首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 494 毫秒
1.
In euryhaline crabs, ion-transporting cells are clustered into osmoregulatory patches on the lamellae of the posterior gills. To examine changes in the branchial osmoregulatory patch in the blue crab Callinectes sapidus in response to change in salinity and to correlate these changes with other osmoregulatory responses, crabs were acclimated to a range of salinities between 10 and 35 ppt. When crabs that had been acclimated to 35 ppt were subsequently transferred to 10 ppt, both the size of the osmoregulatory patch on individual gill lamellae and the specific activity of Na+, K+-ATPase in whole-gill homogenates increased only after the first 24 h of exposure to dilute seawater. Enzyme activity and size of patch area increased gradually and reached their maxima (increasing by 200% and 60%, respectively) 6 days following transfer to 10 ppt seawater and then remained at these levels. Patch size at acclimation varied inversely with the salinity for seawater dilutions below 26 ppt (the isosmotic point of the crab), although it did not vary in salinities at or above 26 ppt. Thus, the size of the patch clearly is modulated with acclimation salinity, but it increases only in those salinities in which the crab hyperosmoregulates. An increase in the total RNA/DNA ratio in gill homogenates, the lack of mitotic figures in the lamellae, and the lack of incorporation of bromodeoxyuridine into nuclei of lamellar epithelial cells during acclimation to dilute seawater were interpreted as evidence that no cell proliferation had occurred and that increases in the size of the osmoregulatory patch occurred through differentiation of existing gas exchange cells or of undifferentiated epithelial cells into ion-transporting cells.  相似文献   

2.
Juvenile blue crabs, Callinectes sapidus, extensively utilize oligohaline and freshwater regions of the estuary. With a presumptively larger surface-area-to-body weight ratio, juvenile crabs could experience osmo- and ionoregulatory costs well in excess of that of adults. To test this hypothesis, crabs ranging over three orders of magnitude in body weight were acclimated to either sea water (1,000 mOsm) or dilute sea water (150 mOsm), and gill surface area, water and sodium permeabilities (calculated from the passive efflux of 3H2O and 22Na+), gill Na+, K+ -ATPase activity and expression were measured. Juveniles had a relatively larger gill surface area; weight-specific gill surface area decreased with body weight. Weight-specific water and sodium fluxes also decreased with weight, but not to the same extent as gill surface area; thus juveniles were able to decrease gill permeability slightly more than adults upon acclimation to dilute media. Crabs < 5 g in body weight had markedly higher activities of gill Na+ ,K+ -ATPase than crabs > 5 g in both posterior and anterior gills. Acclimation to dilute medium induced increased expression of Na+, K+ -ATPase and enzyme activity, but the increase was not as great in juveniles as in larger crabs.The increased weight-specific surface area for water gain and salt loss for small crabs in dilute media presents a challenge that is incompletely compensated by reduced permeability and increased affinity of gill Na+, K+ -ATPase for Na+. Juveniles maintain osmotic and ionic homeostasis by the expression and utilization of extremely high levels of gill Na+, K+ -ATPase, in posterior, as well as in anterior, gills.  相似文献   

3.
With a view to test how the branchial and intestinal tissues of fish, the two sites of metal acquisition, utilize the water-borne ferric [Fe(III)] iron and whether the accumulation of this form of iron influences cellular Na/K gradient in these tissues, the gills and intestines of climbing perch adapted to freshwater (FW) and acclimated to dilute seawater (20 ppt; SW) were analyzed for ouabain-sensitive Na+, K+-ATPase activity, Fe and electrolyte contents after loading a low (8.95 microM) or high dose (89.5 microM) of Fe(III) iron in the water. The SW gills showed higher levels of total Fe after treating with 8.95 microM of Fe(III) iron which was not seen in the FW gills. Na+, K+-ATPase activity, reflecting Na/K pump activity, showed an increase in the FW gills and not in the SW gills. Substantial increase in the branchial Na and K content was observed in the SW gills, but the FW gills failed to show such effects after Fe(III) loading. The total Fe content was declined in the FW intestine but not in the SW intestine. Water-borne Fe(III) iron decreased the activity of Na+, K+-ATPase in the SW intestine while not changing its activity in the FW intestine. The Na and K content in the FW intestine did not respond to Fe(III) iron exposure but showed a reduction in its Na levels in the SW intestine. The moisture content in the gills and intestines of both the FW and SW perch remained unaffected after Fe(III) loading. In FW fish, the plasma Na levels were decreased by a low dose of Fe(III) iron, though a high dose of Fe(III) iron was required in the SW fish for such an effect. Overall, the results for the first time provide evidence that gills act as a major site for Fe(III) iron absorption and accumulation during salinity acclimation which depends on a high cellular Na/K gradient.  相似文献   

4.
We acclimated two species of sculpin, the freshwater prickly sculpin (Cottus asper) and the closely related marine Pacific staghorn sculpin (Leptocottus armatus) to freshwater ( approximately 0 g/L), brackish water (15 g/L), and seawater (30 g/L) for at least 4 wk and examined the relationships between respiration, ion regulation, gill morphology, and freshwater tolerance. The prickly sculpin successfully acclimated to all three salinities and did not experience appreciable changes in plasma osmolality, [Cl-], or mortality. Gill Na+/K+-ATPase activity was lowest in prickly sculpins acclimated to freshwater, their native salinity, and increased during acclimation to seawater. Furthermore, prickly sculpins acclimated to freshwater had a 30% higher P(crit) than fish acclimated to brackish water or seawater; P(crit) is the environmental P(O2) below which an animal can no longer maintain a routine (.-)M(O2), and an increase in P(crit) represents a compromise of respiratory gas exchange. The higher P(crit) observed in prickly sculpins acclimated to freshwater is likely a consequence of their having small, relatively thick gills that increase in thickness (by approximately 1 microm) during freshwater exposure. In contrast, the marine Pacific staghorn sculpin successfully acclimated to brackish water and seawater, but high mortality (25%) was observed after 3 wk of exposure to freshwater. Pacific staghorn sculpins exposed to freshwater suffered significant, 15%-20%, reductions in plasma osmolality and [Cl-], and these losses in plasma ions resulted in a 1.4-fold increase in gill Na+/K+-ATPase activity. Pacific staghorn sculpins have large, thin gills that are not modified in response to salinity acclimation, and as a result, these animals show no respiratory compromise during freshwater acclimation, as evidenced by the lack of change in P(crit), but show significant ion regulatory disturbance. Overall, this study suggests that gill thickening and the resulting respiratory compromise are necessary for freshwater tolerance in sculpins.  相似文献   

5.
This study aimed to examine effects of short- or long-term acclimation to brackish water or seawater on the climbing perch, Anabas testudineus, which is an aquatic air-breathing teleost living typically in freshwater. A. testudineus exhibits hypoosmotic and hypoinoic osmoregulation; the plasma osmolality, [Na+] and [Cl-] of fish acclimated to seawater were consistently lower than those of the external medium. However, during short-term (1 day) exposure to brackish water (15 per thousand) or seawater (30 per thousand), these three parameters increased significantly. There were also significant increases in tissue ammonia and urea contents, contents of certain free amino acids (FAAs) in the muscle, and rates of ammonia and urea excretion in the experimental fish. The accumulated FAAs might have a transient role in cell volume regulation. In addition, these results indicate that increases in protein degradation and amino acid catabolism had occurred, possibly providing energy for the osmoregulatory acclimation of the gills in fish exposed to salinity stress. Indeed, there was a significant increase in the branchial Na+/K+ -ATPase activity in fish exposed to seawater for a prolonged period (7 days), and the plasma osmolality, [Na+] and [Cl-] and the tissue FAA contents of these fish returned to control levels. More importantly, there was a significant increase in the dependence on water-breathing in fish acclimated to seawater for 7 days. This suggests for the first time that A. testudineus could alter its bimodal breathing pattern to facilitate the functioning of branchial Na+/K+ -ATPase for osmoregulatory purposes.  相似文献   

6.
The enzyme Na(+), K(+)-ATPase was investigated in the gills of selected hyper-regulating gammarid amphipods. Gill Na(+), K(+)-ATPase was characterised with respect to the main cation and co-factor concentrations for the freshwater amphipod Gammarus pulex. The optimum cation and co-factor concentrations for maximal gill Na(+), K(+)-ATPase activity in G. pulex were 100mM Na(+), 15mM K(+), 15mM Mg(2+) and 5mM ATP, at pH 7.2. The effects of salinity acclimation on gill Na(+), K(+)-ATPase activity and haemolymph sodium concentrations was investigated in selected gammarid amphipods from different salinity environments. Maximal enzyme activity occurred in all gammarids when acclimated to the most dilute media. This maximal activity coincided with the largest sodium gradient between the haemolymph and the external media. As the haemolymph/medium sodium gradient decreased, a concomitant reduction in gill Na(+), K(+)-ATPase activity occurred. This implicates the involvement of gill Na(+), K(+)-ATPase in the active uptake of sodium from dilute media in hyper-regulating gammarids.  相似文献   

7.
The time course of osmoregulatory adjustments and expressional changes of three key ion transporters in the gill were investigated in the striped bass during salinity acclimations. In three experiments, fish were transferred from fresh water (FW) to seawater (SW), from SW to FW, and from 15-ppt brackish water (BW) to either FW or SW, respectively. Each transfer induced minor deflections in serum [Na+] and muscle water content, both being corrected rapidly (24 hr). Transfer from FW to SW increased gill Na+,K+-ATPase activity and Na+,K+,2Cl- co-transporter expression after 3 days. Abundance of Na+,K+-ATPase alpha-subunit mRNA and protein was unchanged. Changes in Na+,K+,2Cl- co-transporter protein were preceded by increased mRNA expression after 24 hr. Expression of V-type H+-ATPase mRNA decreased after 3 days. Transfer from SW to FW induced no change in expression of gill Na+,K+-ATPase. However, Na+,K+,2Cl- co-transporter mRNA and protein levels decreased after 24 hr and 7 days, respectively. Expression of H+-ATPase mRNA increased in response to FW after 7 days. In BW fish transferred to FW and SW, gill Na+,K+-ATPase activity was stimulated by both challenges, suggesting both a hyper- and a hypo-osmoregulatory response of the enzyme. Acclimation of striped bass to SW occurs on a rapid time scale. This seems partly to rely on the relative high abundance of gill Na+,K+-ATPase and Na+,K+,2Cl- co-transporter in FW fish. In a separate study, we found a smaller response to SW in expression of these ion transport proteins in striped bass when compared with the less euryhaline brown trout. In both FW and SW, NEM-sensitive gill H+-ATPase activity was negligible in striped bass and approximately 10-fold higher in brown trout. This suggests that in striped bass Na+-uptake in FW may rely more on a relatively high abundance/activity of Na+,K+-ATPase compared to trout, where H+-ATPase is critical for establishing a thermodynamically favorable gradient for Na+-uptake.  相似文献   

8.
The Mozambique tilapia, Oreochromis mossambicus, is capable of surviving a wide range of salinities and temperatures. The present study was undertaken to investigate the influence of environmental salinity and temperature on osmoregulatory ability, organic osmolytes and plasma hormone profiles in the tilapia. Fish were acclimated to fresh water (FW), seawater (SW) or double-strength seawater (200% SW) at 20, 28 or 35 degrees C for 7 days. Plasma osmolality increased significantly as environmental salinity and temperature increased. Marked increases in gill Na(+), K(+)-ATPase activity were observed at all temperatures in the fish acclimated to 200% SW. By contrast, Na(+), K(+)-ATPase activity was not affected by temperature at any salinity. Plasma glucose levels increased significantly with the increase in salinity and temperature. Significant correlations were observed between plasma glucose and osmolality. In brain and kidney, content of myo-inositol increased in parallel with plasma osmolality. In muscle and liver, there were similar increases in glycine and taurine, respectively. Glucose content in liver decreased significantly in the fish in 200% SW. Plasma prolactin levels decreased significantly after acclimation to SW or 200% SW. Plasma levels of cortisol and growth hormone were highly variable, and no consistent effect of salinity or temperature was observed. Although there was no significant difference among fish acclimated to different salinity at 20 degrees C, plasma IGF-I levels at 28 degrees C increased significantly with the increase in salinity. Highest levels of IGF-I were observed in SW fish at 35 degrees C. These results indicate that alterations in gill Na(+), K(+)-ATPase activity and glucose metabolism, the accumulation of organic osmolytes in some organs as well as plasma profiles of osmoregulatory hormones are sensitive to salinity and temperature acclimation in tilapia.  相似文献   

9.
Smolts exhibited decreases in plasma Na+ levels after 7 days and lower Na+, K+-ATPase activities 14 days after acid exposure. Parrs exhibited decreased plasma Na+ after 24 hr acid exposure. Plasma Na+ increased and Na+, K+-ATPase decreased in smolts after transfer to seawater. Parrs exhibited increased plasma Na+ as well as Na+, K+-ATPase activity immediately after transfer to seawater. It was concluded that acid exposure prior to entry into seawater was detrimental to coho salmon with regard to the length of acid exposure and stage of development. A possible mechanism by which fish die from acid stress is inhibition of gill Na+, K+-ATPase concomitant with decreases in plasma Na+ levels.  相似文献   

10.
The localization of Na+,K(+)-ATPase in epithelia of the organs of the branchial cavity of Homarus gammarus exposed to seawater and dilute seawater was examined by immunofluorescence microscopy and immunogold electron microscopy with a monoclonal antibody IgG alpha 5 raised against the avian alpha-subunit of the Na-,K(+)-ATPase. In juveniles held in seawater, fluorescent staining was observed only in the epithelial cells of epipodites. In juveniles held in dilute seawater, heavier immunoreactivity was observed in the epithelial cells of epipodites, and positive immunostaining was also observed along the inner-side epithelial layer of the branchiostegites. No fluorescent staining was observed in the gill epithelia. At the ultrastructural level, the Na+,K(+)-ATPase was localized in the basolateral infolding systems of the epipodite and inner-side branchiostegite epithelia of juveniles held in dilute seawater, mostly along the basal lamina. The expression of Na+,K(+)-ATPase therefore differs within tissues of the branchial cavity and according to the external salinity. These and previous ultrastructural observations suggest that the epipodites, and to a lesser extent the inner-side epithelium of the branchiostegites, are involved in the slight hyper-regulation displayed by lobsters at low salinity. Enhanced Na+,K(+)-ATPase activity and de novo synthesis of Na+,K(+)-ATPase within the epipodite and branchiostegite epithelia may be key points enabling lobsters to adapt to low salinity environments.  相似文献   

11.
The enzymatic properties of membrane-bound Na+ + K+-ATPase from gills of killifish acclimated to fresh water, to 16% sea water, or to 30% sea water appear to be identical, indicating that the same enzyme may function to absorb Na+ in low salinities and excrete Na+ at the gills in high salinities. Ammonium ion is an effective substitute for K+: in the ATPase reaction itself, in blocking phosphorylation of the ATPase protein, and in inhibiting the binding of ouabain to the enzyme. The specific activities of the Na+ + K+-ATPase in the three different salinities are consistent with the expected Na+ pumping rates: higher in fresh water and 30% sea water than in 16% sea water. Within one-half hour after transfer of killifish from one salinity to another, gill Na+ + K+-ATPase activities reach equilibrium levels. The rapid increase in Na+ + K+-ATPase activity in gill microsomes of fish acclimating from fresh water to 30% sea water is accompanied by a slow decrease in the number of binding sites for ouabain, supporting the idea that acclimation to short-term salinity changes may involve modifications in the catalytic rate rather than the number of Na+ + K+-ATPase molecules.  相似文献   

12.
The kinetic properties of a microsomal gill (Na+,K+)-ATPase from the freshwater shrimp, Macrobrachium olfersii, acclimated to 21 per thousand salinity for 10 days were investigated using the substrate p-nitrophenylphosphate. The enzyme hydrolyzed this substrate obeying cooperative kinetics at a rate of 123.6+/-4.9 U mg-1 and K0.5=1.31+/-0.05 mmol L-1. Stimulation of K+-phosphatase activity by magnesium (Vmax=125.3+/-7.5 U mg-1; K0.5=2.09+/-0.06 mmol L-1), potassium (Vmax=134.2+/-6.7 U mg-1; K0.5=1.33+/-0.06 mmol L-1) and ammonium ions (Vmax=130.1+/-5.9 U mg-1; K0.5=11.4+/-0.5 mmol L-1) was also cooperative. While orthovanadate abolished p-nitrophenylphosphatase activity, ouabain inhibition reached 80% (KI=304.9+/-18.3 micromol L-1). The kinetic parameters estimated differ significantly from those for freshwater-acclimated shrimps, suggesting expression of different isoenzymes during salinity adaptation. Despite the approximately 2-fold reduction in K+-phosphatase specific activity, Western blotting analysis revealed similar alpha-subunit expression in gill tissue from shrimps acclimated to 21 per thousand salinity or fresh water, although expression of phosphate-hydrolyzing enzymes other than (Na+,K+)-ATPase was stimulated by high salinity acclimation.  相似文献   

13.
The successful migration of euryhaline teleost fish from freshwater to seawater requires the upregulation of gill Na+-K+-ATPase, an ion transport enzyme located in the basolateral membrane (BLM) of gill chloride cells. Following 39 days of seawater exposure, Arctic char had similar plasma sodium and chloride levels as individuals maintained in freshwater, indicating they had successfully acclimated to seawater. This acclimation was associated with an eightfold increase in gill Na+-K+-ATPase activity but only a threefold increase in gill Na+-K+-ATPase protein number, suggesting that other mechanisms may also modulate gill Na+-K+-ATPase activity. We therefore investigated the influence of membrane composition on Na+-K+-ATPase activity by examining the phospholipid, fatty acid, and cholesterol composition of the gill BLM from freshwater- and seawater-acclimated Arctic char. Mean gill BLM cholesterol content was significantly lower ( approximately 22%) in seawater-acclimated char. Gill Na+-K+-ATPase activity in individual seawater Arctic char was negatively correlated with BLM cholesterol content and positively correlated with %phosphatidylethanolamine and overall %18:2n6 (linoleic acid) content of the BLM, suggesting gill Na+-K+-ATPase activity of seawater-acclimated char may be modulated by the lipid composition of the BLM and may be especially sensitive to those parameters known to influence membrane fluidity. Na+-K+-ATPase activity of individual freshwater Arctic char was not correlated to any membrane lipid parameter measured, suggesting that different lipid-protein interactions may exist for char living in each environment.  相似文献   

14.
In dilute seawater, Carcinus maenas hyperosmoregulates by actively absorbing Na, K, and Cl. Here we characterize K uptake using a novel technique. Rb was used as a tracer for K transport, and hemolymph Rb levels were measured using cation chromatography. Hemolymph Rb was detectable at 0.1 mmol L(-1), which enabled determination of initial rate of Rb uptake. Crabs maintained for 3 wk in dilute artificial seawater (35% ASW crabs) maintained Na and K above the level of the external media and had elevated Na-K-ATPase activity in the posterior gills. In assay conditions matched to 100% ASW, Rb uptake was the same in 35% ASW crabs (0.45+/-0.04 micromol g(-1) h(-1)) and in crabs acclimated to normal seawater (100% ASW crabs, 0.49+/-0.05 micromol g(-1) h(-1)). In assay conditions matched to 35% ASW, Rb uptake was greater in 35% ASW crabs (0.28+/-0.03 micromol g(-1) h(-1)) compared with 100% ASW crabs (0.10+/-0.04 micromol g(-1) h(-1)). Low external [Rb] or reduced salinity were found to contribute independently to the difference between 100% ASW and 35% ASW crabs. Thus, whole-body Rb uptake in crabs can be measured by cation chromatography, and Rb uptake is greater in 35% ASW crabs than in 100% ASW crabs.  相似文献   

15.
Many populations of Arctic char (Salvelinus alpinus) are land-locked, physically separated from the ocean by natural barriers and unable to migrate to sea like anadromous populations. Previous studies which experimentally transferred land-locked Arctic char to seawater report high mortality rates due to osmoregulatory failure and an inability to up-regulate gill Na(+),K(+)-ATPase activity. This study examined the mRNA expression of two recently discovered alpha-subunit isoforms of gill Na(+)K(+)-ATPase (alpha1a and alpha1b) during seawater exposure of land-locked Arctic char. mRNA levels of these gill Na(+),K(+)-ATPasealpha-subunit isoforms were compared to Na(+),K(+)-ATPase activity and protein levels and related to osmoregulatory performance. Land-locked Arctic char were unable to regulate plasma osmolality following seawater exposure. Seawater exposure did not induce an increase in gill Na(+),K(+)-ATPase activity or protein levels. Na(+),K(+)-ATPase isoform alpha1a mRNA quickly decreased upon exposure to seawater, while isoform alpha1b levels were unchanged. These results suggest the inability of land-locked Arctic char to acclimate to seawater is due a failure to up-regulate gill Na(+),K(+)-ATPase activity which may be due to their inability to increase Na(+),K(+)-ATPase alpha1b mRNA expression.  相似文献   

16.
Variations of Na(+)/K(+)-ATPase activity and fatty-acid composition in the gills of the sturgeon Acipenser naccarii subjected to progressive acclimation to full seawater (35 ppt) were determined in relation to the hypo-osmoregulatory capacity of this species in the hyperosmotic medium. Blood samples were taken and gills arches were removed at intermediate salinity levels between 0 and 35 ppt and after 20 days at constant salinity (35 ppt). Plasma osmolality and Na(+)/K(+)-ATPase activity increased significantly with growing environmental salinity. Total saturated fatty acids (SFAs) decreased, while total polyunsaturated fatty acids (PUFAs) increased significantly with increasing salinity due mainly to changes in n-3 PUFAs (20:5n-3 and 22:6n-3). The n-3/n-6 ratio increased significantly during the acclimation process. The results show a direct relationship between salinity, increased gill Na(+)/K(+)-ATPase activity and ultrastructural changes of the gill chloride cells. Changes in the fatty-acid composition in gills of A. naccarii during progressive acclimation to full seawater suggest that variations of gill fatty acids may also have a role in osmoregulatory mechanisms.  相似文献   

17.
The objective of this work was to evaluate mechanisms of microcystin toxicity on crustacean species. Adult male crabs of Chasmagnathus granulatus (13.97+/-0.35 g) acclimated to low salinity (2 per thousand ) were injected with saline (control) or Microcystis aeruginosa aqueous extract (39.2 microg/l) at 24 h intervals for 48 h. After the exposure period, the anterior and posterior gills were dissected, measuring Na(+),K(+)-ATPase and glutathione-S-transferase (GST) activity. Total oxyradical scavenging capacity (TOSC) and lipid peroxides (LPO) content were also determined. Na(+),K(+)-ATPase activity in anterior gills was significantly lower in crabs injected with toxin than in control crabs, while no significant difference in the enzyme activity was detected in posterior gills. Both sodium and chloride concentration in the hemolymph were not affected by toxin exposure. Significant changes in GST activity were detected in posterior gills, with higher values being observed in the toxin-injected crabs. Crabs exposed to microcystin also showed a significant increase in the TOSC value against peroxyl radicals, for both anterior and posterior gills. Lipid peroxides level did not change in both gill types after exposure to the toxin. The increased levels of TOSC suggest the occurrence of a crab response against oxidative stress induced by toxin injection, which prevents lipid peroxidation.  相似文献   

18.
Physiological mechanisms involved in acclimation to variable salinity and oxygen levels and their interaction were studied in European flounder. The fish were acclimated for 2 weeks to freshwater (1 per thousand salinity), brackish water (11 per thousand) or full strength seawater (35 per thousand) under normoxic conditions (water Po(2) = 158 mmHg) and then subjected to 48 h of continued normoxia or hypoxia at a level (Po(2) = 54 mmHg) close to but above the critical Po(2). Plasma osmolality, [Na(+)] and [Cl(-)] increased with increasing salinity, but the rises were limited, reflecting an effective extracellular osmoregulation. Muscle water content was the same at all three salinities, indicating complete cell volume regulation. Gill Na(+)/K(+)-ATPase activity did not change with salinity, but hypoxia caused a 25% decrease in branchial Na(+)/K(+)-ATPase activity at all three salinities. Furthermore, hypoxia induced a significant decrease in mRNA levels of the Na(+)/K(+)-ATPase alpha1-subunit, signifying a reduced expression of the transporter gene. The reduced ATPase activity did not influence extracellular ionic concentrations. Blood [Hb] was stable with salinity, and it was not increased by hypoxia. Instead, hypoxia decreased the erythrocytic nucleoside triphosphate content, a common mechanism for increasing blood O(2) affinity. It is concluded that moderate hypoxia induced an energy saving decrease in branchial Na(+)/K(+)-ATPase activity, which did not compromise extracellular osmoregulation.  相似文献   

19.
The time course of induction of activity of carbonic anhydrase (CA) and Na/K ATPase, two enzymes that are central to osmotic and ionic regulation in the eyryhaline green crab, Carcinus maenas, was measured in response to a transfer from 32 to 10 ppt salinity. CA activity was low in all gills in crabs acclimated to high salinity. Activity was induced in the posterior three gills (G6-G9) starting at 96 hr following transfer to low salinity, with activity peaking at seven post-transfer. Na/K ATPase activity in posterior gills was already high in crabs acclimated to 32 ppt salinity, and it did not increase as a result of transfer to 10 ppt. Acclimation of crabs to hypersaline (40 ppt) conditions resulted in uniformly low levels of Na/K ATPase activity, and transfer from 40 ppt to 10 ppt stimulated a four-fold induction of activity in the posterior gills that was evident by seven days of low salinity exposure. Low salinity stimulates the activity of both enzymes, but a different degree of salinity change appears to be necessary to cause the induction of each enzyme. The Na/K ATPase activity is already high at a salinity (32 ppt) at which the crab is still an osmotic and ionic conformer. CA activity, however, even when expressed in low levels, is still present in excess of what is needed to supply counterions at a rate adequate to match the rate of active ion transport. It is possible that two strategies exist for the regulation of these two enzymes that coincide with the crab's intertidal and estuarine lifestyle: short-term modulation of activity of highly expressed enzyme (Na/K ATPase) and long-term modulation of enzyme concentration by changes in gene expression (CA). For all ranges of low salinity exposure, crabs undergo hemodilution, cell swelling, and subsequent cell volume readjustment as evidenced by the increase in concentration of TNPS in the hemolymph. This response takes place before the induction of enzyme activity, and it could serve as the initial signal in the induction pathway.  相似文献   

20.
The impact of different environmental salinities on the energy metabolism of gills, kidney, liver, and brain was assessed in gilthead sea bream (Sparus aurata) acclimated to brackish water [BW, 12 parts/thousand (ppt)], seawater (SW, 38 ppt) and hyper saline water (HSW, 55 ppt) for 14 days. Plasma osmolality and levels of sodium and chloride presented a clear direct relationship with environmental salinities. A general activation of energy metabolism was observed under different osmotic conditions. In liver, an enhancement of glycogenolytic and glycolytic potential was observed in fish acclimated to BW and HSW compared with those in SW. In plasma, an increased availability of glucose, lactate, and protein was observed in parallel with the increase in salinity. In gills, an increased Na+-K+-ATPase activity, a clear decrease in the capacity for use of exogenous glucose and the pentose phosphate pathway, as well as an increased glycolytic potential were observed in parallel with the increased salinity. In kidney, Na+-K+-ATPase activity and lactate levels increased in HSW, whereas the capacity for the use of exogenous glucose decreased in BW- and HSW- acclimated fish compared with SW-acclimated fish. In brain, fish acclimated to BW or HSW displayed an enhancement in their potential for glycogenolysis, use of exogenous glucose, and glycolysis compared with SW-acclimated fish. Also in brain, lactate and ATP levels decreased in parallel with the increase in salinity. The data are discussed in the context of energy expenditure associated with osmotic acclimation to different environmental salinities in fish euryhaline species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号