首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Using an aqueous extraction followed by ultrafiltration through Amicon Diaflo membranes, two ovine pineal fractions were obtained, which contain immunoreactive neurophysin. The presence of neurophysin was monitored by radioimmunoassay, employing an antiserum raised against pituitary bovine neurophysin and selected because it reacts with neurophysins of many other mammals. From 50 g of wet ovine pineal glands 552 micrograms of immunoreactive neurophysins were obtained. About 5% of these immunoreactive neurophysins are eluted from three different Sephadex columns with an elution volume corresponding to Mr above 10,000 between bovine serum albumin and pituitary neurophysin. The remaining 95% of ovine immunoreactive pineal neurophysin (Mr 10,000) shares immunological and physico-chemical properties with highly purified bovine pituitary neurophysin used as a reference. From the results of gel filtration and affinity chromatography on LVP-Sepharose it was concluded that ovine pineal gland may contain a neurophysin precursor molecule in addition to the neurophysin Mr 10,000.  相似文献   

2.
Transplantable human oat cell carcinoma cells of the lung with ectopic vasopressin production were incubated with labeled amino acids and immunoreactive neurophysins in cell extracts were analyzed by isoelectric focusing. When the cells were incubated with L-(35S)-cysteine for 20 h, one major peak (isoelectric point; pI=5.3) and several minor peaks (pI=6.1, 5.7, 5.1, 4.9 and 4.7) of labeled proteins were observed. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the relative molecular mass (Mr) of the pI 5.7 protein was estimated to be 20,000 and that of the pI 6.1 species to be 19,000, while the remainder had a Mr of approximately 10,000. The result of the pulse-labeling experiment has clearly shown that the pI 5.7 and 6.1 proteins, which have affinity for concanavalin A, are biosynthetic precursors for the smaller form of neurophysin with a pI 5.3. When subjected to limited proteolysis with trypsin, the pI 5.7 protein generated a Mr 10,000 protein and a smaller peptide. The Mr 10,000 protein thus produced was identified as neurophysin on the basis of its pH-dependent affinity for vasopressin and the migration pattern on isoelectric focusing. The smaller peptide coeluted with synthetic arginine vasopressin and bound to neurophysin suggesting that it possesses a cysteine-tyrosyl sequence at its N-terminus. Similarly, the pI 6.1 protein liberated neurophysin and vasopressin-like peptide after incubation with trypsin. These results suggests that the glycosylated protein with a pI of 5.7 and a Mr of 20,000 is the common precursor to vasopressin and neurophysin in human oat cell carcinoma of the lung with ectopic vasopressin production. The pI 6.1 protein may be an intermediate in the conversion of the precursor to vasopressin and neurophysin.  相似文献   

3.
Both ion-exchange and reverse-phase HPLC protocols for micromapping of neurophysins have been examined and the structural relationships among the major isoforms identified in the maps have been characterized. Reverse-phase HPLC was found to be especially useful for obtaining fingerprints of the isoforms within each of the two major families of neurophysins, I (oxytocin-related) and II (vasopressin-related), for both bovine and human neurophysins from posterior pituitary sources. From fractionation of the bovine proteins on octylsilyl columns, at least four neurophysins I were identified, one of which corresponds to the intact sequence of 93 residues and three of which vary from the parent by various degrees of carboxyl-terminal truncation. For bovine neurophysin II, two isoforms were identified in the reverse-phase HPLC maps, both of 95 residues, which vary from one another by the residue, either Ile or Val, at position 89. Isoforms were also detected for human neurophysins, including a carboxyl-terminal truncated form of human neurophysin II. All of the major neurophysin isoforms and several of the minor forms were shown to be functionally active as expressed by their binding to peptide ligand affinity matrices. Reverse-phase HPLC mapping on the octylsilyl matrix allowed neurophysin fingerprinting of crude tissue extracts by providing a narrow "window" within which the neurophysins elute but many other polypeptides expected to be present are excluded. The reverse phase HPLC method provides a useful way to obtain isolated neurophysin isoforms for physicochemical characterizations now usually carried out with mixtures of isoforms obtained by ion-exchange chromatography. The method also has characteristics amenable both for high-sensitivity fingerprinting of neurophysin isoforms, from different species and anatomical sources, and as a prelude to microstructural and -functional characterization of the isoforms so isolated.  相似文献   

4.
The isolation of highly purified bovine neurophysins I and II from freshly frozen posterior pituitaries is reported. The method can also be used for the isolation of neurophysins from other species, and acetone-desiccated preparations may serve as starting material as well. Crude posterior pituitary extract was obtained as described by Hollenberg and Hope (1967, Biochem. J., 104, 122–127). Basic and neutral proteins were then separated from the acidic neurophysins by cation-exchange chromatography on Cellex-CM (carboxymethyl). Neurophysin I was separated from neurophysin II by anion-exchange chromatography on DEAE-(diethylaminoethyl)-Sephadex with a continuous sodium chloride gradient (0 to 0.4 m). Highly purified bovine neurophysin I was also secured with a stepwise sodium chloride gradient (0.22 m starting gradient followed by a steep gradient from 0.22 to 0.4 m). The current method yields neurophysin proteins in a higher overall yield than previous procedures, as determined by single radial immunodiffusion and concentration-dependent absorption after disc electrophoresis. The method also gives neurophysins of greater purity than standard procedures currently in use. The proteins are characterized by a single, sharp precipitation band on immunodiffusion and immunoelectrophoretic analysis against antiporcine neurophysin antibody, by single bands on analytical gel disc electrophoresis at a running pH of either 8.8, 5.9, or 4.0. Isoelectric focusing on polyacrylamide gel gave an apparent pI value of 4.31 ± 0.07 for neurophysin I and a value of 4.79 ± 0.11 for neurophysin II. Radioimmunoassay revealed barely detectable levels of adrenocorticotropin-like material in neurophysin I (12 pg/100 μg of neurophysin) and no detectable levels in neurophysin II. Both proteins were devoid of avian vasodepressor activity in the conscious chicken, melanotropic activity in vitro in frog skin, and did not effect electrolyte excretion in hydropenic rats.  相似文献   

5.
Abstract: Neurosecretory granules were obtained from neurolobes of porcine pituitary glands. From the granules, highly purified neurophysins were prepared by HPLC. According to polyacrylamide gel electrophoresis, isoelectric focusing, N- and C-terminal amino acid residue determination, and amino acid composition, the neurophysins I1 I2, and II were identical to the neurophysins obtained from whole posterior lobes. Since degradation could not have occurred, we conclude that neurophysin I1 and I2 originated in the neurosecretory granules.  相似文献   

6.
A lipid-containing neurophysin fraction was isolated and purified from bovine posterior pituitary glands by acid extraction and affinity chromatography on a heparin-Sepharose 4B column. This lipid-rich fraction was found to be composed of noncovalent aggregates of neurophysin proteins and phospholipids such as phosphatidyl choline, phosphatidyl ethanolamine, phosphatidyl serine and sphingomyelin. The lipid-containing neuophysin was delipidated by treatment with choloform-methanol. The resultant apoproteins were characterized as bovine neuroions were developed for the reaggregation of purified bovine neurophysin-I and -II with lipids extracted from bovine posterior pituitary and hypothalamus and with synthetic lecithin. The resultant neurophysin lipid complexes have been shown to band upon isopycnic centrifugation at densities different from those of the respective purified bovine neurophysins.  相似文献   

7.
Summary With the use of immunocytochemistry, it was shown that both the supraoptic and paraventricular hypothalamic nuclei in humans contain at least two different neurophysins. These two human neurophysins are immunologically related to bovine neurophysin I and neurophysin II, respectively. One human neurophysin is associated with vasopressin, the other with oxytocin. Human vasopressin-neurophysin and oxytocin-neurophysin are located separately in two different types of neurons, which correspond respectively to the vasopressinergic and oxytocinergic neurons of both the supraoptic and paraventricular nuclei. The neurophysin of the human vasopressinergic suprachiasmatic neurons appears to be closely related to or identical with neurophysin of the vasopressinergic neurons of the human magnocellular hypothalamic nuclei.This investigation was supported by a grant from the Belgian Nationaal Fonds voor Geneeskundig Wetenschappelijk Onderzoek  相似文献   

8.
In vitro stimulation of intact rat posterior pituitary by either veratridine or K+ depolarization results in the concomitant release of neurophysins and in a decrease (70-80%) in their carboxyl methylation as measured either with L-[methyl-3H]methionine in the intact lobes after stimulation or in their homogenates with [methyl-3H]S-adenosyl-L-methionine and purified protein carboxyl methyltransferase. A similar reduction in neurophysin methylation (60%) was observed when the arrival of newly synthesized neurophysins at the posterior pituitary was blocked by colchicine. Experimental data indicate that the reduction in neurophysin content of the lobes after 12 h of colchicine treatment (less than 7%) or after in vitro stimulation (about 10%) cannot account for the marked reduction in neurophysin methylation. The results suggest that the granule pool characterized by rapid turnover of neurophysins probably represents the major source of methyl acceptor proteins in the lobe. In spite of the marked reduction in neurophysin methyl accepting capacity observed after stimulation, there was no parallel increase in methyl accepting capacity of the released neurophysins. We propose that a neurophysin subfraction that might be associated with the membrane of releasable granules participates in the methylation reaction in situ.  相似文献   

9.
This paper reports the separation of highly cationic proteins (i.e. pI greater than 9.0) of bovine allantoic fluid and their possible pathogenic properties. Experimentally, polycations and cationic proteins of pI greater than 10 induced intravascular coagulation and hemolysis, as well as precipitation of fibrinogen and proteinuria. Bovine allantoic fluid collected at the time of calving contains from 0.6 to 1.3 g of proteins per liter (11 samples). Ion-exchange chromatography, followed by either chromatofocusing or heparin-sepharose-6 beta binding, and, finally, gel filtration separated several fractions and subfractions. These were examined later using polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, and at least ten constituents were visualized. Two components, Mr 34,000, pI 9.7, and Mr 38,000, pI 9.6-9.0, accounted for 33% of the basic proteins present in allantoic fluid and 0.7% of its total protein content. Electrophoretic mobility was unaltered by beta-mercaptoethanol, and periodic acid-Schiff staining was negative. These proteins were not found in ox plasma. The major basic proteins were bound to red cells and platelets. Cell electrophoretic mobility decreased linearly with the logarithm of protein concentration. At concentrations between 10(-6) and 10(-5) M, red cell clumping was rare; hemolysis and platelet agglutination were not observed.  相似文献   

10.
1. Hypothalamic magnocellular neurons synthesize, store, and secrete large quantities of the neuropeptides, vasopressin (VP) and oxytocin (OT), which are synthesized as protein precursors also containing proteins called neurophysins. These protein precursors are sorted through the regulated secretory pathway (RSP), packaged into large dense core vesicles LDCVs, and their peptide products are secreted from nerve terminals in the posterior pituitary.2. It has been hypothesized that this efficient packaging is dependent on the interaction of the peptide with neurophysin in a complex that forms the granule core. To test this, PC12 cells were transfected with vasopressin precursor DNA constructs that either contained or deleted the neurophysin moiety and tagged with enhanced green fluorescent protein (EGFP) as reporters. The intracellular routing and secretion of the EGFP-tagged VP precursor proteins were studied by in differentiated PC12 cells by fluorescence microscopy, electron microscopic immunocytochemistry, and fluorescent imaging techniques.3. The data showed that only when the neurophysin was present in the VP precursor construct did the fluorescent fusion protein become routed to the RSP and get efficiently packaged into LDCVs and secreted. These data are consistent with the view that routing of the precursor to LDCVs requires the amino acids that encode the intravesicular chaperone, neurophysin.  相似文献   

11.
35S-cysteine injected adjacent to the supraoptic nucleus (SON) of the rat is rapidly incorporated into proteins. These 35S-cysteine-labeled proteins in the SON (1-24 h after injection) were separated by polyacrylamide gel electrophoresis, and the distribution of radioactive proteins on the gels was analyzed. 1 h after injection, about 73% of the radioactivity appeared in two peaks (both about 20,000 mol wt). With time, these peaks (putative precursors of neurophysin) decreased, as a 12,000 mol wt peak (containing two distinct neurophysins) increased in radioactivity. Both the 20,000- and 12,000-mol wt proteins are transported into the axonal (median eminence) and nerve terminal (posterior pituitary) regions of the rat hypothalamo-neurohypophysial system. Conversion of the larger precursor protein to the smaller neurophysin appears to occur, in large part, intra-axonally during axonal transport. Six distinct 35S-cysteine-labeled peptides (less than 2500 mol wt), in addition to arginine vasopressin and oxytocin, are also synthesized in the SON and transported to the posterior pituitary where they are released together with labeled neurophysin by potassium depolarization in the presence of extracellular calcium. These data provide support for the hypothesis that the neurohypophysial peptides (vasopressin and oxytocin) and neurophysins are derived from the post- translational clevage of protein precursors synthesized in the SON, and that the conversion process can occur in the neurosecretory granule during axonal transport.  相似文献   

12.
Neurohypophysial hormone-Neurophysin complexes have been prepared from posterior pituitary glands of Artiodactyla (ox, sheep, pig), Perissodactyla (horse) and Cetacea (whale), by fractionated salt precipitation. The components have been separated by molecular sieving in 0.2 M acetic acid and neurophysins have been purified by ion-exchange chromatography on DEAE-Sephadex A-50. Two types of neurophysins, MSEL-neurophysins and VLDV-neurophysins, can be distinguished according to the amino acid residues in positions 2, 3, 6 and 7. MSEL-neurophysins of sheep, ox and pig have been characterized by the amino acid sequence. Ovine and bovine MSEL-neurophysins are nearly identical (one substitution out of 95 residues) and porcine MSEL-neurophysin is very similar (four substitutions and an apparent 3-residue C-terminal deletion). The biological function of neurophysins might be the carriage of neurohypophysial hormones but in this respect, each type of neurophysin is not clearly specific for a given hormone. On the other hand, each neurophysin might share a common precursor with a neurohypophysial hormone, the two parts remaining associated after cleavage. However, in the sheep posterior pituitary gland, the molar proportions of the two types of neurophysins, oxytocin and arginine vasopressin, are not equal, MSEL-neurophysin being more abundant than the other components. If a common precursor exists, neurophysins and neurohypophysial hormones are not merely produced by a simple cleavage mechanism.  相似文献   

13.
1. The electrophoretic properties of rat posterior pituitary proteins have been compared on starch gel with those of bovine and porcine neurophysins. 2. [(35)S]-Cysteine was injected into the supraoptic nucleus of male rats and 16-24h later the distribution of labelled neural-lobe protein in starch and polyacrylamide gels was determined. In both systems a single major protein component was found to contain more than 80% of the total recovered radioactivity. Between 5 and 10% of the radioactivity was found in a minor component in polyacrylamide gel. 3. In agar, microimmuno-diffusion and -electrophoresis of the rat neural-lobe proteins gave a single arc with neurophysin antiserum, and after starch-gel electrophoresis this arc was shown to be due to the major labelled component. 4. The molecular weights of the rat neural-lobe proteins were estimated by polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate. The molecular weight of the major labelled component was found to be 12000. 5. It is concluded that the rat neurophysin consists of one major and possibly one minor component.  相似文献   

14.
The methyl-acceptor activities of bovine neurophysins I and II for the enzyme protein carboxymethylase (EC 2.1.1.24) were found to be similar and as high as for other previously identified, biologically active protein substrates. Effects on the rate of methylation of these neurophysins were investigated with the posterior pituitary hormone ligands, oxytocin and vasopressin, and the hormone-related tripeptide ligand, methionyl-tyrosyl-phenylalaninamide. An increase in the rate of neurophysin II methylation was observed with both oxytocin and tripeptide. This ligand-induced response did not occur with either native neurophysin I or disulfide-scrambled neurophysin II.  相似文献   

15.
The bovine pro-oxytocin precursor consists of the nonapeptide hormone and its neurophysin carrier protein that contains at its C-terminus a rudimentary processing signal, the single basic amino acid residue histidine. An exopeptidase has been isolated from neurosecretory granules of the bovine posterior pituitary that releases the supernumary histidine residue from the pro-hormone precursor. Based on its sensitivity to inhibitors and activators the enzyme has carboxypeptidase B-like properties with a pH optimum between 5.0 and 5.5.  相似文献   

16.
The neurophysins are a class of hypothalamo-neurohypophyseal proteins that function as carriers of the neuropeptide hormones oxytocin and vasopressin. Currently, we are using reverse-phase high-performance liquid chromatography for structural characterization of the neurophysins, their chemically modified derivatives, and biosynthetic precursors. A cyanopropylsilyl (Zorbax CN) matrix has been found to be efficient and convenient for separation of major tryptic peptides of performic acid, oxidized or reduced, and alkylated neurophysins. Using this peptide mapping system we have studied the site of modification of a photoaffinitylabeled derivative of bovine neurophysin II by separation and identification of covalently modified peptides. In addition, this system has been used for mapping subfemtomole amounts of radioactively labeled biosynthetic precursors of the neurophysins. This procedure has allowed identification of neurophysin sequences within both pre-pro-neurophysins produced by in vitro translation and rat pro-neurophysins produced by in vivo pulse labeling.  相似文献   

17.
1. A procedure for the isolation of highly purified neurosecretory granules from the posterior lobe of the bovine pituitary gland is described. The preparation was free from contamination by the mitochondrial enzyme succinate dehydrogenase and the lysosomal enzyme cathepsin. 2. The biological activities of the neurosecretory granules were measured: the oxytocic activity was 11.61+/-1.30units and the pressor activity was 10.73+/-1.74units/mg. of protein. 3. A lysate of the isolated granules was shown to contain two proteins that appear to be identical with two of the constituents of neurophysin. 4. The constituents of neurophysin not present in neurosecretory granules could not be detected in any other subcellular fraction. It is suggested that the components of neurophysin not present in the neurosecretory granules arise as a result of the degradation of the two granular proteins.  相似文献   

18.
The soluble proteins of bovine chromaffin granules can be resolved into about 40 proteins by two-dimensional electrophoresis. Use of several antisera enabled us to characterize most of these proteins with the immune replica technique. An antiserum against dopamine beta-hydroxylase reacted with one protein of Mr 75,000. Met-enkephalin antisera labeled eight proteins of Mr 23,000-14,000. A new method was developed to obtain highly purified chromogranin A for immunization. The antiserum reacted with chromogranin A and several smaller proteins of similar pI. This specific antiserum did not react with a second family of hitherto undescribed proteins, which we propose to call chromogranins B. An antiserum against these proteins was raised. It labeled several proteins ranging in Mr from 100,000 to 24,000 and focusing at pH 5.2. Subcellular fractionation established that chromogranins B are specifically localized in chromaffin granules of several species. They are secreted from the adrenal medulla during cholinergic stimulation. We conclude that apart from dopamine beta-hydroxylase chromaffin granules contain three families of immunologically unrelated proteins.  相似文献   

19.
Isolation of a third bovine neurophysin   总被引:11,自引:8,他引:3       下载免费PDF全文
1. A third native hormone-binding protein, neurophysin-C, has been isolated from acetone-desiccated bovine pituitary posterior lobes. 2. This protein was detected in lysates of neurosecretory granules isolated from bovine pituitary posterior lobes. 3. The molecular weight appears to be close to 10000. 4. Neurophysin-C is similar in amino acid composition to neurophysin-I and -II; it contains a single residue of tyrosine and of methionine. The N-terminal amino acid in all three neurophysins is alanine. 5. Neurophysin-C accounts for approximately 15% of the total hormone-binding protein present in the pituitary posterior lobes. 6. The new neurophysin forms complexes with oxytocin as well as with [8-arginine]-vasopressin. The complex with vasopressin has been crystallized. 7. Bioassay of the pressor and oxytocic activities of the protein-hormone complexes shows that neurophysin-C binds one molecule of either vasopressin or oxytocin.  相似文献   

20.
The incorporation of [35S]sulfate into the soluble proteins of chromaffin granules was studied. Isolated bovine chromaffin cells were pulse-labeled with [35S]sulfate. The radioactively labeled products were characterized by one- and two-dimensional electrophoresis. Three proteins of chromaffin granules were preferentially labeled. One was identified by immunoprecipitation as chromogranin B (Mr 100,000). This result explains why during cellular synthesis the chromogranin B precursor is converted into a significantly more acidic protein. During chase periods, the newly synthesized chromogranin B was progressively degraded by endogenous proteases. A second labeled protein, much less labeled than chromogranin B, was identified as chromogranin A. The largest portion of the radioactive label was found in a heterogeneous component (Mr 86,000-100,000; pI 4.3-5.0). Digestion experiments with chondroitinase ABC demonstrated that this labeled component and a comigrating Coomassie Blue-stained spot were selectively degraded by this enzyme. This establishes that this component is a proteoglycan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号