首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1. The location of the bivalent metal cation with respect to bound competitive inhibitors in Escherichia coli (lacZ) beta-galactosidase was investigated by proton magnetic resonance. 2. Replacement of Mg(2+) by Mn(2+) enhances both longitudinal and transverse relaxation of the methyl groups of the beta-d-galactopyranosyltrimethylammonium ion, and of methyl 1-thio-beta-d-galactopyranoside; linewidths are narrowed by increasing temperature. 3. The Mn(2+) ion is located 8-9A (0.8-0.9nm) from the centroid of the trimethylammonium group and 9A (0.9nm) from the average position of the methylthio protons. 4. The effective charge at the active site was probed by measurement of competitive inhibition constants (K(i) (o) and K(i) (+) respectively) for the isosteric ligands, beta-d-galactopyranosylbenzene and the beta-d-galactopyranosylpyridinium ion. 5. The ratio of inhibition constants (Q=K(i) (+)/K(i) (o)) obtained with 2-(beta-d-galactopyranosyl)-naphthalene and the beta-d-galactopyranosylisoquinolinium ion at pH7 with Mg(2+)-enzyme was identical, within experimental error, with that obtained with the monocyclic compounds. 6. The variation of Q for Mg(2+)-enzyme can be described by Q=0.1(1+[H(+)]/4.17x10(-10))/1+[H(+)]/10(-8)). 7. This, in the theoretical form for a single ionizable group, is ascribed to the ionization of the phenolic hydroxy group of tyrosine-501. 8. The variation of Q for Mg(2+)-free enzyme is complex, probably because of deprotonation of the groups normally attached to Mg(2+) as well as tyrosine-501.  相似文献   

2.
Wong KY  Gao J 《The FEBS journal》2011,278(14):2579-2595
Molecular dynamics simulations employing a combined quantum mechanical and molecular mechanical potential have been carried out to elucidate the reaction mechanism of the hydrolysis of a cyclic nucleotide cAMP substrate by phosphodiesterase 4B (PDE4B). PDE4B is a member of the PDE superfamily of enzymes that play crucial roles in cellular signal transduction. We have determined a two-dimensional potential of mean force (PMF) for the coupled phosphoryl bond cleavage and proton transfer through a general acid catalysis mechanism in PDE4B. The results indicate that the ring-opening process takes place through an S(N)2 reaction mechanism, followed by a proton transfer to stabilize the leaving group. The computed free energy of activation for the PDE4B-catalyzed cAMP hydrolysis is about 13 kcal·mol(-1) and an overall reaction free energy is about -17 kcal·mol(-1), both in accord with experimental results. In comparison with the uncatalyzed reaction in water, the enzyme PDE4B provides a strong stabilization of the transition state, lowering the free energy barrier by 14 kcal·mol(-1). We found that the proton transfer from the general acid residue His234 to the O3' oxyanion of the ribosyl leaving group lags behind the nucleophilic attack, resulting in a shallow minimum on the free energy surface. A key contributing factor to transition state stabilization is the elongation of the distance between the divalent metal ions Zn(2+) and Mg(2+) in the active site as the reaction proceeds from the Michaelis complex to the transition state.  相似文献   

3.
We have developed two methods for quantitatively measuring inorganic pyrophosphate (PPi) in the presence of 10(3)--10(4) molar excesses of inorganic phosphate (Pi) and used them to measure the extent of enzyme-bound pyrophosphate (EPPi) formation in solutions of yeast inorganic pyrophosphatase and Pi. We have also measured the rate of enzyme-catalyzed H2O--phosphate oxygen exchange. We find both processes to have essentially identical dependence on Mg2+ and Pi concentrations, thus providing important confirmation for the recent proposal by Janson et al. (1979) that oxygen exchange proceeds via EPPi formation. Our results are consistent with a model in which three Mg2+ per active site are required for EPPi formation but inconsistent with a model requiring only two Mg2+ per active site and permit the formulation of an overall scheme for inorganic pyrophosphatase catalysis of PPi--Pi equilibration as well as the evaluation of equilibrium and rate constants in this scheme. The major results and conclusions of our work are the following: (a) the equilibrium constant for PPi (enzyme-bound) in equilibrium with 2Pi (enzyme-bound) is 4.8; (b) following PPi hydrolysis, the first released Pi contains an oxygen from solvent water; (c) the steps for PPi hydrolysis on the enzyme and for release of both product Pi's are all partially rate determining in overall enzyme-catalyzed PPi hydrolysis; (d) PPi formation on the enzyme is rate determining for H2O--Pi oxygen exchange; (e) PPi dissociation from the enzyme is very slow and is the rate-determining step in Pi--PPi exchange (Cohn, 1958; Janson et al., 1979). This also accounts for the observation that the calculated dissociation constant for MgPPi complex binding to enzyme is considerably lower than the measured Km for enzyme-catalyzed MgPPi hydrolysis.  相似文献   

4.
Kinetics of inactivation of dipeptidyl peptidase IV (DP IV, EC 3.4.14.5) by N-peptidyl-O-(4-nitrobenzoyl) hydroxylamines and their enzyme-catalyzed hydrolysis were followed using independent monitoring methods, all giving similar efficiency ratios of Kcat/Kinact. Different temperature dependences of the DP IV-inactivation and enzyme-catalyzed hydrolysis provide evidence of independent rate determining steps for both reactions. Activation parameters of inactivation are similar to those of spontaneous decomposition of the compounds, suggesting a mechanistic relationship. Investigation of DP IV-inactivation, DP IV-catalyzed hydrolysis of N-Ala-Pro-O-Bz(4-NO2) and the decomposition of the suicide substrate in H2O and D2O gave solvent isotope effects of 4.65, 2.54 and 1.02, respectively. A proton inventory of the inactivation reaction indicates involvement of more than one proton in the formation or breakdown of its transition state. The linear proton inventory found for the hydrolytic reaction is consistent with one proton transition in the rate determining step and resembles the rate limiting deacylation of Ala-Pro-DP IV. The hypothetical reaction model now locates splitting in both reactions prior to formation of a covalent intermediate during the catalytic cycle.  相似文献   

5.
The enzymatic properties of an ecto-5'-nucleotidase were described in Trichomonas vaginalis. The enzyme hydrolyzes nucleoside monophosphates in optimum pH values of 7.5 and 6.5 for the 30236 strain and for the 30238 strain, respectively. Mg(2+) and Ca(2+) were activators of AMP hydrolysis in both strains. The apparent K(m) (Michaelis constant) values for Mg(2+)-AMP were 111.4+/-28.1 microM (mean+/-SD, n=3) for 30236 strain and 420.2+/-35.7 microM (mean+/-SD, n=3) for 30238 strain. The ecto-5'-nucleotidase activity was insensitive to levamisole and tetramisole, inhibitors of alkaline phosphatases, whereas alpha,beta-methylene-ADP inhibited the enzymatic activity of both strains. Our results showed that the AMP hydrolysis presents differences in some kinetic parameters between the two strains investigated. An analysis of the enzymatic chain involved in the ATP hydrolysis to adenosine will contribute to understanding the biochemical aspects of the parasite and the mechanisms related to host-parasite interactions.  相似文献   

6.
Kovaleva TA 《Biofizika》2000,45(3):439-444
It was shown that covalent immobilization of 1.4-alpha-glucanohydrolase (glucoamylase) and 2.1-beta-D-fructanfructanohydrolase (inulase) on ionites leads to an increase in the activation energy Eact of hydrolysis of polysaccharides and a change in entalphy delta H as compared with native enzymes. During binding to the matrix, multipoint interactions of polypeptide chains with active groups take place, which are accompanied by an increase in the Michaelis constant KM, a decrease in the maximum rate of hydrolysis Vmax, and a substantial decrease in the constant of conformational transition L0. It was also shown that the kinetics of the hydrolysis of starch and inulin upon immobilization of glucoamylase and inulase on ionites does not correspond to the Michaelis-Menten equiation and is characterized by a shift of equilibrium from state R to state T.  相似文献   

7.
To delineate further the pathway of pepsin-catalysed reactions, three types of experiments were performed: (a) the enzyme-catalysed hydrolysis of a number of di- and tri-peptide substrates was studied with a view to observing the rate-determining breakdown of a common intermediate; (b) the interaction of pepsin with several possible substrates for which ;burst' kinetics might be expected was investigated; (c) attempts were made to trap a possible acyl-enzyme intermediate with [(14)C]methanol in both a hydrolytic reaction (with N-acetyl-l-phenylalanyl-l-phenylalanylglycine) and in a ;virtual' reaction (with N-acetyl-l-phenylalanine) under conditions where extensive hydrolysis or (18)O exchange is known to occur. It is concluded that (i) intermediates in pepsin-catalysed reactions (aside from the Michaelis complex) occur subsequently to the rate-determining transition state, and (ii) an acyl-enzyme intermediate, if such is formed, cannot be trapped with [(14)C]methanol in these systems.  相似文献   

8.
Fang X  Pan T  Sosnick TR 《Biochemistry》1999,38(51):16840-16846
The folding thermodynamics of the catalytic domain from the Bacillus subtilis RNase P RNA is analyzed using circular dichroism and fluorescence spectroscopies, hydroxyl radical protection, and catalytic activity. Folding of this 255-nucleotide ribozyme can be described with three populated species: unfolded (U), intermediate (I), and native (N) states. The U-to-I transition primarily involves secondary structure formation, whereas the I-to-N transition is dominated by tertiary structure formation. The I-to-N transition is highly cooperative as indicated by the coincidence of the four probes applied here. Two isothermal methods are used to determine the stability of the N state relative to the I state at 10 and 37 degrees C. The first method measures the extent of Mg(2+)-induced folding without urea or at constant urea concentrations. The second method measures the extent of urea-induced unfolding at constant Mg(2+) concentrations. Via application of a cooperative binding analysis, the Mg(2+) transition midpoint (K(Mg)), the Hill constant (n), and the urea-dependent surface burial parameter (m value) determined by both methods are identical, indicating that they report the same, reversible folding event. Three conclusions can be drawn from these results. (i) The folding free energy of a Mg(2+)-dependent tertiary RNA structure can be described by the K(Mg) and n parameters according to a cooperative Mg(2+) binding model. (ii) The Hill constant for this tertiary RNA structure probably represents the differential number of Mg(2+) ions bound in the I-to-N transition. (iii) Under physiological conditions, the stability of this large ribozyme is similar to that of small globular proteins.  相似文献   

9.
Leucine aminopeptidase in extracts of swine muscle   总被引:4,自引:1,他引:3       下载免费PDF全文
1. Leucine aminopeptidase (EC 3.4.1.1) has been demonstrated in swine muscle at a level of activity one-fifth that of the swine kidney. 2. The enzyme has been purified 110-fold by precipitation with ammonium sulphate, heat treatment and chromatography on Sephadex G-100. 3. The enzyme is heat-stable, but is rapidly inactivated below pH7. It requires Mg(2+) or Mn(2+) for activity. The Michaelis constant for leucine amide with Mg(2+)-activated enzyme is 5.0x10(-3)m. 4. Muscle leucine aminopeptidase is very similar to the kidney enzyme.  相似文献   

10.
The kinetic alpha-deuterium isotope effect on Vmax/Km for hydrolysis of NMN catalyzed by AMP nucleosidase at saturating concentrations of the allosteric activator MgATP2- is kH/kD = 1.155 +/- 0.012. This value is close to that reported previously for the nonenzymatic hydrolysis of nucleosides of related structure, suggesting that the full intrinsic isotope effect for enzymatic NMN hydrolysis is expressed under these conditions; that is, bond-changing reactions are largely or completely rate-determining and the transition state has marked oxocarbonium ion character. The kinetic alpha-deuterium isotope effect for this reaction is unchanged when deuterium oxide replaces water as solvent, corroborating this conclusion. Furthermore, this isotope effect is independent of pH over the range 6.95-9.25, for which values of Vmax/Km change by a factor of 90, suggesting that the isotope-sensitive and pH-sensitive steps for AMP-nucleosidase-catalyzed NMN hydrolysis are the same. Values of kH/kD for AMP nucleosidase-catalyzed hydrolysis of NMN decrease with decreasing saturation of enzyme with MgATP2- and reach unity when the enzyme is less than half-saturated with this activator. This requires that the rate-determining step changes from cleavage of the covalent C-N bond to one which is isotope-independent. In contrast to the case for NMN hydrolysis, AMP nucleosidase-catalyzed hydrolysis of AMP at saturating concentrations of MgATP2- shows a kinetic alpha-deuterium isotope effect of unity. Thus, covalent bond-changing reactions are largely or completely rate-determining for hydrolysis of a poor substrate, NMN, but make little or no contribution to rate-determining step for hydrolysis of a good substrate, AMP, by maximally activated enzyme. This behavior has several precedents.  相似文献   

11.
Huang K  Arabshahi A  Wei Y  Frey PA 《Biochemistry》2004,43(23):7637-7642
The human fragile histidine triad protein Fhit catalyzes the Mg(2+)-dependent hydrolysis of P(1)-5'-O-adenosine-P(3)-5'-O-adenosine triphosphate, Ap(3)A, to AMP and ADP. The reaction is thought to follow a two-step mechanism, in which the complex of Ap(3)A and Mg(2+) reacts in the first step with His96 of the enzyme to form a covalent Fhit-AMP intermediate and release MgADP. In the second step, the intermediate Fhit-AMP undergoes hydrolysis to AMP and Fhit. The mechanism is inspired by the chain-fold similarities of Fhit to galactose-1-phosphate uridylyltransferase, which functions by an analogous mechanism, and the observation of overall retention in configuration at phosphorus in the action of Fhit (Abend, A., Garrison, P. N., Barnes, L. D., and Frey, P. A. (1999) Biochemistry 38, 3668-3676). Direct evidence in support of this mechanism is reported herein. Reaction of Fhit with [8,8'-(3)H]-Ap(3)A and denaturation of the enzyme in the steady state leads to protein-bound tritium corresponding to 11% of the active sites. Similar experiments with the poor substrate MgATP leads to 0.9% labeling. The mutated protein H96G-Fhit is completely inactive against MgAp(3)A. However, it is chemically rescued by free histidine. H96G-Fhit also catalyzes the hydrolysis of adenosine-5'-phosphoimidazolide, AMP-Im, and of adenosine-5'-phospho-N-methylimidazolide, AMP-N-MeIm. The hydrolyses of AMP-Im and of AMP-N-MeIm by H96G-Fhit are thought to represent chemical rescue of the covalent Fhit-AMP intermediate. Wild-type Fhit is also found to catalyze the hydrolyses of AMP-Im and of AMP-N-MeIm nearly as efficiently as the hydrolysis of MgAp(3)A. The results indicate that Mg(2+) in the reaction of Ap(3)A is required for the first step, the formation of the covalent intermediate Fhit-AMP, and not for the hydrolysis of the intermediate in the second step.  相似文献   

12.
The beta-galactosidase activity in extracts of Trichomonas foetus is separable into two fractions by gel filtration on Sephadex G-200. When o-nitrophenyl beta-d-galactoside is used as substrate the first fraction to be eluted, beta-galactosidase 1, has 50 times the activity (units per mg of protein) of the crude preparation. This fraction is activated by Mn(2+) and Co(2+) and inhibited by Hg(2+) and EDTA. In the presence of Mn(2+) the pH optimum for the hydrolysis of o-nitrophenyl beta-d-galactoside or lactose is 5.8-6.0. beta-Galactosidase 1 is an exoglycosidase that releases beta-linked galactose joined to aliphatic and various carbohydrate aglycones. Hydrolysis is prevented, however, by a substituent on either the subterminal sugar or the terminal non-reducing beta-galactosyl residue in an oligosaccharide. The second fraction, beta-galactosidase 2, is not activated by metal ions or inhibited by EDTA and has a broad pH optimum from 4.5 to 6.0.  相似文献   

13.
The Mg(2+)-dependent adenylylation of the T4 DNA and RNA ligases was studied in the absence of a DNA substrate using transient optical absorbance and fluorescence spectroscopy. The concentrations of Mg(2+), ATP, and pyrophosphate were systematically varied, and the results led to the conclusion that the nucleotidyl transfer proceeds according to a two-metal ion mechanism. According to this mechanism, only the di-magnesium-coordinated form Mg(2)ATP(0) reacts with the enzyme forming the covalent complex E.AMP. The reverse reaction (ATP synthesis) occurs between the mono-magnesium-coordinated pyrophosphate form MgP(2)O(7)(2-) and the enzyme.MgAMP complex. The nucleotide binding rate decreases in the sequence ATP(4-) > MgATP(2-) > Mg(2)ATP(0), indicating that the formation of the non-covalent enzyme.nucleotide complex is driven by electrostatic interactions. T4 DNA ligase shows notably higher rates of ATP binding and of subsequent adenylylation compared with RNA ligase, in part because it decreases the K(d) of Mg(2+) for the enzyme-bound Mg(2)ATP(0) more than 10-fold. To elucidate the role of Mg(2+) in the nucleotidyl transfer catalyzed by T4 DNA and RNA ligases, we propose a transition state configuration, in which the catalytic Mg(2+) ion coordinates to both reacting nucleophiles: the lysyl moiety of the enzyme that forms the phosphoramidate bond and the alpha-beta-bridging oxygen of ATP.  相似文献   

14.
B J Chen  A I Yuan  D Wang  R D Feinman 《Biochemistry》1990,29(13):3361-3365
The kinetics of reaction of alpha 2-macroglobulin (alpha 2M) with thrombin and with trypsin were studied in the presence and absence of methylamine. The rate of enzyme-induced thiol release was found to be the same whether or not amine was present. The result suggests that covalent bond formation and enzyme-catalyzed amine incorporation proceed via a common (enzyme-dependent) rate-determining step. The reaction of lysyl-modified enzymes (which show poor covalent binding with alpha 2M) was similarly unaffected by amine, indicating that enzyme-catalyzed steps were also rate determining for hydrolysis of the thiol ester. The products of the reactions were analyzed by native and denaturing gel electrophoresis. Methylamine did not affect the total binding of enzyme to alpha 2M but did cause a substantial decrease in covalent binding. Surprisingly, not all covalent complexes were affected by the presence of amine: complexes in which enzyme was covalently bound to one half-molecule increased compared to the reaction with no amine; complexes in which two half-molecules are cross-linked by two bonds to a single enzyme were substantially reduced, however. The results are consistent with a mechanism of reaction in which an enzyme-dependent step is rate determining. This step is accompanied by activation of two thiol esters. One of these reacts immediately with the bound enzyme (or may be hydrolyzed if the enzyme amine groups are blocked). The other activated center is capable of reaction with external nucleophiles such as methylamine.  相似文献   

15.
1. Removal of Mg2+ from Escherichia coli (lacZ) beta-galactosidase slightly increases the rate of hydrolysis of galactosyl pyridinium salts, but decreases the rate of hydrolysis of arylgalactosides. 2. Fair correlation of logkcat. and log (Km) with the pKa of aglycone is now observed for arglygalactosides, as well as for glycosyl pyridinium salts. 3. Degalactosylation of Mg2+-free enzyme is the rate-limiting step in the hydrolysis of 2,4-dinitrophenyl galactoside. 4. alpha-Deuterium kinetic isotope effects for both sets of substrates are consistent with the rate-determining generation of a glycosyl cation. 5. The pH-independent, SNl hydrolysis of 3,4-dinitrophenyl galactoside has been measured: it is as fast as that of the galactosyl 3-chloropyridinium ion. 6. Hydrolysis of these two substrates by Mg2+-free enzyme proceeds at very similar rates. 7. It is concluded that loss of both types of aglycone takes place, without acid catalysis, from the first ES complex of substrate and apoenzyme. 8. Data for galactosyl azide and thiopicrate confirm that neither charge nor change of atom is the cause of the differences in behavior between aryl galactosides and galactosylpyridinium salts.  相似文献   

16.
The complete time course of the hydrolysis of p-nitrophenyl phosphate catalyzed by the low molecular weight (acid) phosphotyrosyl protein phosphatase from bovine heart was elucidated and analyzed in detail. Burst titration kinetics were demonstrated for the first time with this class of enzyme. At pH 7.0, 4.5 degrees C, a transient pre-steady-state "burst" of p-nitrophenol was formed with a rate constant of 48 s-1. The burst was effectively stoichiometric and corresponded to a single enzyme active site/molecule. The burst was followed by a slow steady-state turnover of the phosphoenzyme intermediate with a rate constant of 1.2 s-1. Product inhibition studies indicated an ordered uni-bi kinetic scheme for the hydrolysis. Partition experiments conducted for several substrates revealed a constant product ratio. Vmax was constant for these substrates, and the overall rate of hydrolysis was increased greatly in the presence of alcohol acceptors. An enzyme-catalyzed 18O exchange between inorganic phosphate and water was detected and occurred with kcat = 4.47 x 10(-3) s-1 at pH 5.0, 37 degrees C. These results were all consistent with the existence of a phosphoenzyme intermediate in the catalytic pathway and with the breakdown of the intermediate being the rate-limiting step. The true Michaelis binding constant Ks = 6.0 mM, the apparent Km = 0.38 mM, and the rate constants for phosphorylation (k2 = 540 s-1) and dephosphorylation (k3 = 36.5 s-1) were determined under steady-state conditions with p-nitrophenyl phosphate at pH 5.0 and 37 degrees C in the presence of phosphate acceptors. The energies of activation for the enzyme-catalyzed hydrolysis at pH 5.0 and 7.0 were 13.6 and 14.1 kcal/mol, respectively. The activation energy for the enzyme-catalyzed medium 18O exchange between phosphate and water was 20.2 kcal/mol. Using the available equilibrium and rate constants, an energetic diagram was constructed for the enzyme-catalyzed reaction.  相似文献   

17.
A study of the reactions of an NADH model, 1,4-di(trimethylsilyl)-1,4-dihydropyridine, 7, with a series of α,β-unsaturated cyano and carbonyl compounds has produced the first direct evidence for an obligatory covalent adduct between a dihydropyridine and substrate in a reduction reaction. The reactions were monitored by NMR spectroscopy. In all reactions studied, the covalent adduct was the first new species detected and its decomposition to form products could be observed. Concentrations of adducts were sufficiently high at steady-state that their structures could be determined directly from NMR spectra of the reaction mixtures; adduct structures are those expected from an Ene reaction between 7 and the substrate. This first reaction step results in transfer of the C(4) hydrogen nucleus of 7 to the substrate and formation of a covalent bond between C(2) of the dihydropyridine ring and the substrate α-atom. Discovery of these Ene-adduct intermediates completes the spectrum of mechanisms observed in NADH model reactions to span those with free radical intermediates, no detectable intermediates and now covalent intermediates. The geometry of the transition state for formation of the Ene adduct is compared with those of theoretical transition state models and crystal structures of enzyme-substrate/inhibitor complexes to suggest a relative orientation for the dihydropyridine ring and the substrate in an initial cyclic transition state that is flexible enough to accommodate all observed mechanistic outcomes.  相似文献   

18.
A kinetically homogeneous anti-phosphate catalytic antibody preparation was shown to catalyse the hydrolysis of a series of O-aryl N-methyl carbamates containing various substituents in the 4-position of the O-phenyl group. The specific nature of the antibody catalysis was demonstrated by the adherence of these reactions to the Michaelis-Menten equation, the complete inhibition by a hapten analogue, and the failure of the antibody to catalyse the hydrolysis of the 2-nitrophenyl analogue of the 4-nitrophenylcarbamate substrate. Hammett sigma-rho analysis suggests that both the non-catalysed and antibody-catalysed reactions proceed by mechanisms in which development of the aryloxyanion of the leaving group is well advanced in the transition state of the rate-determining step. This is probably the ElcB (elimination-addition) mechanism for the non-catalysed reaction, but for the antibody-catalysed reaction might be either ElcB or B(Ac)2 (addition-elimination), in which the elimination of the aryloxy group from the tetrahedral intermediate has become rate-determining. This result provides evidence of the dominance of recognition of phenolate ion character in the phosphate hapten in the elicitation process, and is discussed in connection with data from the literature that suggest a B(Ac)2 mechanism, with rate-determining formation of the tetrahedral intermediate for the hydrolysis of carbamate substrates catalysed by an antibody elicited by a phosphonamidate hapten in which phenolate anion character is minimized. The present paper contributes to the growing awareness that small differences in the structure of haptens can produce large differences in catalytic characteristics.  相似文献   

19.
Isolated sarcoplasmic reticulum vesicles in the presence of Mg(2+) and absence of Ca(2+) retain significant ATP hydrolytic activity that can be attributed to the Ca(2+)-ATPase protein. At neutral pH and the presence of 5 mM Mg(2+), the dependence of the hydrolysis rate on a linear ATP concentration scale can be fitted by a single hyperbolic function. MgATP hydrolysis is inhibited by either free Mg(2+) or free ATP. The rate of ATP hydrolysis is not perturbed by vanadate, whereas the rate of p-nitrophenyl phosphate hydrolysis is not altered by a nonhydrolyzable ATP analog. ATP binding affinity at neutral pH and in a Ca(2+)-free medium is increased by Mg(2+) but decreased by vanadate when Mg(2+) is present. It is suggested that MgATP hydrolysis in the absence of Ca(2+) requires some optimal adjustment of the enzyme cytoplasmic domains. The Ca(2+)-independent activity is operative at basal levels of cytoplasmic Ca(2+) or when the Ca(2+) binding transition is impeded.  相似文献   

20.
We previously demonstrated by X-ray crystallography and electrospray mass spectrometry that D52E mutant hen lysozyme formed a covalent enzyme-substrate adduct on reaction with N-acetylglucosamine oligomer. This observation indicates that D52E lysozyme may acquire a catalytic pathway via a covalent adduct. To explain this pathway, the formation and hydrolysis reactions of the covalent adduct were investigated. Kinetic analysis indicated that the hydrolysis step was the rate-limiting step, 60-fold slower than the formation reaction. In the formation reaction, the pH dependence was bell-shaped, which was plausibly explained by the functions of the two catalytic pKas of Glu35 and Glu52. On the other hand, the pH dependence in the hydrolysis was sigmoidal with a transition at pH 4. 5, which was identical with the experimentally determined pKa of Glu35 in the covalent adduct, indicating that Glu35 functions as a general base to hydrolyze the adduct. To improve the turnover rate of D52E lysozyme, the mutation of N46D was designed and introduced to D52E lysozyme. This mutation reduced the activation energy in the hydrolysis reaction of the covalent adduct by 1.8 kcal/mol at pH 5.0 and 40 degrees C but did not affect the formation reaction. Our data may provide a useful approach to understanding the precise mechanism of the function of natural glycosidases, which catalyze via a covalent adduct.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号