首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Palynological and sedimentological analyses were performed on Miocene sediments of North-East Tunisia in order to detect the changes in depositional environments, including those linked to eustasy, along with changes in vegetation and climate. The specific integration of palynological (pollen and dinocysts) and sedimentological (including facies analysis) data indicate that shallow marine settings persisted until the early Burdigalian–Langhian, and that open marine environments developed progressively in the late Langhian. Since the early Serravallian, deltaic environments developed under a fluctuating, but predominantly warm climate. The palynological data support a subtropical climate during the Burdigalian, with tropical conditions prevailing at the Langhian–Serravallian transition. The observed high frequency values of megathermic and mega-mesothermic pollen taxa represent the vegetation response to the Miocene climatic optimum (MCO).  相似文献   

2.
The benthonic foraminiferal faunas of twenty sections have been analysed statistically (cluster analysis) and interpreted palaeoecologically. The analysis shows that oxygenation was the most important factor for the distribution of the faunas in the investigated area. The lifting and lowering of the sill to the Atlantic Ocean (Gibraltar sill), in conjunction with climatic changes and sea level fluctuations, led to changes in the current system and to two faunal turnovers at the transition from Langhian to Serravallian (∼15.2–15.0 Ma) and at the end of the Serravallian, respectively (∼11.7–11.4 Ma). The faunas indicate well oxygenated (Langhian), reduced oxygenated (Serravallian) and again well oxygenated (Tortonian) conditions. A simplified circulation model for the western Mediterranean, based on the author's interpretation and additional sources, suggests: (a) an estuarine circulation during the Langhian; (b) a `restricted' anti-estuarine pattern with sluggish circulation until the end of the Serravallian; and (c) an anti-estuarine circulation similar to today's situation during the Tortonian.  相似文献   

3.
Pollen analysis of Miocene and Pliocene sediments from the Iberian Peninsula shows a progressive reduction in plant diversity through time caused by the disappearance of thermophilous and high-water requirement plants. In addition, an increase in warm-temperate (mesothermic), seasonal-adapted “Mediterranean” taxa, high-elevation conifers and herbs (mainly Artemisia) occurred during the Middle and Late Miocene and Pliocene. This has mainly been interpreted as a response of the vegetation to global and regional processes, including climate cooling related to the development of the East Antarctic Ice Sheet and then the onset of the Arctic Ice Sheet, uplift of regional mountains related to the Alpine uplift and the progressive movement of Eurasia towards northern latitudes as a result of the northwards subduction of Africa. The development of steppe-like vegetation in southern Iberia is ancient and probably started during the Oligocene. The onset of a contrasted seasonality in temperature during the Mid-Pliocene superimposed on the pre-existing seasonality in precipitation, the annual length of which increased southward. The Mediterranean climatic rhythm (summer drought) began about 3.4 Ma and caused the individualization of modern Mediterranean ecosystems. Quaternary-type Mediterranean climatic fluctuations started at 2.6 Ma (Gelasian) resulting in repeated steppe vs. forest alternations. A latitudinal climatic gradient between the southern and the northern parts of the Iberian Peninsula existed since the Middle Miocene.  相似文献   

4.
We reconstruct long-term vegetation/paleoclimatic trends, spanning the last 18 million years, in Alaska, Yukon and far western Northwest Territories. Twenty-one average percentage spectra for pollen and spores are assembled from eight surface/subsurface sections. The sections are dated independently or by correlation. Pollen and spore ratios indicate the direction of change in vegetation and climatic parameters — growing season temperature (Test), tree canopy density (Cest) and paludification at study sites (Pest). A global warm peak ca. 15 Ma is shown by the abundance of thermophilous taxa, including Fagus and Quercus. A temperature decline immediately following 15 Ma parallels climatic reconstructions based on marine oxygen isotopes. Subsequent declines correlate to the Messinian event and the onset of late Pliocene-Pleistocene glaciation. After 7 Ma herbs and shrubs become more important elements of the palynological assemblages, suggesting a more continental, colder/drier climate. However, a late Pliocene warm interval is evident. Vegetation/climatic changes during the early to late Miocene show synchrony with, and are most economically attributable to, global events. After 7 Ma, vegetation/climate change is attributed primarily to latest Miocene-to-Pleistocene uplift of the Alaska Range and St. Elias Mts. The continuing influence of global climatic patterns is shown in the late Pliocene warm interval, despite uplift to the south. The opening of the Bering Strait ca. 3 Ma may have moderated the climate in the study area.  相似文献   

5.
The main evolutionary trend in the Mediterranean Miocene toothed whale fauna is related (1) to the change in diversity and (2) to the turnover in community structure. Diversity increases from Upper Aquitanian–Lower Burdigalian to Burdigalian–Langhian, when it reaches its maximum. Starting from this time, diversity decreases progressively. The Early Miocene (Upper Aquitanian–Lower Burdigalian) Mediterranean toothed whale fauna, as well as the extramediterranean ones, is characterised by a high number of endemic taxa and by the prevalence of longirostral forms living in estuarine-neritic environments. A more diversified fauna spreading in neritic and pelagic environments characterises the Burdigalian–Langhian age, while an increase in pelagic forms and the nearly complete disappearance of some archaic longirostral taxa is typical of the Serravallian–Messinian fauna. Decrease in diversity and disappearance of archaic longirostral taxa are also recorded, at more general scale, in the Late Miocene extramediterranean fossil bearing deposits. These events can be related to the progressive global climatic deterioration, starting from Middle Miocene. From a biogeographic point a view, we can outline some relationships between the Mediterranean and western North Atlantic Miocene faunas. Closer affinities are observed between the Baltringen fauna and the northern Atlantic one, because of the presence of the genera Pomatodelphis and Zarhachis (platanistids) in both areas. In the Miocene Mediterranean and in North Atlantic, the delphinids are apparently absent as well as other extant delphinoid groups even if erroneously recorded in the past.  相似文献   

6.
Pollen analytical data from a 23-m core taken in the Jammertal subglacial basin, near Biberach an der Riss, has given a continuous sequence from the Rissian late-glacial to the beginning of the Mid-Würmian. The Eemian interglacial is completely preserved and with a high temporal resolution. Two interstadials, Stafflangen I and II, are recognised in the Lower Würmian. These two woodlands were dominant byPinus andPicea and there was a small but significant (up to 12%) component of thermophilous deciduous tree pollen. Stafflangen I and II are correlated with St. Germain I and II as known from Grande Pile. The north-eastern areal boundary of thermophilous deciduous trees lies between Jammertal and Grande Pile. Furthermore, it was possible for the first time to define and describe altitudinal zonation in Eemian vegetation. During the Eemian, the altitudinal boundary of shade-tolerant deciduous trees (Carpinus, Abies andPicea) lay at ca. 625 m in Upper Swabia and the Swiss Alpine foreland, and at ca. 560 m in Upper Bavaria to the east. The sites, which were dominated byCarpinus occur below this limit whereasAbies orPicea show a preference for habitats at higher altitudes.  相似文献   

7.
Abstract: Eleven randomly chosen outcrops in the Miocene Pakhna Formation of Cyprus were sampled for holoplanktonic Mollusca. Four species of Heteropoda were found, and 24 of Pteropoda, a substantial increase from the two species recorded until now from the Miocene of Cyprus. One pteropod species, Peracle charlotteae sp. nov. (Gastropoda, Pseudothecosomata), is introduced. Age assignments based on holoplanktonic molluscs for the 11 localities are as follows: Langhian (Alassa 1–4), (Serravallian?) Tortonian to Messinian (Episkopi 1), Tortonian (Agios Tychon, Tokhni and the Maroni Marlstone of Khirokitia 1–2) and Tortonian to Early Messinian (Episkopi 2). These age determinations in some cases are at odds with those from previous publications based on calcareous nannofossils and Foraminifera. The sediments underlying the Amathus Channel outcrop yielded insufficient fauna for definitive dating, but we suggest are younger than Late Serravallian. At some localities, particularly in the Alassa area, pteropod assemblages are strongly variable on a bed‐by‐bed basis, and this offers possibilities for future refined biostratigraphical interpretations. This is the first substantial holoplanktonic mollusc fauna described from the eastern Mediterranean basin and allows correlation with assemblages in the central Mediterranean and elsewhere.  相似文献   

8.
An integrated stratigraphic study of a Neogene lacustrine succession on the Pag Island (Croatia), combining quantitative pollen analysis, magnetostratigraphy, cyclostratigraphy, biostratigraphy and gamma-ray measurements, provides new insights into orbitally controlled variations in palaeo-vegetation and depositional patterns in the Dinaride Lake System. The quantitative palynological record shows a cyclical pattern of vegetation changes that closely corresponds to sedimentological patterns. The intervals with a high abundance of thermophilous and xeric indicators, suggesting a warm and dry climate, generally coincide with intervals of frequent lignite deposition and shallow lake facies. This suggests that both records are dominantly controlled by variations in past climatic conditions and lake level. Our data show two large-scale warming and shallowing-upward cycles, which are interpreted to be forced by the ~ 100 kyr eccentricity cycle of the Earth's orbit. Magnetostratigraphic data of the examined section reveal a long (113 m) reversed polarity interval, followed by a 7 m thick interval of normal polarity at the top. The inferred depositional rate of ~ 0.3 mm/yr, combined with biostratigraphic constraints by mollusks, suggests that the most logical correlation of the reversed interval is to chron C5Cr. This indicates that the Pag succession was deposited between 17.1 and 16.7 Ma and that it corresponds to the Burdigalian Stage of the Early Miocene, and the regional Karpatian Stage of the Central Paratethys. The high relative percentage of thermophilous pollen taxa, Engelhardia and Taxodium-type being the most prominent, generally indicates a subtropical humid climate for the SW Croatian part of the Dinaride Lake System. The observed warming trend is possibly related to the onset of the Miocene Climatic Optimum.  相似文献   

9.
Pollen analysis of a Lower Miocene succession from the Rubielos de Mora Basin (NE Spain) has been carried out with the aim of reconstructing the flora, vegetation and climatic changes. Previous paleobotanical studies on these sedimentary rocks and adjacent areas interpreted very diverse climates for the Early Miocene: from humid temperate to dry subtropical. In this study, a rich thermophilous pollen spectrum and a diverse subarid flora including Nitraria, Caesalpiniaceae, Ephedra and Acacia, indicative of a dry subtropical climate are identified. On the other hand, mesothermic taxa with high water requirements are also abundant. Therefore, the pollen assemblages evidence the juxtaposition of very contrasted environments: the presence of subdesertic taxa, typical of plants growing in the lowlands and conditioned by a long warm, dry season, together with others with very high water requirements, needing constant water. This can be explained by the presence of the Rubielos de Mora Lake providing local conditions for developing riparian forests. The vegetation was clearly controlled by the water availability under a subtropical and dry-seasonal climate. Pollen changes along the succession, which coincide with sedimentological changes, are related to climatic variations. Alternation in pollen taxa (thermophilous–dry vs. mesothermic–riparian) reflects the influence of the cyclicity of temperature and precipitation on the lake level and vegetation.  相似文献   

10.
Aim To use pollen data, numerical analysis and modelling to reconstruct late Quaternary vegetation and climate in a complex, mountainous environment. Location Georgia (Caucasus region). Methods Pollen data were assembled from various sources and used to map: (1) changing frequencies of individual taxa; (2) vegetation changes; and (3) reconstructed climatic parameters for the past 14,000 years. Numerical analyses were performed using two‐way indicator species analysis (twinspan ), detrended correspondence analysis (DCA), the modern analogue technique (MAT) and weighted averaging (WA). Results Mapping of pollen taxa showed that Chenopodiaceae, Artemisia and Ephedra were most abundant in the study area during the late‐glacial. Betula and Corylus expanded during the early Holocene, yielding to Abies, Carpinus, Fagus, Quercus and Castanea. Picea, Pinus, Juglans and Ostrya‐type expanded during the late Holocene. Mixed forests grew in the moist, Black Sea refugium throughout the late Quaternary. Elsewhere in Georgia, the Pleistocene–Holocene transition is recorded as a shift from desert‐steppes to oak‐xerophyte communities and mixed forests. This kind of vegetation remained relatively stable until the mid–late Holocene, when coniferous forests and mountain grasslands advanced. DCA showed that rainfall was most strongly correlated with pollen composition in the study area (r2 = 0.55). No temperature signal was detected. A weighted‐averaging transfer function linking pollen percentages to annual precipitation was selected over a MAT model as it performed better when applied to a validation data set. Rainfall reconstructions indicate widespread aridity at the terminal Pleistocene, followed by a gradual increase in precipitation, peaking during the mid Holocene (7000–4000 cal. yr bp ) and generally decreasing thereafter. Main conclusions On a regional scale, the results confirm those from previous studies of palaeovegetation and palaeoclimate in Western Asia. On a local scale, reconstructions from individual sites often diverge from the regional trend because of edaphic changes, ecological succession, human impacts and other disturbances. Some of these factors are probably responsible for the increasing heterogeneity of Georgia’s vegetation in the latter half of the Holocene.  相似文献   

11.
Aim To test whether the radiation of the extremely rich Cape flora is correlated with marine‐driven climate change. Location Middle to Late Miocene in the south‐east Atlantic and the Benguela Upwelling System (BUS) off the west coast of South Africa. Methods We studied the palynology of the thoroughly dated Middle to Late Miocene sediments of Ocean Drilling Program (ODP) Site 1085 retrieved from the Atlantic off the mouth of the Orange River. Both marine upwelling and terrestrial input are recorded at this site, which allows a direct correlation between changes in the terrestrial flora and the marine BUS in the south‐east Atlantic. Results Pollen types from plants of tropical affinity disappeared, and those from the Cape flora gradually increased, between 10 and 6 Ma. Our data corroborate the inferred dating of the diversification in Aizoaceae c. 8 Ma. Main conclusions Inferred vegetation changes for the Late Miocene south‐western African coast are the disappearance of Podocarpus‐dominated Afromontane forests, and a change in the vegetation of the coastal plain from tropical grassland and thicket to semi‐arid succulent vegetation. These changes are indicative of an increased summer drought, and are in step with the development of the southern BUS. They pre‐date the Pliocene uplift of the East African escarpment, suggesting that this did not play a role in stimulating vegetation change. Some Fynbos elements were present throughout the recorded period (from 11 Ma), suggesting that at least some elements of this vegetation were already in place during the onset of the BUS. This is consistent with a marine‐driven climate change in south‐western Africa triggering substantial radiation in the terrestrial flora, especially in the Aizoaceae.  相似文献   

12.
Aim Beringia, far north‐eastern Siberia and north‐western North America, was largely unglaciated during the Pleistocene. Although this region has long been considered an ice‐age refugium for arctic herbs and shrubs, little is known about its role as a refugium for boreal trees and shrubs during the last glacial maximum (LGM, c. 28,000–15,000 calibrated years before present). We examine mapped patterns of pollen percentages to infer whether six boreal tree and shrub taxa (Populus, Larix, Picea, Pinus, Betula, Alnus/Duschekia) survived the harsh glacial conditions within Beringia. Methods Extensive networks of pollen records have the potential to reveal distinctive temporal–spatial patterns that discriminate between local‐ and long‐distance sources of pollen. We assembled pollen records for 149 lake, peat and alluvial sites from the Palaeoenvironmental Arctic Sciences database, plotting pollen percentages at 1000‐year time intervals from 21,000 to 6000 calibrated years before present. Pollen percentages are interpreted with an understanding of modern pollen representation and potential sources of long‐distance pollen during the glacial maximum. Inferences from pollen data are supplemented by published radiocarbon dates of identified macrofossils, where available. Results Pollen maps for individual taxa show unique temporal‐spatial patterns, but the data for each taxon argue more strongly for survival within Beringia than for immigration from outside regions. The first increase of Populus pollen percentages in the western Brooks Ranges is evidence that Populus trees survived the LGM in central Beringia. Both pollen and macrofossil evidence support Larix survival in western Beringia (WB), but data for Larix in eastern Beringia (EB) are unclear. Given the similar distances of WB and EB to glacial‐age boreal forests in temperate latitudes of Asia and North America, the widespread presence of Picea pollen in EB and Pinus pollen in WB indicates that Picea and Pinus survived within these respective regions. Betula pollen is broadly distributed but highly variable in glacial‐maximum samples, suggesting that Betula trees or shrubs survived in restricted populations throughout Beringia. Alnus/Duschekia percentages show complex patterns, but generally support a glacial refugium in WB. Main conclusions Our interpretations have several implications, including: (1) the rapid post‐glacial migration rate reported for Picea in western Canada may be over estimated, (2) the expansion of trees and shrubs within Beringia should have been nearly contemporaneous with climatic change, (3) boreal trees and shrubs are capable of surviving long periods in relatively small populations (at the lower limit of detection in pollen data) and (4) long‐distance migration may not have been the predominant mode of vegetation response to climatic change in Beringia.  相似文献   

13.
The northern slopes of central Tianshan Mountains in Xinjiang, northwestern China can provide an ideal database to research palaeoclimate as disturbance by human impact is relatively low and the vegetation zones reflect climatic gradients. In order to establish the correlation between modern climatic factors and surface pollen assemblages and to reconstruct palaeoclimate on the northern slope of central Tianshan Mountains, three Holocene sections in Daxigou, Huashuwozi and Sichanghu located at different elevations and vegetation zones were chosen for study. A total of 80 surface pollen samples in 86 vegetation quadrats were collected for pollen‐vegetation relationship analysis. The Warmth Index (WI) and Moisture Index (MI) were calculated based on averaged modern climate data during 1951 – 2000 at eight weather stations in the study area. Pollen percentages of Picea, Artemisia, Chenopodiaceae, Ephedra, and Tamarix, as well as A/C (Artemisia/Chenopodiaceae) and AP/NAP (arboreal/nonarboreal pollen) ratio were selected as pollen variables and WI and MI were chosen as climatic variables. The relationship between pollen percentages (Picea, Artemisia, Chenopodiaceae and Tamarix), A/C, AP/NAP ratio, WI and MI values were estimated (95% confidence interval) using stepwise multiple linear regression analysis. WI and MI values for the three sections were calculated using these regression equations, and palaeoclimate for the study area could be reconstructed. The results showed periods of both cool‐humid and warm‐dry conditions on the northern slopes of Tianshan Mountain during the late Holocene.  相似文献   

14.
We describe a new palaeobotanical site at Bubano quarry on the easternmost Po plain, northern Italy. Pollen and macrofossils from river and marsh sediments demonstrate the occurrence of Picea in a Pinus sylvestris forest growing in a radius of some tens of kilometres south of the sedimentation place, at the beginning of the Late-glacial interstadial. The Late-glacial and Holocene history of Picea in the northern Apennines is reconstructed on the basis of the palaeobotanical record. The sharp climatic continentality increase eastwards across the northern Apennines from the Tyrrhenian to the Adriatic coast is considered significant for the survival of Picea during the Late-glacial. The most critical phase of survival is related to the moisture changes and consequent Abies competition associated with the last glacial-interglacial transition and the early Holocene. The residual spruce populations expanded during the middle Holocene. The history of Picea in the northern Apennines is a case of ineffective interglacial spread of tree populations from pre-existing stands of LGM (Last Glacial Maximum) and Late-glacial age.  相似文献   

15.
The late Miocene is a crucial interval for global climate evolution as well as for the regional geodynamic evolution of the Central Mediterranean area. It spans the transition from the warm Mid Miocene Climatic Optimum, associated with the major Monterey Carbon Isotope Excursion, to the cooler Pliocene, characterized by a bipolar glaciation. Within this climatic transition, during the early Tortonian, a positive carbon isotope excursion related to a global carbon cycle perturbation is recorded, named Carbon Maximum 7 (CM7). In this study, two upper Serravallian–lower Tortonian carbonate ramps of the Central Mediterranean have been analysed: the Latium‐Abruzzi and the Apula ramps (Central Apennines, Central Italy). Carbon isotope ratios have been coupled with facies and microfacies analyses with the aims: (1) to identify the CM7 in the Central Mediterranean carbonate ramp successions; (2) to evaluate potential carbonate factory changes or demises related to the CM7; and (3) to discriminate the role of global vs regional factors in affecting the Mediterranean carbonate ramps. The two studied ramps show different evolutions due to regional geodynamics causes. The Latium‐Abruzzi ramp drowns in the Tortonian, while the Apula shows a regressive trend, with upper Tortonian middle ramp facies overlying the lower Tortonian outer ramp. Despite the complex geodynamic setting, a positive carbon isotope shift has been identified in both ramps and correlated with the CM7. This positive carbon isotope shift may be linked to the strengthening of the global ocean circulation during the late Miocene cooling. This strengthening of the circulation enhanced the coastal upwelling, bringing nutrient‐rich waters to the surface and triggering an enhanced primary productivity consistent with the CM7.  相似文献   

16.
The use of rocky palaeoshore bioerosion analysis as a tool to solve stratigraphic and tectonic issues is beginning to bear fruits. The occurrence of an extensive intra-Miocene marine abrasion platform in southern Portugal at Oura (Albufeira) has been identified on the basis of bioerosion trace fossils analysis. The observed ichnodiversity is rather low, with bivalve boring Gastrochaenolites being dominant. Nevertheless, the ichnoassemblage may be assigned to the Entobia ichnofacies. The palaeoichnological study of the Oura hardground confirmed the existence of an important intra-Miocene stratigraphic gap (ca. 3 Ma hiatus), represented by a razor-sharp erosional contact that separates the two main Neogene units in the Algarvian region: the lower carbonate sequence of Lagos–Portimão Formation (Langhian/Serravallian) and the upper siliciclastic sequence of the Cacela Formation (Upper Tortonian).  相似文献   

17.
Pollen analyses of sediment cores from two small lakes within the boreal forest in the central Scandes Mountains help to elucidate the Holocene forest dynamics of the region. Analyses of pore/pollen grain diameter ratios of Alnus grains indicate the early Holocene presence of Alnus glutinosa in the study area. The results are discussed in conjunction with available pollen records to evaluate the importance of thermophilous trees during the early Holocene and to deduce the regional spread of Picea abies. Corylus avellana, Alnus glutinosa and Ulmus glabra were probably common constituents of the early Holocene forest. Tilia cordata may have occurred there as a rare tree. Pollen stratigraphies from the region do not indicate the occurrence of Quercus robur. The regional spread of Picea abies can be separated into two phases: a mid-Holocene establishment or first expansion of small outpost populations and a late-Holocene population expansion. The mid-Holocene shift in vegetation composition may have been caused by changes in the westerly airflow.  相似文献   

18.
A palynological study was carried out on four Italian Miocene‐Pliocene sections ranging in age from uppermost Tortonian to Zanclean located on the Adriatic side of the North‐Central Apennines. The study documents the Mediterranean isolation, the salinity crisis (s.s), the “lago‐mare”; event and the re‐establishment of open‐marine conditions in the Mediterranean at the beginning of the Pliocene. From a climatic point of view, a transition from subtropical/warm‐temperate conditions during the Messinian to warm‐temperate/temperate conditions during the Zanclean is recorded. The presence of a lower thermic level, with respect to the Messinian, the re‐establishment of open‐marine conditions and the uplift of the Apennines were major factors controlling paleoenvironmental variations during the Zanclean. The latter is also characterized by cyclic temperature oscillations. Correlations with coeval sections in the Mediterranean area confirm the existence of latitudinal climatic gradients within the studied area.  相似文献   

19.
Brandano, M. & Policicchio, G. 2011: Strontium stratigraphy of the Burdigalian transgression in the Western Mediterranean. Lethaia, Vol. 45, pp. 315–328. A 87Sr/86Sr analysis of selected pectinid shells has been performed to refine the stratigraphical framework of the Burdigalian transgressive event. Samples were collected from shallow water successions of the Western Mediterranean area (North‐Eastern Sardinia, Southern Corsica, Central Apennines). The Western Mediterranean is the result of the interaction between the European and the African plates. Sardinia and Corsica were extended and rifted apart from the Iberian Peninsula during the opening of the Liguro‐Provencal basin, between 30 and 15 Ma. In the outcrops of Northern Sardinia and Southern Corsica, Burdigalian deposits nonconformably overlie Varisican granites. In the central Apennines the Burdigalian deposits paraconformably overlie the Cretaceous platform. These are transgressive deposits, characterized by the presence of Miogypsina globulina, which points out early to middle Burdigalian age. The Sr isotope ages indicate that marine transgression in Northern Sardina and Southern Corsica took place between 18.6 and 18.3 Ma, which could correspond to the eustatic sea level rise of the Bur3 third‐order sequence. In the Central Apennines the Burdigalian transgression was anticipated (18.8 Ma) by subsidence input linked to the eastward migration of the orogenic system. This input allowed the Miocene carbonate ramp to develop on the Cretaceous platform substrate, while successive eustatic rise controlled the evolution of the stratigraphical architecture. The following regressive phase is recorded in both the Apennine and Corsica successions. The end of this phase is dated between 17.6 and 17.5 Ma and corresponds to sea level drop corresponding to the occurrence of the Mi 1b event. □Burdigalian, pectinids, strontium stratigraphy, transgression, Western Mediterranean  相似文献   

20.
Pollen analysis was conducted on the fluviolacustrine sediments from the east side of the Liupan Mountains, a relatively monsoon-sensitive region, and provided for the first time a continuous evolutionary history of vegetation and climate in East China during the Neogene. The pollen record spanning the last 20 Ma indicates that the vegetation and thus East-Asian summer monsoon evolution can be divided into three stages: 20.13–14.25 Ma, 14.25–11.35 Ma and 11.35–0.08 Ma, in spite of general dominance of steppe throughout the Neogene. During the period 20.13–14.25 Ma, the pollen assemblage was characterized by high abundance of Artemisia and small amounts of temperate to subtropical deciduous broad-leafed trees such as Juglans, Carya, Quercus and Betula, suggesting that the East-Asian summer monsoon was generally strong. The interval from 14.25 to 11.35 Ma was marked by a significant decline in the East-Asian summer monsoon, as indicated by Artemisia gradually replaced by Humulus and halophytic Chenopodiaceae. Nitraria and Ephedra also reached high values in this period. Since 11.35 Ma ago, percentages of halophytes dominated by Chenopodiaceae and Tamaricaceae maintained a high mean value of about 40%, revealing a weak intensity of East-Asian summer monsoon. The general weakening of the monsoon circulation during the Neogene and the significant monsoon decline during the late Middle Miocene in particular might link with the global cooling trend probably through two mechanisms. Cooling and ice-sheet expansion over the polar region caused an increase in meridional temperature gradients leading to the southward retreat of the monsoon circulation. The global cooling may have also reduced the amount of water vapor held in the atmosphere, and led to both additional cooling and further weakening of the East-Asian summer monsoon. The cause for a short-lived resumption during the period 1.0–0.8 Ma is under investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号