaccharide-stimulated intact human monocytes. Sphingosine (5-100 microM) also profoundly inhibited thromboplastin-initiated coagulation (greater than 90% decrease in thromboplastin activity). This inhibition was dose- and time-dependent. Sphingosine inhibited neither the intrinsic pathway of coagulation nor thrombin generation of fibrin. The sphingosine analogues sphingomyelin, ceramide, or N-acetylsphingosine did not affect thromboplastin activity, suggesting that the polar head of sphingosine was necessary for interaction of the molecule with the coagulation system. Investigation of the biochemical mechanism revealed that sphingosine (5-50 microM), but neither sphingomyelin nor ceramide, inhibited specific binding of radiolabeled Factor VII to lipopolysaccharide-stimulated intact monocytes. The results suggest that sphingosine may regulate monocyte tissue factor-initiated coagulation by modulating Factor VII binding to tissue factor. Sphingosine may represent a new class of inhibitors of hemostasis.  相似文献   

16.
Assembly of the extrinsic pathway on cell surfaces was investigated by studying the binding and activity of factor VII on the bladder carcinoma cell line J82 which expressed 18,800 milliunits of tissue factor activity/10(6) cells. In binding studies, the association of factor VII to monolayers of cells was time-, temperature-, and calcium-dependent. The ligand binding was specific, reversible, and saturable. This interaction was inhibited by a monoclonal antibody to human brain tissue factor. Factor VII added to the cells was recovered as factor VII rather than factor VIIa when incubated in the presence of factor X neutralizing antibodies, suggesting that these cells produced factor X. Specific factor VII binding to the cell revealed a sigmoidal binding isotherm with half-maximal binding occurring at 314 +/- 145 pM to 38,300 +/- 14,300 sites/cell. Hill plots of the binding data indicated an average slope of 2.1. Binding parameters were also determined kinetically. At maximal factor VII-tissue factor complex formation the apparent Km for factor X was 274 nM, the Vmax was 4.15 nM/min, and the kcat was estimated to be 14 s-1. In the presence of excess tissue factor and factor X, increasing amounts of factor VII added to the J82 cells demonstrated a sigmoidal relationship with the rate of factor Xa formation. Hill plots indicated a slope of 2.0 at the lower factor VII concentrations which changed to 1.0 at the higher input amounts of factor VII. Hanes plots were used to determine the apparent dissociation constant of the interaction (222 +/- 85 pM). The Vmax was 5.54 +/- 1.04 nM/min for the cleavage of factor X. These data are consistent with factor VII binding to at least two sites on tissue factor (receptor) with positive cooperativity. Because at saturation the stoichiometry of the factor VII-tissue factor complex is 1:1, tissue factor must be expressed as a dimer on the surface of the J82 cells.  相似文献   

17.
The cell surface receptor tissue factor (TF) initiates coagulation by supporting the proteolytic activation of factors X and IX as well as VII to active serine proteases. Architectural similarity of TF to the cytokine receptor family suggests a strand-loop-strand structure for TF residues 151-174. Site-directed Ala exchanges in the predicted surface loop demonstrated that residues Tyr157, Lys159, Ser163, Gly164, Lys165, and Lys166 are important for function. Addition of side chain atoms at the Ser162 position decreased function, whereas the Ala exchange was tolerated. The dysfunctional mutants bound VII with high affinity and fully supported the catalysis of small peptidyl substrates by the mutant TF.VIIa complex. Lys159-->Ala substitution was compatible with efficient activation of factor X, whereas the Try157-->Ala exchange and mutations in the carboxyl aspect of the predicted loop resulted in diminished activation of factor X. The specific plasma procoagulant activity of all functionally deficient mutants increased 7- to 200-fold upon the supplementation of VIIa suggesting that TF residues 157-167 also provide important interactions that accelerate the activation of VII to VIIa. These data are consistent with assignment of the TF 157-167 region as contributing to protein substrate recognition and cleavage by the TF.VIIa complex.  相似文献   

18.
The activation of factor X by VIIa/TF and the Xa-dependent inhibition of the enzyme complex by tissue factor pathway inhibitor (TFPI) are considered primary steps in the initiation of coagulation. IX activation by VIIa/TF is considered to contribute catalyst necessary for further Xa production in the ensuing amplification phase. We have investigated Xa and IXabeta production by VIIa-TF in a system reconstituted with both X and IX and the principal physiologic inhibitors of this pathway TFPI and antithrombin III (AT). Kinetic studies without inhibitors established that IX and X functioned as competitive alternate substrates for VIIa/TF with similar kinetic constants. When both IX and X were present, TFPI significantly inhibited the extent of formation of either IXabeta or Xa. In contrast, AT rapidly depleted active Xa with a small effect on IXabeta formation. When both AT and TFPI were present, active IXabeta formation significantly exceeded the formation of active Xa regardless of the VIIa/TF concentration. These findings could be quantitatively accounted for by a model encompassing the kinetics of the individual activation and inhibition steps. Active Xa formation by this pathway is regulated in a principal way by its rapid inactivation by AT. In contrast, the Xa-dependent inhibitory reactions of TFPI play a primary role in limiting zymogen consumption and the formation of active IXabeta. These regulatory phenomena yield active IXabeta as a major rather than secondary product of VIIa/TF. Our findings raise the possibility that IXabeta produced by the extrinsic pathway, and its ability to function within the intrinsic Xase complex to activate X may play a significant role in producing Xa necessary for both the initiation and sustained phases of the procoagulant response following vascular damage.  相似文献   

19.
Synthesis and secretion of blood coagulation factor X was studied during incubations of hepatocytes prepared by perfusion of rat livers with collagenase. The apparent molecular weight of factor X isolated from the incubation medium was about 14,000 less than factor X isolated from rat plasma. The extracellular form of factor X was a two-chain polypeptide and the observed difference in molecular weight was reflected in the heavy chain. Since these properties were more characteristic of factor Xa than factor X, experiments were designed to determine if factor X activation occurred during the incubations. Clotting factor assays indicated that factor X secreted by hepatocytes was present as factor Xa. Also, when purified plasma factor X was added to incubations of hepatocytes the added factor X was converted to factor Xa. Plasma membranes prepared from isolated hepatocytes or from liver homogenates contained an enzyme that converted factor X to factor Xa in a calcium-dependent reaction. The results suggest that the activity is due to the presence of thromboplastin (tissue factor) and factor VII in the membrane preparations.  相似文献   

20.
Activation of the zymogen factor VII yields an enzyme form, factor VIIa, with only modest activity. The thermal effect on this low activity of factor VIIa and its enhancement by the cofactor tissue factor was investigated. Factor VIIa activity measured with a chromogenic peptide substrate is characterized by an unusual temperature dependency which indicates that the activated protease exists in an equilibrium between a latent (enzymatically inactive) and an active conformation. As shown by calorimetry and activity measurements the thermal effects on factor VIIa are fully reversible below the denaturation temperature of 58.1 degrees C. A model for factor VIIa has been proposed [Higashi, S., Nishimura, H., Aita, K. & Iwanaga, S. (1994) J. Biol. Chem. 269, 18891-18898] in which the protease is supposed to exist primarily as a latent enzyme form because of the poor incorporation into the protease structure of the N-terminal Ile153 released by proteolytic cleavage during activation of factor VII. Binding of tissue factor to factor VIIa is assumed to shift the equilibrium towards an active conformation in which the N-terminal Ile153 forms a salt bridge with Asp343. We corroborate the validity of this model by: (a) chemical modification of factor VIIa; this suggests that the thermal effect on the equilibrium between the active and inactive conformation is reflected in the relative accessibility of the active site and the N-terminal Ile153; (b) measurements of factor VIIa binding to tissue factor indicating that complex formation is favoured by stabilization of the active conformation; and (c) activity measurements of a cross-linked factor VIIa-tissue factor complex; this showed that cross-linking stabilized the active conformation of factor VIIa and essentially prevented its thermally-induced transformation into the inactive state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号