首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Minch K  Rustad T  Sherman DR 《PloS one》2012,7(4):e35935
The Mycobacterium tuberculosis regulator DosR is induced by multiple stimuli including hypoxia, nitric oxide and redox stress. Overlap of these stimuli with conditions thought to promote latency in infected patients fuels a model in which DosR regulon expression is correlated with bacteriostasis in vitro and a proxy for latency in vivo. Here, we find that inducing the DosR regulon to wildtype levels in aerobic, replicating M. tuberculosis does not alter bacterial growth kinetics. We conclude that DosR regulon expression alone is insufficient for bacterial latency, but rather is expressed during a range of growth states in a dynamic environment.  相似文献   

2.
Mycobacterium tuberculosis (MTB) expresses a set of genes known as the dormancy regulon in vivo. These genes are expressed in vitro in response to nitric oxide (NO) or hypoxia, conditions used to model MTB persistence in latent infection. Although NO, a macrophage product that inhibits respiration, and hypoxia are likely triggers in vivo, additional cues could activate the dormancy regulon during infection. Here, we show that MTB infection stimulates expression of heme oxygenase (HO-1) by macrophages and that the gaseous product of this enzyme, carbon monoxide (CO), activates expression of the dormancy regulon. Deletion of macrophage HO-1 reduced expression of the dormancy regulon. Furthermore, we show that the MTB DosS/DosT/DosR two-component sensory relay system is required for the response to CO. Together, these findings demonstrate that MTB senses CO during macrophage infection. CO may represent a general cue used by pathogens to sense and adapt to the host environment.  相似文献   

3.
The dormancy (DosR) regulon of Mycobacterium tuberculosis is expressed in vitro during hypoxia and low-dose nitric oxide stimulation. Tubercle bacilli are thought to encounter these conditions in humans during latent infection. In this study, immune responses were evaluated to 25 most strongly induced DosR-regulon-encoded proteins, referred to as latency antigens. Proliferation assays were performed using M. tuberculosis-specific T-cell lines and peripheral blood mononuclear cells (PBMC) from tuberculosis (TB) patients, tuberculin skin test positive (TST+) individuals and uninfected controls. All 25 latency antigens were able to induce production of interferon-gamma (IFN-gamma) by T-cell lines. Eighteen latency antigens were also recognized by PBMC of M. tuberculosis-infected individuals, which indicates expression of the DosR-regulon during natural infection. Differential analysis showed that TST+ individuals recognized more latency antigens and with a stronger cumulative IFN-gamma response than TB patients, while the opposite profile was found for culture filtrate protein-10. In particular Rv1733c, Rv2029c, Rv2627c and Rv2628 induced strong IFN-gamma responses in TST+ individuals, with 61%, 61%, 52% and 35% responders, respectively. In conclusion, several new M. tuberculosis antigens were identified within the DosR-regulon. Particularly strong IFN-gamma responses to latency antigens were observed in latently infected individuals, suggesting that immune responses against these antigens may contribute to controlling latent M. tuberculosis infection.  相似文献   

4.
5.
6.
7.
Nitric oxide (NO) and related reactive nitrogen intermediates (RNI) are effective antimycobacterial agents and signal-transducing molecules. The present study uses microarray analysis to examine the effects of RNI on Mycobacterium tuberculosis gene expression. A common set of 53 genes was regulated by two chemically distinct nitric oxide donors. For a subset of the RNI-inducible genes, evidence exists suggesting that they may play a role in promoting survival of the tubercle bacillus in the host. Results obtained from studies based on a murine experimental tuberculosis model involving nos2-deficient mice suggest that RNI could regulate M. tuberculosis gene expression in vivo. Finally, there is a remarkable overlap between the RNI-inducible regulon and that previously reported to be regulated by hypoxia; and both reactive nitrogen species and anaerobicity upregulate the expression of one and the same putative two-component regulatory response system. Together, the results of this study provide evidence suggesting that (i) RNI play a role in regulating M. tuberculosis gene expression in vivo; (ii) the reactive nitrogen species upregulate genes that may be conducive to the survival of the tubercle bacillus in the infected host; and (iii) RNI and hypoxia may regulate mycobacterial gene expression via overlapping signal transduction pathways.  相似文献   

8.
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), which claims approximately two million people annually, remains a global health concern. The non‐replicating or dormancy like state of this pathogen which is impervious to anti‐tuberculosis drugs is widely recognized as the culprit for this scenario. The dormancy survival regulator (DosR) regulon, composed of 48 co‐regulated genes, is held as essential for Mtb persistence. The DosR regulon is regulated by a two‐component regulatory system consisting of two sensor kinases—DosS (Rv3132c) and DosT (Rv2027c), and a response regulator DosR (Rv3133c). The underlying regulatory mechanism of DosR regulon expression is very complex. Many factors are involved, particularly the oxygen tension. The DosR regulon enables the pathogen to persist during lengthy hypoxia. Comparative genomic analysis demonstrated that the DosR regulon is widely distributed among the mycobacterial genomes, ranging from the pathogenic strains to the environmental strains. In‐depth studies on the DosR response should provide insights into its role in TB latency in vivo and shape new measures to combat this exceeding recalcitrant pathogen. J. Cell. Biochem. 114: 1–6, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
Tuberculosis is a massive public health problem on a global scale and the success of Mycobacterium tuberculosis is linked to its ability to persist within humans for long periods without causing any overt disease symptoms. Hypoxia is predicted to be a key host-induced stress limiting growth of the pathogen in vivo . However, multiple studies in vitro and in vivo indicate that M. tuberculosis adapts to oxygen limitation by entering into a metabolically altered state, while awaiting the opportunity to reactivate. Molecular signatures of bacteria adapted to hypoxia in vitro are accumulating, although correlations to human disease are only now being established. Similarly, defining the mechanisms that control this adaptation is an active area of research. In this review we discuss the historical precedents linking hypoxia and latency, and the gathering knowledge of M. tuberculosis hypoxic responses. We also examine the role of these responses in tuberculosis latency, and identify promising avenues for future studies.  相似文献   

10.
Selvaraj S  Sambandam V  Sardar D  Anishetty S 《Gene》2012,506(1):233-241
One of the challenges faced by Mycobacterium tuberculosis (M. tuberculosis) in dormancy is hypoxia. DosR/DevR of M. tuberculosis is a two component dormancy survival response regulator which induces the expression of 48 genes. In this study, we have used DosR regulon proteins of M. tuberculosis H37Rv as the query set and performed a comprehensive homology search against the non-redundant database. Homologs were found in environmental mycobacteria, environmental bacteria and archaebacteria. Analysis of genomic context of DosR regulon revealed that they are distributed as nine blocks in the genome of M. tuberculosis with many transposases and integrases in their vicinity. Further, we classified DosR regulon proteins into eight functional categories. One of the hypothetical proteins Rv1998c could probably be a methylisocitrate lyase or a phosphonomutase. Another hypothetical protein, Rv0572 was found only in mycobacteria. Insights gained in this study can potentially aid in the development of novel therapeutic interventions.  相似文献   

11.
12.
Necrotizing enterocolitis (NEC) is a disease of neonates that is increasing in incidence and often results in significant morbidity and mortality. Carbon monoxide (CO), a byproduct of the catabolism of heme, is known to have anti-inflammatory and antiapoptotic properties. In this study, we aimed to demonstrate that inhaled CO protects against the development of intestinal inflammation in a model of experimental NEC as well as decreases enterocyte cell death in vitro. Additionally, we also aimed to demonstrate that CO decreases enterocyte production of inducible nitric oxide synthase (iNOS) and nitric oxide (NO). Neonatal rats were exposed to intermittent hypoxia exposure and formula feeding to induce experimental NEC. Animals randomized to CO treatment were put in an environment containing 0.025% CO for 1 h/day on days 1-3 of life. All animals were killed on day 4 of life. In vitro experiments were performed with IEC-6 cells, a rat enterocyte cell line. Cells were examined for viability, iNOS production, and elaboration of NO. We found that CO diminished levels of serum inflammatory cytokines and nitrites, protected against intestinal inflammation, and decreased ileal iNOS production and protein nitration in a model of experimental NEC. In vitro, CO decreased cytokine- or hypoxia/endotoxin-induced iNOS and NO production. CO also abrogated TNF-alpha- and actinomycin D-induced apoptosis or hypoxia/endotoxin-induced cell death. In conclusion, 1 h of daily low-dose inhaled CO protected against the development of intestinal inflammation in a model of experimental NEC. iNOS and NO production were decreased by CO both in vivo and in vitro. CO may prove to be a useful clinical adjunct in the treatment of NEC.  相似文献   

13.
Conflicting evidence exists as to whether nitric oxide expresses damaging/inflammatory or antioxidant/anti-inflammatory properties. Data presented in this review indicate that in vitro or in vivo exposure to selected environmental or occupational agents, such as asbestos, silica, ozone or lipopolysaccharide, can result in up-regulation of inducible nitric oxide synthase by alveolar macrophages and pulmonary epithelial cells. In the case of silica exposure, evidence consistently supports a damaging/inflammatory role of nitric oxide and/or peroxynitrite in the pathogenesis of lung disease. Although conflicting data have been reported, the majority of published studies suggest that nitric oxide plays a damaging role in pulmonary injury resulting from exposure to ozone or asbestos. In contrast, most information supports an anti-inflammatory role of nitric oxide following exposure to lipopolysaccharide. Further investigation is required to elucidate fully the mechanisms involved in determining the role of nitric oxide in the initiation and progression of various pulmonary diseases.  相似文献   

14.
15.
16.
17.
Ding J  Li QY  Wang X  Sun CH  Lu CZ  Xiao BG 《Journal of neurochemistry》2010,114(6):1619-1629
Rho kinase (ROCK) may play an important role in regulating biological events of cells, including proliferation, differentiation and survival/death. Blockade of ROCK promotes axonal regeneration and neuron survival in vivo and in vitro, thereby exhibiting potential clinical applications in spinal cord damage and stroke. Our previous studies have demonstrated that Fasudil, a selective ROCK inhibitor, induced neuroprotection in vitro. Here we used an in vivo model of hypoxia/reoxygenation (H/R) injury to examine the neuroprotective effect of Fasudil, and explore its possible mechanism(s) in vivo. H/R resulted in the loss of hippocampal neurons, accompanied by increased apoptosis of neurons in hippocampus. The expression of ROCK II and activity of ROCK in the brain were increased after H/R, and located only in microglia, but not in astrocytes and neurons. The administration of Fasudil inhibited the activity of ROCK in brain tissue and cultured microglia, and protected hippocampal neurons against H/R injury. Further immunohistochemical analysis and cytokine determination revealed that Fasudil inhibited inducible nitric oxide synthase immunoreactivity in microglia and pro-inflammatory factors in brain tissue after H/R, which is consistent with the observation wherein Fasudil reduced the pro-inflammatory factors nitric oxide, IL-1β, IL-6 and TNF-, and increased anti-inflammatory factor IL-10 in cultured microglia under normoxic or hypoxic conditions. Our results indicate that inhibition of ROCK by Fasudil may represent a useful therapeutic perspective by inhibiting microglial inflammatory responses in the CNS.  相似文献   

18.
It is thought that during latent infection, Mycobacterium tuberculosis bacilli are retained within granulomas in a low-oxygen environment. The dormancy survival (Dos) regulon, regulated by the response regulator DosR, appears to be essential for hypoxic survival in M. tuberculosis, but it is not known how the regulon promotes survival. Here we report that mycobacteria, in contrast to enteric bacteria, do not form higher-order structures (e.g. ribosomal dimers) upon entry into stasis. Instead, ribosomes are stabilized in the associated form (70S). Using a strategy incorporating microfluidic, proteomic, and ribosomal profiling techniques to elucidate the fate of mycobacterial ribosomes during hypoxic stasis, we show that the dormancy regulator DosR is required for optimal ribosome stabilization. We present evidence that the majority of this effect is mediated by the DosR-regulated protein MSMEG_3935 (a S30AE domain protein), which is associated with the ribosome under hypoxic conditions. A Δ3935 mutant phenocopies the ΔdosR mutant during hypoxia, and complementation of ΔdosR with the MSMEG_3935 gene leads to complete recovery of dosR mutant phenotypes during hypoxia. We suggest that this protein is named ribosome-associated factor under hypoxia (RafH) and that it is the major factor responsible for DosR-mediated hypoxic survival in mycobacteria.  相似文献   

19.
The DosR regulon and the Enduring Hypoxic Response (EHR) define a group of M. tuberculosis genes that are specifically induced in bacilli exposed in vitro to conditions thought to mimic the environment encountered by Mycobacteria during latent infection. Although well described in humans, latent mycobacterial infection in cattle remains poorly understood. Thus, the aim of this study was to identify antigens that may potentially disclose cattle with latent M. bovis infection. To this end, we initially screened 57 pools of overlapping peptides representing 4 DosR regulon and 29 EHR antigens for their ability to stimulate an immune response in whole blood from TB-reactor cattle using IFN-γ and IL-2 as readouts. All 4 DosR regulon proteins were poorly recognized (maximum responder frequency of 10%). For the EHR antigens, both IFN-γ and IL-2 revealed similar response hierarchies, with responder frequencies ranging from 54% down to 3% depending on the given EHR antigen. Furthermore, these results demonstrated that responses in the infected cattle were largely IFN-γ biased. To support the concept for their role in latency, we evaluated if EHR antigen responses were associated with lower pathology. The EHR antigen Rv0188 was recognised predominantly in animals presenting with low pathology scores, whereas responses to ESAT-6/CFP-10 or the other EHR antigens tested were prevalent across the pathology spectrum. However, when we determined the production of additional cytokines induced by the M. bovis antigens PPD-B or ESAT-6/CFP-10, we detected significantly greater PPD-B-induced production of the pro-inflammatory cytokine IL-1β in animals recognizing Rv0188 (i.e. those with limited or no pathology). Thus, these results are consistent with the idea that responses to Rv0188 may identify a subset of animals at early stages of infection or in which disease progression may be limited.  相似文献   

20.
A significant role for nitric oxide (NO) in proximal tubule physiology and pathophysiology has been revealed by a series of in vivo and in vitro studies. Whether the proximal tubule produces NO under basal conditions is still controversial; however, evidence suggests that the proximal tubule is constantly exposed to NO that might include NO from nonproximal tubule sources. When challenged with a variety of stimuli, including hypoxia, the proximal tubule is able to produce large quantities of NO. In vivo studies generally indicate that NO inhibits fluid and sodium reabsorption by the proximal tubule. However, the final effect of NO on proximal tubular reabsorption appears to depend on the concentration of NO and involve interaction with other regulatory mechanisms. NO regulates Na(+)-K(+)-ATPase, Na(+)/H(+) exchangers, and paracellular permeability of proximal tubular cells, which may contribute to its effect on proximal tubular transport. Enhanced production of NO, perhaps depending on macrophage type inducible NO synthase, participates in hypoxic/ischemic proximal tubular injury. In conclusion, NO plays a fundamental role in both physiology and pathophysiology of the proximal tubule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号