首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The synaptology of neurotensin (NT)-, somatostatin (SS)- and vasoactive intestinal polypeptide (VIP)-immunoreactive neurons was studied in the central nucleus of the rat amygdala (CNA). Three types of axon terminals formed synaptic contacts with peptide-immunoreactive neurons in the CNA: Type A terminals containing many round or oval vesicles; Type B terminals containing many pleomorphic vesicles; and Type C terminals containing fewer, pleomorphic vesicles. Peptide-immunoreactive terminals were type A. All three types of terminals formed symmetrical axosomatic and asymmetrical axodendritic contacts. However, type B and peptide-immunoreactive terminals frequently formed symmetrical axodendritic synaptic contacts. VIP-immunoreactive terminals also formed asymmetrical axodendritic contacts. SS- and NT-immunoreactive terminals commonly formed symmetrical contacts on SS- and NT-immunoreactive cell bodies, respectively. VIP-immunoreactive axon terminals were postsynaptic to nonreactive terminals. Type B terminals appeared more frequently on VIP neurons than on NT or SS neurons.  相似文献   

2.
Summary Several types of terminals were found in the three superficial collicular layers of Galago. At least two axon terminals with round vesicles (R1 and R2) could be distinguished on the basis of vesicle packing and electron density of the cytoplasmic and mitochondrial matrices. R1 axon terminals were characterized by aggregations of vesicles in an electron lucent cytoplasm and mitochondria with a relatively dark matrix, while in R2 axon terminals the vesicles were more evenly distributed in an electron dense cytoplasm and the mitochondrial matrix was pale. R2 endings occurred in clusters in the stratum griseum superficiale; they were absent in the stratum zonale. R1 endings were found in all three superficial collicular layers. Both types of R terminals made asymmetrical contacts with small dendrites, dendritic spines and F profiles. Profiles containing flattened vesicles and establishing symmetrical contacts were numerous, and many could be identified as dendrites by accepting as criteria for dendrites evenly spaced microtubules, clusters of ribosomes and the fact that these F profiles were postsynaptic to other terminals. F terminals were presynaptic to other F profiles, dendrites and somata; they were postsynaptic to R terminals and took part in serial synapses. Dendrodendritic contacts were frequent, somatodendritic contacts rare. After eye enucleation most R2 axon terminals underwent the electron dense degenerative reaction. The degeneration process was a lengthy one; many degenerating boutons were found 30 days after axotomy and some persisted up to 180 days postoperatively. There was strong indication that the superior colliculus received more crossed than uncrossed retinofugal fibers. The crossed and uncrossed retinocollicular axons terminated in two different substrata of the stratum griseum superficiale.This study was supported by N.I.H. Grant RR-00165 to Yerkes Regional Primate Research Center and N.I.H Grant EY 00638-03 to J. Tigges. — The opportunity to use the electron microscopic facilities of the Fernbank Science Center for the initial stage of this work is gratefully acknowledged.  相似文献   

3.
Nigrothalamic neurons were identified in the reticular part of thesubstantia nigra using labelling by the retrograde axonal transport of horseradish peroxidase. Nine parameters of the synaptic contacts (n=195) were analyzed, including the size and shape of terminals and size and type of synaptic vesicies. Sixty-six percent of axon terminals studied formed symmetric contacts and contained large polymorphic vesicles (group I). Two-thirds of these synapses were located on the distal dendrites, while one-third was distributed on the perikarya and proximal dendrites. Synapses of group II (29% of all synapses analyzed) exhibited asymmetric contacts and contained round agranular vesicles. Among these synapses, 79% were located on the distal dendrites, 19% were located on the proximal dendrites, and only 2% were located on the neuronal perikarya. Axon terminals of group III (5% of total population) exhibited symmetric contact and contained small polymorphic vesicles. High-resolution immunogold EM histochemistry indicated that 63% of the group-I axon terminals were GABA-positive. The majority of synapses on the labelled nigrothalamic neurons (21 contacts of 25) belonged to group I. Among these 21 synapses, 19 were axo-somatic and mostly GABA-positive. Within group II, 30% of synapses showed slightly expressed GABA-positivity.Neirofiziologiya/Neurophysiology, Vol. 27, No. 2, pp. 147–157, March–April, 1995.  相似文献   

4.
Nigrothalamic neurons were identified into thesubstantia nigra by their retrograde labelling with horseradish peroxidase. Axon terminals that contain glutamate (the excitatory transmitter) were revealed immunocytochemically with an immunogold electron microscopic technique. Ultrastructural parameters (the large and small diameters of axon terminals, area of their profiles, coefficient of form of profiles, large and small diameters of synaptic vesicles) were analyzed in all 240 synapses under study. Synaptic contacts localized on both nigrothalamic and unidentified neurons belonged to three morphologically specific groups. Synapses of the groups I and III, according to classification by Rinvik and Grofova, were characterized by a symmetric type of synaptic contact and contained polymorphic synaptic vesicles. Contacts in group-II synapses were asymmetric, and respective terminals contained round vesicles. Among the studied synapses, 65.8% were classified as group-I contacts, 25.0% belonged to group II, and 9.2% belonged to group III. Glutamate-positive axon terminals formed predominantly group-II synapses; such connections constituted 70% of this group's synapses. Sixty percent of glutamate-positive synapses were localized on the distal dendrites and 23% on the proximal dendrites, while 17% of such synapses were distributed on the somata of nigral neurons. Such a pattern of distribution of glutamate-positive synapses was observed on both nigrothalamic and unidentified nigral neurons. About 7% of glutamate-positive synapses were formed by very large axon terminals containing round synaptic vesicles; yet, the contacts of these terminals were of a symmetric type. Twenty percent of group-I synapses, i.e., synapses considered inhibitory connections, were found to manifest a weak immune reaction to glutamate.Neirofiziologiya/Neurophysiology, Vol. 28, No. 6, pp. 285–295, November–December, 1996.  相似文献   

5.
The ultrastructure of the nucleus of the basal optic root in an avian species (Columba livia) was investigated. The ectomamillary nucleus (EMN) in which terminates the basal optic tract reveals three types of neurons: 1) small round neurons bearing a scanty cytoplasm in organelles, 2) medium-sized neurons, spindle-shaped with a dense population of organelles and 3) large multipolar neurons with well developed perikaryal elements. Some of these neurons have their inner plasma-membrane which fuse to make junctional zones alternating between attachment plates and gap junctions. The analysis of the neuropil displays four types of vesicle-containing profiles (VCP), Type I VCP, identified as optic terminals, are numerous (49%), contain round vesicles (500-550 A) and establish Gray type I contacts principally with dendrites. They also participate in serial and triadic arrangements. Type II VCP have lighter hyaloplasm and are less numerous (6,7%). Rounded vesicles (450-500 A) with a clear content synapse also with Gray type I active zones on dendrites. Some of these profiles have the peculiarity of both a chemical and electrical transmission known as mixed synapses. Type III VCP are larger and contain a mixed population of rounded and flattened vesicles which synapse according to Gray type II. Type IV VCP are characterized by a light hyaloplasm where the microtubules are a predominant organelle. Their active zones are also of Gray type II.  相似文献   

6.
Wang  B.  Gonzalo-Ruiz  A.  Sanz  J.M.  Campbell  G.  Lieberman  A.R. 《Brain Cell Biology》2002,30(5):427-441
The ultrastructural characteristics, distribution and synaptic relationships of identified, glutamate-enriched thalamocortical axon terminals and cell bodies in the retrosplenial granular cortex of adult rats is described and compared with GABA-containing terminals and cell bodies, using postembedding immunogold immunohistochemistry and transmission electron microscopy in animals with injections of cholera toxin- horseradish peroxidase (CT-HRP) into the anterior thalamic nuclei. Anterogradely labelled terminals, identified by semi-crystalline deposits of HRP reaction product, were approximately 1 μm in diameter, contained round, clear synaptic vesicles, and established asymmetric (Gray type I) synaptic contacts with dendritic spines and small dendrites, some containing HRP reaction product, identifying them as dendrites of corticothalamic projection neurons. The highest densities of immunogold particles following glutamate immunostaining were found over such axon terminals and over similar axon terminals devoid of HRP reaction product. In serial sections immunoreacted for GABA, these axon terminals were unlabelled, whereas other axon terminals, establishing symmetric (Gray type II) synapses were heavily labelled. Cell bodies of putative pyramidal neurons, containing retrograde HRP label, were numerous in layers V–VI; some were also present in layers I–III. Most were overlain by high densities of gold particles in glutamate but not in GABA immunoreacted sections. These findings provide evidence that the terminals of projection neurons make synaptic contact with dendrites and dendritic spines in the ipsilateral retrosplenial granular cortex and that their targets include the dendrites of presumptive glutamatergic corticothalamic projection neurons.  相似文献   

7.
Neurotensin immunoreactivity was identified in cell bodies, dendrites, spines, axons, terminals and varicosities in superficial laminae of rat spinal cord with the electron microscope. Unlabeled terminals synapsed with neurotensin-immunoreactive cell bodies, dendrites and spines. Presynaptic terminals contained round or pleomorphic vesicles and generally made symmetrical contacts with medium-sized neurotensin-containing dendrites in outer lamina II, and asymmetrical or symmetrical contacts with large and small dendrites and spines in inner lamina II. Neurotensin immunoreactive axons were unmyelinated, and their terminals were presynaptic to unlabeled dendrites and spines in laminae I and II. Terminals contained small, round, clear vesciles (31 nm) and occasional large granular vesicles (78 nm). Contacts in outer lamina II were evenly distributed among dendrites of various sizes and spines, whereas the majority of labeled terminals in inner lamina II made contacts onto small dendrites and spines. These findings indicate that neurotensin effects in rat spinal cord are mediated by axodendritic synapses, and that neurotensin cells at the inner and outer borders of lamina II contact dendrites of efferent neurons or other interneurons in the dorsal horn.  相似文献   

8.
In order to classify the presynaptic terminals contacting trigeminocerebellar projection neurons (TCPNs) in rat trigeminal nucleus oralis (Vo), electron-microscopic examination of sequential thin sections made from TCPNs located in the border zone (BZ) of Vo, labeled by the retrograde transport of horseradish peroxidase, was undertaken. The use of BZ TCPNs, labeled in Golgi-like fashion so that many of their dendrites and axons were visible, allowed for the determination of the distribution of each bouton type along the soma and dendrites, as well as for the characterization of the morphology and synaptic relations of the labeled axon and its terminals. Three types of axon terminals contacting labeled BZ TCPNs have been recognized, depending upon whether they contain primarily spherical-shaped, agranular synaptic vesicles (S endings); predominantly flattened, agranular synaptic vesicles (F endings); or a population of pleomorphic-shaped, agranular synaptic vesicles (P endings). The S endings represent the majority of axon terminals contacting labeled BZ TCPNs and establish asymmetrical axosomatic and axodendritic synaptic contacts. Many S endings are situated in one of two types of synaptic glomeruli. One type of glomerulus has a large S ending at its core, whereas the other contains a small S ending. Large-S-ending glomeruli include only labeled distal dendrites of BZ TCPNs; small-S-ending glomeruli contain either a labeled soma, proximal dendrite, or distal dendritic shaft. The remaining S endings are extraglomerular, synapsing on distal dendrites. P endings are less frequently encountered and establish intermediate axosomatic and axodendritic synapses. These endings exhibit a generalized distribution along the entire somatodendritic tree. F endings make symmetrical axodendritic synapses with distal dendrites, are only found in glomeruli containing small S endings, and are the least frequently observed ending contacting labeled BZ TCPNs. The majority of axonal endings synapsing on labeled BZ TCPNs are located along distal dendrites, with only a relatively few synapsing terminals situated on proximal dendrites and somata. The axons of labeled BZ TCPNs arise from the cell body and generally give rise to a single short collateral near their points of origin. This collateral remains unbranched and generates several boutons within BZ, while the parent axon acquires a myelin sheath and, without branching further, travels dorsolaterally toward the inferior cerebellar peduncle. The collateral boutons resemble extraglomerular S endings. They contain agranular, spherical-shaped synaptic vesicles and make asymmetrical axodendritic synapses with small-diameter unlabeled dendritic shafts in the BZ neuropil.  相似文献   

9.
Summary A quantitative analysis has been made of the distribution of presynaptic profiles containing round (or spheroidal) and flattened (or ellipsoidal) synaptic vesicles in the apical and basal dendritic zones and in the layer of pyramidal cell somata of fields CA1 and CA3 of the hippocampus, and in the molecular and granular layers of the dentate gyrus of the rat and cat.In the apical and basal dendritic zones of fields CA1 and CA3 the overwhelming majority of the synapses are of the asymmetrical variety, the axon terminals ending principally upon dendritic spines, and to a lesser extent upon the shafts and secondary or tertiary branches of the dendrites. Between 1 and 8% of the axon terminals in these zones contained flattened vesicles: all of these formed symmetrical contacts upon medium-sized or large dendritic shafts. In the molecular layer of the dentate gyrus a slightly higher percentage of flattened vesicle containing profiles was observed (10%); again these formed symmetrical contacts upon dendritic shafts. In the stratum pyramidale of the hippocampal fields and the stratum granulosum of the dentate gyrus of the rat, flattened vesicle containing synapses are two or three times more numerous than those with spheroidal vesicles. In the cat hippocampus the axosomatic synapses are about equally distributed between those containing round, and those with flattened vesicles.The finding that at the focus of post-synaptic inhibition, at the level of the pyramidal cell somata, the majority of the axon terminals contains flattened synaptic vesicles, whereas in the region of termination of the extrinsic, commissural and long association pathways (all of which are excitatory) virtually all the synapses contain round vesicles, strongly supports the view that endings containing flattened vesicles mediate post-synaptic inhibition in the hippocampal formation.Supported in part by Grant EY-00599 from the National Eye Institute.We should like to thank Mr. Paul Myers and Mr. Milburn W. Rhoades for their technical assistance, and Mrs. Doris Stevenson for secretarial help.  相似文献   

10.
Characterization of orexin A immunoreactivity in the rat area postrema   总被引:1,自引:0,他引:1  
The distribution of orexin A immunoreactivity and the synaptic relationships of orexin A-positive neurons in the rat area postrema were studied using both light and electron microscopy techniques. At the light microscope level, numerous orexin A-like immunoreactive fibers were found within the area postrema. Using electron microscopy, immunoreactivity within fibers was confined primarily to the axon terminals, most of which contained dense-cored vesicles. Both axo-somatic and axo-dendritic synapses made by orexin A-like immunoreactive axon terminals were found, with these synapses being both symmetric and asymmetric in form. Orexin A-like immunoreactive axon terminals could be found presynaptic to two different immunonegative profiles including the perikarya and dendrites. Occasionally, some orexin A-like immunoreactive profiles, most likely to be dendrites, could be seen receiving synaptic inputs from immunonegative or immunopositive axon terminals. The present results suggest that the physiological function of orexin A in the area postrema depends on synaptic relationships with other immunopositive and immunonegative neurons, with the action of orexin A mediated via a self-modulation feedback mechanism.  相似文献   

11.
Summary The ultrastructural study of the lateral geniculate nucleus (LGN) of the tree shrew (Tupaia glis) revealed two types of neurons: (1) a large thalamocortical relay cell (TCR), which may bear cilia, and (2) a small Golgi type-II interneuron (IN) with an invaginated nucleus. The narrow rim of pale cytoplasm of the IN contains fewer lysosomes and fewer Nissl bodies than the cytoplasm of the TCR. The IN perikarya, which in some cases establish somatosomatic contacts, frequently contain flattened or pleomorphic synaptic vesicles. The ratio of TCR to IN is 31.Three types of axon terminals were observed in the LGN. Two of them contain round synaptic vesicles but differ in size. The large RL boutons undergo dark degeneration after enucleation; they are the terminals of retino-geniculate fibers. The smaller RS boutons show dark degeneration after ablation of the visual cortex; they are the terminals of the cortico-geniculate fibers. The third type of bouton (F1 does not degenerate after either intervention. The boutons of this type are filled with flattened vesicles and are believed to be intrageniculate terminals. F2-profiles were interpreted as presynaptic dendrites of the IN. The characteristic synaptic glomeruli found in the LGN contain in their center an optic terminal. These optic terminals establish synaptic contacts with dendrites or spine-like dendritic protrusions of TCRs as well as with presynaptic dendrites. Synaptic triads were also seen. The distribution of the individual types of synaptic contacts in layers 3 and 4 was determined. Layer 4 contains only one third of the retino-geniculate synapses and of the synaptic contacts of F1-terminals.  相似文献   

12.
Guan JL  Wang QP  Hori T  Takenoya F  Kageyama H  Shioda S 《Peptides》2004,25(8):1307-1311
The ultrastructural properties of orexin 1-receptor-like immunoreactive (OX1R-LI) neurons in the dorsal horn of the rat spinal cord were examined using light and electron microscopy techniques. At the light microscopy level, the most heavily immunostained OX1R-LI neurons were found in the ventral horn of the spinal cord, while some immunostained profiles, including nerve fibers and small neurons, were also found in the dorsal horn. At the electron microscopy level, OX1R-LI perikarya were identified containing numerous dense-cored vesicles which were more heavily immunostained than any other organelles. Similar vesicles were also found within the axon terminals of the OX1R-LI neurons. The perikarya and dendrites of some of the OX1R-LI neurons could be seen receiving synapses from immunonegative axon terminals. These synapses were found mostly asymmetric in shape. Occasionally, some OX1R-LI axon terminals were found making synapses on dendrites that were OX1R-LI in some cases and immunonegative in others. The synapses made by OX1R-LI axon terminals were found both asymmetric and symmetric in appearance. The results provide solid morphological evidence that OX1R is transported in the dense-cored vesicles from the perikarya to axon terminals and that OX1R-LI neurons in the dorsal horn of the spinal cord have complex synaptic relationships both with other OX1R-LI neurons as well as other neuron types.  相似文献   

13.
S S Tay  W C Wong 《Acta anatomica》1992,144(1):51-58
The present paper describes the long-term ultrastructural changes in the nucleus ventralis posterolateralis of the thalamus of male Wistar rats after alloxan-induced diabetes. Degenerating dendrites were characterized by an electron-dense cytoplasm with scattered endoplasmic reticulum and ribosomes. Degenerating axon terminals were characterized by an electron-dense cytoplasm and clustering of small spherical agranular vesicles. Degenerating axon terminals formed axosomatic synapses with seemingly normal cell bodies and axodendritic synapses with normal as well as degenerating dendrites. Degenerating axons (both myelinated and unmyelinated) were readily encountered in the neuropil. Activated microglial and astrocytic cells in the neuropil were in the process of phagocytosis or had residua in their cytoplasm.  相似文献   

14.
Summary Synaptic junctions are found in all parts of the nucleus, being almost as densely distributed between cell laminae as within these laminae.In addition to the six classical cell laminae, two thin intercalated laminae have been found which lie on each side of lamina 1. These laminae contain small neurons embedded in a zone of small neural processes and many axo-axonal synapses occur there.Three types of axon form synapses in all cell laminae and have been called RLP, RSD and F axons. RLP axons have large terminals which contain loosely packed round synaptic vesicles, RSD axons have small terminals which contain closely packed round vesicles and F axons have terminals intermediate in size containing many flattened vesicles.RLP axons are identified as retinogeniculate fibers. Their terminals are confined to the cell laminae, where they form filamentous contacts upon large dendrites and asymmetrical regular synaptic contacts (with a thin postsynaptic opacity) upon large dendrites and F axons. RSD axons terminate within the cellular laminae and also between them. They form asymmetrical regular synaptic contacts on small dendrites and on F axons. F axons, which also occur throughout the nucleus, form symmetrical regular contacts upon all portions of the geniculate neurons and with other F axons. At axo-axonal junctions the F axon is always postsynaptic.Supported by Grant R 01 NB 06662 from the USPHS and by funds of the Neurological Sciences Group of the Medical Research Council of Canada. Most of the observations were made while R. W. Guillery was a visiting professor in the Department of Physiology at the University of Montreal. We thank the Department of Physiology for their support and Mr. K. Watkins, Mrs. E. Langer and Mrs. B. Yelk for their skillful technical assistance.  相似文献   

15.
Anterior dorsal ventricular ridge (ADVR) is a major subcortical, telencephalic nucleus in snakes. Its structure was studied in Nissl, Golgi, and electron microscopic preparations in several species of snakes. Neurons in ADVR form a homogeneous population. They have large nuclei, scattered cisternae of rough endoplasmic reticulum in their cytoplasm, and bear dendrites from all portions of their somata. The dendrites have a moderate covering of pedunculated spines. Clusters of two to five cells with touching somata can be seen in Nissl, Golgi, and electron microscopic preparations. The area of apposition may contain a series of specialized junctions which resemble gap junctions. Three populations of axons can be identified in rapid Golgi preparations of snake ADVR. Type 1 axons course from the lateral forebrain bundle and bear small varicosities about 1 mu long. Type 2 axons arise from ADVR neurons and bear large varicosities about 5 mu long. The origin of the very thin type 3 axons is not known; they bear small varicosities about 1 mu long. The majority of axon terminals in ADVR are small (1 mu to 2 mu long), contain round synaptic vesicles, and form asymmetric active zones. This type of axon terminates on dendritic spines and shafts and on somata. A small percentage of terminals are large, 5 mu in length, contain round synaptic vesicles, and form asymmetric active zones. This type of axon terminates only on dendritic spines. A small percentage of terminals are small, contain pleomorphic synaptic vesicles, and form symmetric active zones. This type of axon terminates on dendritic shafts and on somata.  相似文献   

16.
Guan, J.-L., Q.-P. Wang and Y. Nakai. Electron microscopic observation of delta-opioid receptor-1 in the rat area postrema. Peptides 18(10) 1623–1628, 1997.—The ultrastructural localization of delta-1-opioid-receptor in the rat area postrema was quantitatively studied by pre-embedding avidin-biotin-peroxidase-complex technique. Most of the immunoreactive profiles (67.4%) observed in the present study were axon terminals, whereas the immunopositive dendrites were less (28.3%). Within the axon terminals, the immunoreactivity was found stronger in the dense-cored vesicles than in the small, clear, and round vesicles. Almost 2/3 of the DOR-1 immunoreactive axon terminals had DAB reacted dense-cored vesicles. About half of the immunopositive axon terminals were found to make synapse to dendrites. The dendrites postsynaptic to DOR-1 immunoreactive axon terminals were identified as DOR-1 immunoreactive or not, mainly according to the immunoreactive appearance of the postsynaptic membrane. About half of the DOR-1 immunoreactive dendrites were observed to receive synapse; most of them have their immunoreactivity results at the postsynaptic membranes.  相似文献   

17.
Summary The noradrenergic terminals in the substantia gelatinosa of the dorsal horn of the cervical spinal cord of the rat were investigated by means of the histofluorescence technique and electron-microscopic cytochemistry using the glyoxylic acid-KMnO4 fixation technique. In accordance with the topographical distribution of fluorescent catecholaminergic fibers, noradrenergic terminals containing small granular vesicles were frequently observed electron microscopically in the outer layer of the substantia gelatinosa. These terminals were most frequently found to appose without showing typical synaptic features, small-caliber dendrites, spine apparatus, and rarely, large caliber dendrites. Only in a few cases, the noradrenergic terminals exhibited typical synaptic contacts with dendritic elements of small size. In addition, noradrenergic terminals apposed non-noradrenergic terminals containing small agranular vesicles. In rats bearing surgical lesions of the dorsal roots, no noradrenergic terminal were found in contact with the degenerated axon terminals in the substantia gelatinosa. These findings suggest that the noradrenergic afferents to the substantia gelatinosa may exert their influence on sensory transmission via dorsal horn cells.  相似文献   

18.
The ultrastructure of the lateral part of laminae VI and VII of the spinal gray matter (the location of most of the terminal branches of the rubrospinal tract) was investigated in cats under normal conditions and at various times after destruction of the red nucleus. The neuron population of this region is formed by cells fairly homogeneous in size (25–40µ). The structure of the dendritic profiles is simple and they carry only infrequent and small membranous appendages. Most synapses are axo-dendritic. The axon terminals are divided into three groups depending on the size and shape of the synaptic vesicles and the presence of post-synaptic specialization. A few glomerular axon terminals contacting with various structures are found. Small axon terminals located chiefly on dendrites and their appendages show degenerative changes 1–8 days after destruction of the red nucleus. As a rule the degenerating terminals contain round synaptic vesicles. The glomerular terminals do not degenerate.A. A. Bogomol'ets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 6, No. 6, pp. 610–618, November–December, 1974.  相似文献   

19.
The octapeptide FLFQPQRF-NH2 or neuropeptide FF ('F8Famide'; FMRFamide-like peptide'; 'morphine-modulating peptide') has been isolated from the bovine brain. In this study, the ultrastructural localization of neuropeptide FF-like immunoreactivity was examined with pre-embedding immuno-electron microscopy in the nucleus of the solitary tract and in the posterior lobe of the pituitary gland of an adult rat. Neuropeptide FF-like immunoreactivity was detected only in neuronal structures of the medial and commissural nuclei of the solitary tract and in the neurohypophysis. In the medulla, the peroxidase-antiperoxidase reaction product was localized in large (100 nm) dense-cored vesicles and in the cytoplasm of the neuronal perikarya, dendrites and axon terminals. In the labeled terminals, small (50 nm) clear vesicles rimmed with the peroxidase-antiperoxidase reaction product were seen. Synaptic contacts of labeled perikarya and dendrites with unlabeled axon terminals were observed. Labeled axon terminals formed contacts with unlabeled dendrites and perikarya. In the posterior lobe of the pituitary gland, neuropeptide FF-like immunoreactivity was localized in nerve terminals frequently associated with blood vessels. The results suggest that neuropeptide FF-like peptides are localized exclusively in neuronal structures and that they are synthesized in cell somata and released from axon terminals. In the brain, neuropeptide FF-like peptides may act as neuromodulators involved in the regulation of autonomic functions. The localization of neuropeptide FF-like immunoreactivity in the neurohypophysis suggests endocrine regulatory functions of these peptides.  相似文献   

20.
The present study describes the structural changes in the gracile nucleus of the spontaneously diabetic BB rat. At 3-7 days post-diabetes, axons, axon terminals and dendrites showed electron-dense degeneration. Degenerating axons were characterized by swollen mitochondria, vacuolation, accumulation of glycogen granules, tubulovesicular elements, neurofilaments and dense lamellar bodies. Degenerating axon terminals consisted of an electron-dense cytoplasm containing swollen mitochondria, vacuoles and clustering of synaptic vesicles. These axon terminals made synaptic contacts with cell somata, dendrites and other axon terminals. Degenerating dendrites were postsynaptic to normal as well as degenerating axon terminals. At 1-3 months post-diabetes, degenerating electron-dense axons, axon terminals and dendrites were widely scattered in the neuropil. Macrophages containing degenerating electron-dense debris were also present. At 6 months post-diabetes, the freshly degenerating neuronal elements encountered were similar to those observed at 3-7 days. However, there were more degenerating profiles at 6 months post-diabetes compared to the earlier time intervals. Terminally degenerating axons were vacuolated and their axoplasm appeared amorphous. It is concluded that degenerative changes occur in the gracile nucleus of the spontaneously diabetic BB rat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号