首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
A genomic library for Neisseria gonorrhoeae, constructed in the lambda cloning vector EMBL4, was screened for clones carrying arginine biosynthesis genes by complementation of Escherichia coli mutants. Clones complementing defects in argA, argB, argE, argG, argIF, carA, and carB were isolated. An E. coli defective in the acetylornithine deacetylase gene (argE) was complemented by the ornithine acetyltransferase gene (argJ) from N. gonorrhoeae. This heterologous complementation is reported for the first time. The carAB operon from E. coli hybridized with the gonococcal clones that carried carA or carB genes under conditions of high stringency, detecting 80% or greater similarity and showing that the nucleotide sequence of the carbamoylphosphate synthetase genes is very similar in these two organisms. Under these conditions for hybridization, the gonococcal clones carrying argB or argF genes did not hybridize with plasmids containing the corresponding E. coli gene. Cocomplementation experiments established gene linkage between carA and carB. Clones complementing a gene defect in argE were also able to complement an argA mutation. This suggests that the enzyme ornithine acetyltransferase from N. gonorrhoeae (encoded by argJ) may be able to complement both argA and argE mutations in E. coli. The arginine biosynthesis genes in N. gonorrhoeae appear to be scattered as in members of the family Pseudomonadaceae.  相似文献   

2.
Symbiotic phenotypes of auxotrophic mutants of Rhizobium meliloti 104A14   总被引:3,自引:0,他引:3  
Auxotrophic mutants of Rhizobium meliloti 104A14 were isolated using nitrous acid mutagenesis followed by penicillin enrichment. Mutants in ornithine transcarbamylase, argininosuccinate synthetase or serine-glycine biosynthesis formed nitrogen-fixing (Fix-nodules on the roost of alfalfa (Medicago sativa). Mutants with defects in ornithine, pyrimidine, purine, asparagine, leucine, methionine or tyrosine biosynthesis, in one-carbon metabolism or in carbamoylphosphate synthetase formed nodules but these nodules were unable to fix nitrogen. Prototrophic revertants were always Fix?Plasmids that would complement many of these auxotrophs were isolated by transduction with a P2 cosmid gene bank of R. meliloti 104A14. These plasmids were then introduced into mutants of the same and different classes and the growth and symbiotic phenotypes of the new strains were determined. In all cases, complementation of the nutritional defect restored symbiotic nitrogen fixation.  相似文献   

3.
The genes encoding carbamoylphosphate synthetase from Pseudomonas aeruginosa PAO1 were cloned in Escherichia coli. Deletion and transposition analysis determined the locations of carA, encoding the small subunit, and carB, encoding the large subunit, on the chromosomal insert. The nucleotide sequence of carA and the flanking regions was determined. The derived amino acid sequence for the small subunit of carbamoylphosphate synthetase from P. aeruginosa exhibited 68% homology with its counterparts in E. coli and Salmonella typhimurium. The derived sequences in the three organisms were essentially identical in the three polypeptide segments that are conserved in glutamine amidotransferases but showed low homology at the amino- and carboxy-terminal regions. The amino-terminal amino acid sequences were determined for the large and small subunits. The first 15 amino acids of the large subunit were identical to those derived from the carB sequence. However, comparison of the derived sequence for carA with the amino-terminal amino acid sequence for the small subunit suggested that codons 5 to 8 are not translated. The DNA sequence for the region encompassing these four codons was confirmed by direct sequencing of chromosomal DNA after amplification by the polymerase chain reaction. The mRNA sequence was also deduced by in vitro synthesis of cDNA, enzymatic amplification, and sequencing, confirming that 12 nucleotides in the 5' terminal of carA are transcribed but are not translated.  相似文献   

4.
5.
The genetic locus glt, encoding glutamate synthase from Rhizobium meliloti 1021, was selected from a pLAFR1 clone bank by complementation of the R. meliloti 41 Glt- mutant AK330. A fragment of cloned DNA complementing this mutant also served to complement the Escherichia coli glt null mutant PA340. Complementation studies using these mutants suggested that glutamate synthase expression requires two complementation groups present at this locus. Genomic Southern analysis using a probe of the R. meliloti 1021 glt region showed a close resemblance between R. meliloti 1021, 41, and 102f34 at glt, whereas R. meliloti 104A14 showed many differences in restriction fragment length polymorphism patterns at this locus. R. meliloti 102f34, but not the other strains, showed an additional region with sequence similarity to glt. Insertion alleles containing transposable kanamycin resistance elements were constructed and used to derive Glt- mutants of R. meliloti 1021 and 102f34. These mutants were unable to assimilate ammonia and were Nod+ Fix+ on alfalfa seedlings. The mutants also showed poor or no growth on nitrogen sources such as glutamate, aspartate, arginine, and histidine, which are utilized by the wild-type parental strains. Strains that remained auxotrophic but grew nearly as well as the wild type on these nitrogen sources were readily isolated from populations of glt insertion mutants, indicating that degradation of these amino acids is negatively regulated in R. meliloti as a result of disruptions of glt.  相似文献   

6.
We constructed a genetic map of the fla-che region of the Rhizobium meliloti chromosome using cotransduction with bacteriophage phi M12. Several other chromosomal markers located in the general area are included in the map. We isolated plasmids carrying wild-type DNA inserts that complement the mapped mutations from a genomic library carried in the broad-host-range vector pLAFR1. The complementation data obtained from the clones confirmed the contransduction map and clarified the exact order of several of the behavioral genes. A restriction map of this area was developed by using the cloned DNA. One of the five individual EcoRI fragments subcloned from the original clones complemented two of the behavioral mutations.  相似文献   

7.
The gene encoding Rhizobium meliloti isocitrate dehydrogenase (ICD) was cloned by complementation of an Escherichia coli icd mutant with an R. meliloti genomic library constructed in pUC18. The complementing DNA was located on a 4.4-kb BamHI fragment. It encoded an ICD that had the same mobility as R. meliloti ICD in nondenaturing polyacrylamide gels. In Western immunoblot analysis, antibodies raised against this protein reacted with R. meliloti ICD but not with E. coli ICD. The complementing DNA fragment was mutated with transposon Tn5 and then exchanged for the wild-type allele by recombination by a novel method that employed the Bacillus subtilis levansucrase gene. No ICD activity was found in the two R. meliloti icd::Tn5 mutants isolated, and the mutants were also found to be glutamate auxotrophs. The mutants formed nodules, but they were completely ineffective. Faster-growing pseudorevertants were isolated from cultures of both R. meliloti icd::Tn5 mutants. In addition to lacking all ICD activity, the pseudorevertants also lacked citrate synthase activity. Nodule formation by these mutants was severely affected, and inoculated plants had only callus structures or small spherical structures.  相似文献   

8.
The glutamine synthetase (GS)-glutamate synthase pathway is the primary route used by members of the family Rhizobiaceae to assimilate ammonia. Two forms of glutamine synthetase, GSI and GSII, are found in Rhizobium and Bradyrhizobium species. These are encoded by the glnA and glnII genes, respectively. Starting with a Rhizobium meliloti glnA mutant as the parent strain, we isolated mutants unable to grow on minimal medium with ammonia as the sole nitrogen source. For two auxotrophs that lacked any detectable GS activity, R. meliloti DNA of the mutated region was cloned and partially characterized. Lack of cross-hybridization indicated that the cloned regions were not closely linked to each other or to glnA; they therefore contain two independent genes needed for GSII synthesis or activity. One of the cloned regions was identified as glnII. An R. meliloti glnII mutant and an R. meliloti glnA glnII double mutant were constructed. Both formed effective nodules on alfalfa. This is unlike the B. japonicum-soybean symbiosis, in which at least one of these GS enzymes must be present for nitrogen-fixing nodules to develop. However, the R. meliloti double mutant was not a strict glutamine auxotroph, since it could grow on media that contained glutamate and ammonia, an observation that suggests that a third GS may be active in this species.  相似文献   

9.
Two libraries of cloned E. coli DNA were screened for plasmids which complemented thermosensitive phenylalanyl-tRNA synthetase mutants. Four plasmids were isolated which complemented pheS and pheT thermosensitive mutations but which do not carry pheS or pheT, the structural genes for phenylalanyl-tRNA synthetase. All these plasmids increased the intracellular tRNAPhe concentration. Three plasmids were shown to carry the structural gene for tRNAPhe which we call pheU. By restriction enzyme analysis, DNA blotting and DNA:tRNA hybridization, pheU was localised to a 280 bp fragment within a 5.6 kb PstI restriction fragment of E.coli DNA.  相似文献   

10.
Mutants (car) isolated from Salmonella typhimurium were unable to utilize or ferment the following carbohydrates (all d-configuration): glucose, fructose, mannose, N-acetylglucosamine, sorbitol, mannitol, maltose, melibiose, and glycerol. The mutants did utilize galactose, glucose 6-phosphate, gluconic acid, glucuronic acid, pyruvate, and l-lactate. Biochemical analysis showed that there were two classes of mutants, each lacking one component of a phosphotransferase system. CarA mutants were deficient in enzyme I; carB lacked the phosphate carrier protein, HPr. Mapping experiments showed that the carA gene was located near pro; the carB gene mapped near purC.  相似文献   

11.
Mutants of Rhizobium meliloti have been isolated which are deficient in exopolysaccharide (EPS) production and effective nodulation of alfalfa (J. A. Leigh, E. R. Signer, and G. C. Walker, Proc. Natl. Acad. Sci. USA 82:6231-6235, 1985). We isolated approximately 100 analogous EPS-deficient (Exo) mutants of the closely related plant pathogen Agrobacterium tumefaciens, including strains whose EPS deficiencies were specifically complemented by each of five cloned R. meliloti exo loci. We also cloned A. tumefaciens genes which complemented EPS defects in three of the R. meliloti Exo mutants. In two of these cases, symbiotic defects were also complemented. All of the A. tumefaciens Exo mutants formed normal crown gall tumors on four different plant hosts, except ExoC mutants, which were nontumorigenic and unable to attach to plant cells in vitro. Like their R. meliloti counterparts, A. tumefaciens Exo mutants were deficient in production of succinoglycan, the major acidic EPS species produced by both genera. A. tumefaciens ExoC mutants also produced extremely low levels of another major EPS, cyclic 1,2-beta-D-glucan. This deficiency has been noted previously in a different set of nontumorigenic, attachment-defective A. tumefaciens mutants.  相似文献   

12.
The occurrence in Azospirillum brasilense of genes that code for exopolysaccharide (EPS) synthesis was investigated through complementation studies of Rhizobium meliloti Exo- mutants. These mutants are deficient in the synthesis of the major acidic EPS of Rhizobium species and form empty, non-nitrogen-fixing root nodules on alfalfa (J. A. Leigh, E. R. Signer, and G. C. Walker, Proc. Natl. Acad. Sci. USA 82:6231-6235, 1985). We demonstrated that the exoC mutation of R. meliloti could be corrected for EPS production by several cosmid clones of a clone bank of A. brasilense ATCC 29145. However, the EPS produced differed in structure from the wild-type R. meliloti EPS, and the symbiotic deficiency of the exoC mutation was not reversed by any of these cosmid clones. The exoB mutation could be corrected not only for EPS production but also for the ability to form nitrogen-fixing nodules on alfalfa by one particular cosmid clone of A. brasilense. Tn5 insertions in the cloned DNA were isolated and used to construct Azospirillum mutants with mutations in the corresponding loci by marker exchange. It was found that these mutants failed to produce the wild-type high-molecular-weight EPS, but instead produced EPSs of lower molecular weight.  相似文献   

13.
Xanthomonas campestris produces copious amounts of a complex exopolysaccharide, xanthan gum. Nonmucoid mutants, defective in synthesis of xanthan polysaccharide, were isolated after nitrosoguanidine mutagenesis. To isolate genes essential for xanthan polysaccharide synthesis (xps), a genomic library of X. campestris DNA, partially digested with SalI and ligated into the broad-host-range cloning vector pRK293, was constructed in Escherichia coli. The pooled clone bank was conjugated en masse from E. coli into three nonmucoid mutants by using pRK2013, which provides plasmid transfer functions. Kanamycin-resistant exconjugants were then screened for the ability to form mucoid colonies. Analysis of plasmids from several mucoid exconjugants indicated that overlapping segments of DNA had been cloned. These plasmids were tested for complementation of eight additional nonmucoid mutants. A 22-kilobase (kb) region of DNA was defined physically by restriction enzyme analysis and genetically by ability to restore mucoid phenotype to 10 of the 11 nonmucoid mutants tested. This region was further defined by subcloning and by transposon mutagenesis with mini-Mu(Tetr), with subsequent analysis of genetic complementation of nonmucoid mutants. A region of 13.5 kb of DNA was determined to contain at least five complementation groups. The effect of plasmids containing cloned xps genes on xanthan gum synthesis was evaluated. One plasmid, pCHC3, containing a 12.4-kb insert and at least four linked xanthan biosynthetic genes, increased the production of xanthan gum by 10% and increased the extent of pyruvylation of the xanthan side chains by about 45%. This indicates that a gene affecting pyruvylation of xanthan gum is linked to this cluster of xps genes.  相似文献   

14.
Isolation and characterization of the recA gene of Rhizobium meliloti.   总被引:34,自引:26,他引:8       下载免费PDF全文
Interspecific complementation of an Escherichia coli recA mutant with plasmids containing a gene bank of Rhizobium meliloti DNA was used to identify a clone which contains the recA gene of R. meliloti. The R. meliloti recA protein can function in recombination and in response to DNA damage when expressed in an E. coli recA host, and hybridization studies have shown that DNA sequence homology exists between the recA gene of E. coli and that of R. meliloti. The isolated R. meliloti recA DNA was used to construct a recA R. meliloti, and this bacterium was not deficient in its ability to carry out symbiotic nitrogen fixation.  相似文献   

15.
The nitrogen-fixing, symbiotic bacterium Sinorhizobium meliloti reduces molecular dinitrogen to ammonia in a specific symbiotic context, supporting the nitrogen requirements of various forage legumes, including alfalfa. Determining the DNA sequence of the S. meliloti genome was an important step in plant-microbe interaction research, adding to the considerable information already available about this bacterium by suggesting possible functions for many of the >6,200 annotated open reading frames (ORFs). However, the predictive power of bioinformatic analysis is limited, and putting the role of these genes into a biological context will require more definitive functional approaches. We present here a strategy for genetic analysis of S. meliloti on a genomic scale and report the successful implementation of the first step of this strategy by constructing a set of plasmids representing 100% of the 6,317 annotated ORFs cloned into a mobilizable plasmid by using efficient PCR and recombination protocols. By using integrase recombination to insert these ORFs into other plasmids in vitro or in vivo (B. L. House et al., Appl. Environ. Microbiol. 70:2806-2815, 2004), this ORFeome can be used to generate various specialized genetic materials for functional analysis of S. meliloti, such as operon fusions, mutants, and protein expression plasmids. The strategy can be generalized to many other genome projects, and the S. meliloti clones should be useful for investigators wanting an accessible source of cloned genes encoding specific enzymes.  相似文献   

16.
Zhou Z  Metcalf AE  Lovatt CJ  Hyman BC 《Gene》2000,243(1-2):105-114
Given the central role of carbamoylphosphate synthetases in pyrimidine and arginine metabolism in all living organisms, the absence of fundamental information regarding plant CPSase genes is a striking omission [Lawson et al., Mol. Biol. Evol. 13 (1996) 970-977; van den Hoff et al., J. Mol. Evol. 41 (1995) 813-832]. Whereas CPSase gene architecture and aa sequence have proven to be useful characters in establishing ancient and modern genetic affinities, phylogenetic analysis cannot be completed without the inclusion of plant CPSases. We describe the first isolation by molecular cloning of a plant CPSase gene (CPAII) derived from alfalfa (Medicago sativa). DNA sequence analysis reveals a proteobacterial architecture, namely closely linked carA and carB coding domains separated by a short intergenic region, and transcribed as a polycistronic mRNA. CPAII encodes the amino acid residues that typify a CPSase type II enzyme. In addition, an ancient internal duplication has been retained in the plant carB sequence. Partial nucleotide sequencing of additional clones reveals that the alfalfa genome contains multiple CPSase II gene copies which may be tissue-specific in their expression. It appears that with respect to CPSase genes, CPAII resembles the carAB gene of bacteria, and may have preserved much of this ancient gene structure in the alfalfa genome.  相似文献   

17.
An effective shotgun cloning procedure was developed for Bacillus megaterium by amplifying gene libraries in Bacillus subtilis. This technique was useful in isolating at least 11 genes from B. megaterium which are involved with cobalamin (vitamin B12) biosynthesis. Amplified plasmid banks were transformed into protoplasts of both a series of Cob mutants blocked before the biosynthesis of cobinamide and Cbl mutants blocked in the conversion of cobinamide into cobalamin. Amplification of gene libraries overcame the cloning barriers inherent in the relatively low protoplast transformation frequency of B. megaterium. A family of plasmids was isolated by complementation of seven different Cob and Cbl mutants. Each plasmid capable of complementing a Cob or Cbl mutant was transformed into each one of the series of Cob and Cbl mutants; many of the plasmids isolated by complementation of one mutation carried genetic activity for complementation of other mutations. By these criteria, four different complementation groups were resolved. At least six genes involved in the biosynthesis of cobinamide are carried on a fragment of DNA approximately 2.7 kilobase pairs in length; other genes involved in the biosynthesis of cobinamide were located in two other complementation groups. The physical and genetic data permitted an ordering of genes within several of the complementation groups. The presence of complementing plasmids in mutants blocked in cobalamin synthesis resulted in restoration of cobalamin biosynthesis.  相似文献   

18.
19.
Halomonas eurihalina is a moderately halophilic bacterium which produces exopolysaccharides potentially of great use in many fields of industry and ecology. Strain F2-7 of H. eurihalina synthesizes an anionic exopolysaccharide known as polymer V2-7, which not only has emulsifying activity but also becomes viscous under acidic conditions, and therefore we consider it worthwhile making a detailed study of the genetics of this strain. By insertional mutagenesis using the mini-Tn 5 Km2 transposon we isolated and characterized a mutant strain, S36 K, which requires both arginine and uracil for growth and does not excrete EPS. S36 K carries a mutation within the carB gene that encodes the synthesis of the large subunit of the carbamoylphosphate synthetase enzyme, which in turn catalyzes the synthesis of carbamoylphosphate, an important precursor of arginine and pyrimidines. We describe here the cloning and characterization of the carAB genes, which encode carbamoylphosphate synthetase in Halomonas eurihalina, and discuss this enzyme's possible role in the pathways for the synthesis of exopolysaccharides in strain F2-7.  相似文献   

20.
用鸟枪法从3株紫云英根瘤菌107菌株的胞外多糖合成缺陷变种(Exo-)NA-05、NA-07和NA-08中克隆获得含有107菌株exo基因及Tn5的exo::Tn5片段。以pRK415为载体构建107菌株EcoRI酶切后DNA片段的部分基因库,用exo::Tn5做探针原位杂交得到一个阳性克隆。该克隆的外源片段4.2kb能恢复3个变种的多糖表型及结瘤固氮能力。酶切分析和Southern杂交表明,3株变种中Tn5插入位点相近。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号