首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Changes in membrane lipid composition play multiple roles in plant adaptation and survival in the face of chilling and freezing damage. The ultra-performance liquid chromatography/quadrupole-TOF-MS (UPLC/Q-TOF-MS)-based approach was developed for investigating the lipid changes during cold exposure in Stephanodiscus sp. followed by multivariate statistical analysis including principal components analysis, partial least squares discriminant analysis and orthogonal projection on latent structure discriminant analysis for data classification and potential biomarkers selection. The analysis demonstrated dramatic lipid alterations take place in both extraplastidic and plastidic membranes. Thirty-eight lipid molecules were selected and identified as putative biomarkers, including chlorophyll a degradation products, triacylglycerol, phosphatidylcholine, phosphatidylglycerol, sulfo-quinovosyldiacylglycerol, monogalactosyldiacylglyceroll, lyso-phosphatidylglycerol, lyso-phosphatidylcholine, lyso-monogalactosyldiacylglycerol and lyso-sulfoquinovosyldiacylglycerol. These metabolites have been shown previously to function in energy storage, membrane stability and photosynthesis efficiency. This study is the first one using UPLC/Q-TOF-MS-based lipidomic profiling with multivariate statistical analysis to explore the lipidomic changes of microalgae in response to stress conditions, which promotes better understanding of their physiology and ecology.  相似文献   

2.
The snow alga Chlamydomonas nivalis in the exponential phase was subjected to nitrate or phosphate deprivation for 0–72 h to study its stress responses in lipid profiles analyzed by UPLC/Q-TOF-MS (ultra performance liquid chromatography/quadrupole-time of flight-mass spectrometry). Three clusters were distinguished as the control, nitrate-deprived and phosphate-deprived groups in OPLS-DA (orthogonal projection on latent structure discriminant analysis) score plots based on their lipidome data. Altogether, the lipidomic approach identified twenty-two ions in nitrate-deprived group including nine l, 2-diacylglyceryl-3-O-4′-(N, N, N-trimethyl)-homoserine (DGTSs), one phosphatidylethanolamine (PE), two monogalactosyldiacylglycerols (MGDGs), four digalactosyldiacylglycerols (DGDGs), three phosphatidylglycerols (PGs), two sulfoquinovosyl-diacylglycerols (SQDGs) and one phosphatidylinositiol (PI), and nineteen ions in phosphate-deprived group including four DGTSs, one PE, one MGDG, seven DGDGs, three PGs, two SQDGs and one PG as “differentiating lipid biomarkers”. Moreover, the common and specific biomarkers were found in the two nutrient deprived groups by SUS (shared and unique structure) plot. Biomarkers-based z-score plot and heat map further showed how lipid biomarker expressions deviate from the control. The up- or down-regulation of these lipid biomarkers provided new insights into the lipid metabolism of the snow alga in response to nitrate or phosphate deprivation stress condition.  相似文献   

3.
The two morphologically similar microalgae NMBluh014 and NMBluh‐X belong to two different strains of Nannochloropsis oceanica. They possess obviously different feeding effects on bivalves, but are indistinguishable by 18S rRNA and morphological features. In this work, lipidomic analysis followed by principal component analysis and orthogonal projections to latent structures discriminant analysis provided a clear distinction between these strains. Metabolites that definitively contribute to the classification were selected as potential biomarkers. The most important difference in polar lipids were sulfoquinovosyldiacylglycerol (containing 18:1/16:0 and 18:3/16:0) and monogalactosyldiacylglycerol (containing 18:3/16:3 and 20:5/14:0), which were detected only in NMBluh‐X. Additionally, an exhaustive qualitative and quantitative profiling of the neutral lipid triacylglycerol (TAG) in the two strains was carried out. The predominant species of TAG containing 16:1/16:1/16:1 acyl groups was detected only in NMBluh‐X with a content of ~93.67 ± 11.85 nmol · mg?1 dry algae at the onset of stationary phase. Meanwhile, TAG containing 16:0/16:0/16:0 was the main TAG in NMBluh014 with a content of 40.25 ± 3.92 nmol · mg?1. These results provided the most straightforward evidence for differentiating the two species. The metabolomic profiling indicated that NMBluh‐X underwent significant chemical and physiological changes during the growth process, whereas NMBluh014 did not show such noticeable time‐dependent metabolite change. This study is the first using Ultra Performance Liquid Chromatography coupled with Electrospray ionization‐Quadrupole‐Time of Flight Mass Spectrometry (UPLC‐Q‐TOF‐MS) for lipidomic profiling with multivariate statistical analysis to explore lipidomic differences of plesiomorphous microalgae. Our results demonstrate that lipidomic profiling is a valid chemotaxonomic tool in the study of microalgal systematics.  相似文献   

4.
Plant metabolomics is essentially the comprehensive analysis of complex metabolites of plant extracts. Metabolic fingerprinting is an important part of plant metabolomics research. In this study, metabolic fingerprinting of different stages of the life history of the red alga Porphyra haitanensis was performed. The stages included conchocelis filaments, sporangial branchlets, conchosporangia, discharged conchospores and conchosporangial branchlets after conchospore discharge. Metabolite extracts were analysed with ultra‐performance liquid chromatography coupled with electrospray ionisation quadrupole‐time of flight mass spectrometry. Analyses profiles were subjected to principal components analysis and orthogonal projection to latent structures discriminant analysis using the SIMCA‐P software for biomarker selection and identification. Based on the MS/MS spectra and data from the literature, potential biomarkers, mainly of phosphatidylcholine and lysophosphatidylcholine, were identified. Identification of these biomarkers suggested that plasma membrane phospholipids underwent major changes during the life history of Phaitanensis. The levels of phosphatidylcholine and lysophosphatidylcholine increased in sporangial branchlets and decreased in discharged conchospores. Moreover, levels of sphingaine (d18:0) decreased in sporangial branchlets and increased in discharged conchospores, which indicates that membrane lipids were increasingly synthesised as energy storage in sporangial branchlets, while energy was consumed in sporangial branchlets to discharged conchospores. A metabolomic study of different growth phases of Phaitanensis will enhance our understanding of its physiology and ecology.  相似文献   

5.
We determined the effects of various light spectra (white, green, blue, and red) on the growth rate, biochemical composition, and fatty acid content of Tisochrysis lutea (Haptophyta, Isochrysidales) maintained in batch cultures. The growth rate peaked with white and blue light, and the lowest rate was observed with green and red light. The chlorophyll a content differed significantly between light spectra and growth phases—higher values were recorded with blue and red light in both growth phases. The proximal composition varied significantly with growth phases and light spectrum. In the exponential growth phase, protein content was significantly greater with blue light and in the stationary phase with green light. The level of carbohydrates in the exponential growth phase was significantly higher for white light, but unchanged in the stationary growth phase between light spectra. The lipid percentages were similar in the exponential phase but differed significantly in the stationary growth phase. The lipid percentages peaked in the stationary growth phase with red and green light. The highest eicosapentaenoic acid (EPA) levels were seen in white light in the exponential growth phase and under green light in the stationary growth phase. Docosahexaenoic acid (DHA) levels were greatest in the exponential growth phase with red light and in the stationary growth phase with green light. Blue light increased the DHA content in both growth phases. We conclude that T. lutea alters its metabolic pathways and experience shifts in growth rate, proximate composition, and fatty acid content, depending on the type of light used.  相似文献   

6.
This study compared the molecular lipidomic profile of LDL in patients with nondiabetic advanced renal disease and no evidence of CVD to that of age-matched controls, with the hypothesis that it would reveal proatherogenic lipid alterations. LDL was isolated from 10 normocholesterolemic patients with stage 4/5 renal disease and 10 controls, and lipids were analyzed by accurate mass LC/MS. Top-down lipidomics analysis and manual examination of the data identified 352 lipid species, and automated comparative analysis demonstrated alterations in lipid profile in disease. The total lipid and cholesterol content was unchanged, but levels of triacylglycerides and N-acyltaurines were significantly increased, while phosphatidylcholines, plasmenyl ethanolamines, sulfatides, ceramides, and cholesterol sulfate were significantly decreased in chronic kidney disease (CKD) patients. Chemometric analysis of individual lipid species showed very good discrimination of control and disease sample despite the small cohorts and identified individual unsaturated phospholipids and triglycerides mainly responsible for the discrimination. These findings illustrate the point that although the clinical biochemistry parameters may not appear abnormal, there may be important underlying lipidomic changes that contribute to disease pathology. The lipidomic profile of CKD LDL offers potential for new biomarkers and novel insights into lipid metabolism and cardiovascular risk in this disease.  相似文献   

7.
We introduce a rigorously validated protocol based on extraction, derivatisation and GC/MS for the analysis of diatom metabolomes. Using this methodology we characterised general patterns of the metabolism of the diatom Skeletonema marinoi during different growth phases. Canonical analysis of principal coordinate revealed clearly that the intracellular metabolites differ between exponential, stationary and declining phase. In addition, diurnal variation during the exponential phase was observed. A detailed analysis of the metabolic changes is presented and discussed in the context of previous physiological studies of diatoms. The observed variability in metabolites has a significant consequence for further physiological and ecological studies. Investigations have to take into account that diatom metabolism is a highly dynamic process and that food quality, chemical defence and also the production of signal molecules might be dependent on different growth phases or diurnal variations. The introduced protocol is in general suitable for the monitoring of microalgae and has also the potential to be applied to complex plankton communities.  相似文献   

8.

Background

The extracellular proteome or secretome of symbiotic bacteria like Rhizobium etli is presumed to be a key element of their infection strategy and survival. Rhizobia infect the roots of leguminous plants and establish a mutually beneficial symbiosis. To find out the possible role of secreted proteins we analyzed the extracellular proteome of R. etli CE3 in the exponential and stationary growth phases in minimal medium, supplemented with succinate-ammonium.

Results

The extracellular proteins were obtained by phenol extraction and identified by LC-ESI MS/MS. We identified 192 and 191 proteins for the exponential and stationary phases respectively. Using the software Signal P, we predicted signal peptides for 12.95% and 35.60% of the proteins identified in the exponential and stationary phases, respectively, which could therefore be secreted by the Sec pathway. For the exponential growth phase, we found in abundance proteins like the ribosomal proteins, toxins and proteins belonging to the group "defence mechanisms". For the stationary growth phase, we found that the most abundant proteins were those with unknown function, and in many of these we identified characteristic domains of proteases and peptidases.

Conclusions

Our study provided the first dataset of the secretome of R. etli and its modifications, which may lead to novel insights into the adaptive response of different stages of growth. In addition, we found a high number of proteins with unknown function; these proteins could be analyzed in future research to elucidate their role in the extracellular proteome of R. etli.  相似文献   

9.
This study aimed to identify proteins secreted by Mycobacterium bovis into culture medium at different stages of bacterial growth. A field strain of M. bovis was grown in Middlebrook 7H9 media and culture supernatant was collected at three-time points representing three different phases of growth (early exponential, late exponential, and stationary phases). Supernatants were double filtered, digested by trypsin and analyzed by LC-MS/MS. The study found 15, 21, and 16 proteins in early, mid and late growth phases, respectively. In total, 22 proteins were identified, 18 of which were reported or predicted to have a cell wall or extracellular localization. To our knowledge, this is the first study to identify proteins secreted into the culture medium by a field strain of M. bovis in three different stages of growth. The dataset generated here provides candidate proteins with the potential for the development of serological diagnostic reagents or vaccine for bovine tuberculosis. Data are available via ProteomeXchange with identifier PXD017817.  相似文献   

10.
The investigation presented here describes a protocol designed to perform high-throughput metabolic profiling analysis on human blood plasma by ultra-performance liquid chromatography/mass spectrometry (UPLC/MS). To address whether a previous extraction protocol for gas chromatography (GC)/MS-based metabolic profiling of plasma could be used for UPLC/MS-based analysis, the original protocol was compared with similar methods for extraction of low-molecular-weight compounds from plasma via protein precipitation. Differences between extraction methods could be observed, but the previously published extraction method was considered the best. UPLC columns with three different stationary phases (C8, C18, and phenyl) were used in identical experimental runs consisting of a total of 60 injections of extracted male and female plasma samples. The C8 column was determined to be the best for metabolic profiling analysis on plasma. The acquired UPLC/MS data of extracted male and female plasma samples was subjected to principal component analysis (PCA) and orthogonal projections to latent structures discriminant analysis (OPLS-DA). Furthermore, a strategy for compound identification was applied here, demonstrating the strength of high-mass-accuracy time-of-flight (TOF)/MS analysis in metabolic profiling.  相似文献   

11.
Analysis of metabolomics data often goes beyond the task of discovering biomarkers and can be aimed at recovering other important characteristics of observed metabolomic changes. In this paper we explore different methods to detect the presence of distinctive phases in seasonal-responsive changes of metabolomic patterns of Siberian spruce (Picea obovata) during cold acclimation occurred in the period from mid-August to January. Multivariate analysis, specifically orthogonal projection to latent structures discriminant analysis (OPLS-DA), identified time points where the metabolomic patterns underwent substantial modifications as a whole, revealing four distinctive phases during acclimation. This conclusion was re-examined by a univariate analysis consisting of multiple pair-wise comparisons to identify homogeneity intervals for each metabolite. These tests complemented OPLS-DA, clarifying biological interpretation of the classification: about 60% of metabolites found responsive to the cold stress indeed changed at one or more of the time points predicted by OPLS-DA. However, the univariate approach did not support the proposed division of the acclimation period into four phases: less than 10% of metabolites altered during the acclimation had homogeneous levels predicted by OPLS-DA. This demonstrates that coupling the classification found by OPLS-DA and the analysis of dynamics of individual metabolites obtained by pair-wise multicomparisons reveals a more correct characterization of biochemical processes in freezing tolerant trees and leads to interpretations that cannot be deduced by either method alone. The combined analysis can be used in other ‘omics’-studies, where response factors have a causal dependence (like the time in the present work) and pair-wise multicomparisons are not conservative.  相似文献   

12.
Chlamydomonas reinhardtii accumulates lipids under complete nutrient starvation conditions while overall growth in biomass stops. In order to better understand biochemical changes under nutrient deprivation that maintain production of algal biomass, we used a lipidomic assay for analyzing the temporal regulation of the composition of complex lipids in C. reinhardtii in response to nitrogen and sulfur deprivation. Using a chip-based nanoelectrospray direct infusion into an ion trap mass spectrometer, we measured a diversity of lipid species reported for C. reinhardtii, including PG phosphatidylglycerols, PI Phosphatidylinositols, MGDG monogalactosyldiacylglycerols, DGDG digalactosyldiacylglycerols, SQDG sulfoquinovosyldiacylglycerols, DGTS homoserine ether lipids and TAG triacylglycerols. Individual lipid species were annotated by matching mass precursors and MS/MS fragmentations to the in-house LipidBlast mass spectral database and MS2Analyzer. Multivariate statistics showed a clear impact on overall lipidomic phenotypes on both the temporal and the nutrition stress level. Homoserine-lipids were found up-regulated at late growth time points and higher cell density, while triacyclglycerols showed opposite regulation of unsaturated and saturated fatty acyl chains under nutritional deprivation.  相似文献   

13.
Cover Image     
Microalgae have been shown as a potential bioresource for food, biofuel, and pharmaceutical products. During the growth phases with corresponding environmental conditions, microalgae accumulate different amounts of various metabolites. We quantified the neutral lipids accumulation and analyzed the swimming signatures (speed and trajectories) of the motile green alga, Dunaliella primolecta, during the lag–exponential–stationary growth cycle at different nutrient concentrations. We discovered significant changes in the neutral lipid content and swimming signatures of microalgae across growth phases. The timing of the maximum swimming speed coincided with the maximum neutral lipid content and both maxima occurred under nutrient stress at the stationary growth phase. Furthermore, the swimming trajectories suggested statistically significant changes in swimming modes at the stationary growth phase when the maximum intracellular neutral lipid content was observed. Our results provide the potential exploitation of microalgal swimming signatures as possible indicators of the cultivation conditions and the timing of microalgal harvest to maximize the lipid yield for biofuel production. The findings can also be implemented to explore the production of food and antibiotics from other microalgal metabolites with low energy costs.  相似文献   

14.

Analysis of metabolomics data often goes beyond the task of discovering biomarkers and can be aimed at recovering other important characteristics of observed metabolomic changes. In this paper we explore different methods to detect the presence of distinctive phases in seasonal-responsive changes of metabolomic patterns of Siberian spruce (Picea obovata) during cold acclimation occurred in the period from mid-August to January. Multivariate analysis, specifically orthogonal projection to latent structures discriminant analysis (OPLS-DA), identified time points where the metabolomic patterns underwent substantial modifications as a whole, revealing four distinctive phases during acclimation. This conclusion was re-examined by a univariate analysis consisting of multiple pair-wise comparisons to identify homogeneity intervals for each metabolite. These tests complemented OPLS-DA, clarifying biological interpretation of the classification: about 60% of metabolites found responsive to the cold stress indeed changed at one or more of the time points predicted by OPLS-DA. However, the univariate approach did not support the proposed division of the acclimation period into four phases: less than 10% of metabolites altered during the acclimation had homogeneous levels predicted by OPLS-DA. This demonstrates that coupling the classification found by OPLS-DA and the analysis of dynamics of individual metabolites obtained by pair-wise multicomparisons reveals a more correct characterization of biochemical processes in freezing tolerant trees and leads to interpretations that cannot be deduced by either method alone. The combined analysis can be used in other ‘omics’-studies, where response factors have a causal dependence (like the time in the present work) and pair-wise multicomparisons are not conservative.

  相似文献   

15.
In the last decade Ostreopsis cf. ovata blooms have been among the most intense along the entire Mediterranean coast, leading to ecological and human health problems, that are associated with the toxins (palytoxin-like compounds) produced by these algal cells. These compounds are secondary metabolites, whose rates of synthesis depend on the metabolism of their precursors. In general, growth dynamics and toxicity of dinoflagellates reflect the physiological status of the organism. The aim of the present study was to investigate the cellular production of the main biochemical compounds likely involved in the growth and toxicity dynamics of O. cf. ovata during exponential to the late stationary phase in batch cultures of an Adriatic strain. Removal of major nutrients from the medium was monitored along with concentration, biovolume and production of the main cellular components (e.g. polysaccharides, proteins, lipids and toxins). Nutrient uptake, as well as toxin production rates were calculated in the different growth periods. Nutrients (N and P) were completely depleted when cells entered stationary phase and the greatest net toxin production rate (RTOX) occurred during the first days of growth. The various palytoxins reported a relative abundance quite stable during the different growth phases, while the total toxin cellular amount increased along the growth curve. Total and extracellular released polysaccharides, as well as the lipid content increased greatly during the stationary phase, while proteins were mainly produced by cells during the exponential phase. The continuous release of polysaccharides could facilitate cell aggregation and the formation of the benthic community during algal blooms. The trend of production of the main cellular compounds in O. cf. ovata and the growth dynamics of this species lead us to hypothesize that the fast growth of this dinoflagellate, associated with the rapid use of environmental resources (nutrients, and phosphates in particular), may be an ecological/adaptive strategy which could favor this organism in competition with other species.  相似文献   

16.
In microalgae, triacylglycerol (TAG) biosynthesis occurs by parallel pathways involving both the chloroplast and endoplasmic reticulum. A better understanding of contribution of each pathway to TAG assembly facilitates enhanced TAG production via rational genetic engineering of microalgae. Here, using a UPLC-MS(/MS) coupled with TLC-GC-based lipidomic platform, the early response of the major glycerolipids to nitrogen stress was analyzed at both the cellular and chloroplastidic levels in the model green alga Chlamydomonas reinhardtii. Subcellular lipidomic analysis demonstrated that TAG was accumulated exclusively outside the chloroplast, and remained unaltered inside the chloroplast after 4?h of nitrogen starvation. This study ascertained the existence of the glycolipid, digalactosyldiacylglycerol (DGDG), outside the chloroplast and the betaine lipid, diacylglycerol-N,N,N-trimethylhomoserine (DGTS), inside the chloroplast. The newly synthesized DGDG and DGTS prominently increased at the extra-chloroplastidic compartments and served as the major precursors for TAG biosynthesis. In particular, DGDG contributed to the extra-chloroplastidic TAG assembly in form of diacylglycerol (DAG) and DGTS in form of acyl groups. The chloroplastidic membrane lipid, monogalactosyldiacylglycerol (MGDG), was proposed to primarily offer DAG for TAG formation outside the chloroplast. This study provides valuable insights into the subcellular glycerolipidomics and unveils the acyl flux into the extra-chloroplastidic TAG in microalgae.  相似文献   

17.
Ultrahigh-performance supercritical fluid chromatography - mass spectrometry (UHPSFC/MS), ultrahigh-performance liquid chromatography - mass spectrometry (UHPLC/MS), and matrix-assisted laser desorption/ionization (MALDI) - MS techniques were used for the lipidomic characterization of exosomes isolated from human plasma. The high-throughput methods UHPSFC/MS and UHPLC/MS using a silica-based column containing sub-2 μm particles enabled the lipid class separation and the quantitation based on exogenous class internal standards in <7 minute run time. MALDI provided the complementary information on anionic lipid classes, such as sulfatides. The nontargeted analysis of 12 healthy volunteers was performed, and absolute molar concentration of 244 lipids in exosomes and 191 lipids in plasma belonging to 10 lipid classes were quantified. The statistical evaluation of data included principal component analysis, orthogonal partial least square discriminant analysis, S-plots, p-values, T-values, fold changes, false discovery rate, box plots, and correlation plots, which resulted in the information on lipid changes in exosomes in comparison to plasma. The major changes were detected in the composition of triacylglycerols, diacylglycerols, phosphatidylcholines, and lysophosphatidylcholines, whereby sphingomyelins, phosphatidylinositols, and sulfatides showed rather similar profiles in both biological matrices.  相似文献   

18.
Corals and other cnidarians house photosynthetic dinoflagellate symbionts within membrane-bound compartments inside gastrodermal cells. Nutritional interchanges between the partners produce carbohydrates and lipids for metabolism, growth, energy stores, and cellular structures. Although lipids play a central role in the both the energetics and the structural/morphological features of the symbiosis, previous research has primarily focused on the fatty acid and neutral lipid composition of the host and symbiont. In this study we conducted a mass spectrometry-based survey of the lipidomic changes associated with symbiosis in the sea anemone Aiptasia pallida, an important model system for coral symbiosis. Lipid extracts from A. pallida in and out of symbiosis with its symbiont Symbiodinium were prepared and analyzed using negative-ion electrospray ionization quadrupole time-of-flight mass spectrometry. Through this analysis we have identified, by exact mass and collision-induced dissociation mass spectrometry (MS/MS), several classes of glycerophospholipids in A. pallida. Several molecular species of di-acyl phosphatidylinositol and phosphatidylserine as well as 1-alkyl, 2-acyl phosphatidylethanolamine (PE) and phosphatidycholine were identified. The 1-alkyl, 2-acyl PEs are acid sensitive suggestive that they are plasmalogen PEs possessing a double bond at the 1-position of the alkyl linked chain. In addition, we identified several molecular species of phosphonosphingolipids called ceramide aminoethylphosphonates in anemone lipid extracts by the release of a characteristic negative product ion at m/z 124.014 during MS/MS analysis. Sulfoquinovosyldiacylglycerol (SQDG), an anionic lipid often found in photosynthetic organisms, was identified as a prominent component of Symbiodinium lipid extracts. A comparison of anemone lipid profiles revealed a subset of lipids that show dramatic differences in abundance when anemones are in the symbiotic state as compared to the non-symbiotic state. The data generated in this analysis will serve as a resource to further investigate the role of lipids in symbiosis between Symbiodinium and A. pallida.  相似文献   

19.
Bacteria are often found in close association with surfaces, resulting in the formation of biofilms. In Staphylococcus aureus (S. aureus), biofilms are implicated in the resilience of chronic infections, presenting a serious clinical problem world-wide. Here, S. aureus biofilms are grown under flow within clinical catheters at 37 °C. The lipid composition and biophysical properties of lipid extracts from these biofilms are compared with those from exponential growth and stationary phase cells. Biofilms show a reduction in iso and anteiso branching compensated by an increase in saturated fatty acids compared to stationary phase. A drastic reduction in carotenoid levels is also observed during biofilm formation. Thermotropic measurements of Laurdan GP and DPH polarization, show a reduction of lipid packing at 37 °C for biofilms compared to stationary phase. We studied the effects of carotenoid content on DMPG and DPPG model membranes showing trends in thermotropic behavior consistent with those observed in bacterial isolates, indicating that carotenoids participate in modulating lipid packing. Additionally, bending elastic constant (kc) measurements using vesicle fluctuation analysis (VFA) show that the presence of carotenoids can increase membrane bending rigidity. The antimicrobial peptide Magainin H2 was less activity on liposomes composed of stationary phase compared to biofilms or exponential growth isolates. This study contributes to an understanding of how Staphylococcus aureus modulates the composition of its membrane lipids, and how those changes affect the biophysical properties of membranes, which in turn may play a role in its virulence and its resistance to different membrane-active antimicrobial agents.  相似文献   

20.
The lipid and biochemical composition of the haptophyte Isochrysis galbana TK1 was examined. Cultures were grown at 15 °C and 30 °C, and harvested in the exponential and early stationary growth phases. Carbohydrate and protein content varied at the two culture temperatures and growth phases. The highest protein content was found at the exponential growth phase at 15 °C, and the highest carbohydrate content was found at the stationary phase at the same culture temperature. Lipid accumulated in the stationary growth phase and its content was higher at 30 °C than at 15 °C regardless of the growth phase. The neutral lipids were the major class of lipid found in all the cultures. The stationary phase culture had a higher proportion of neutral lipids than the exponential phase culture and the proportion decreased slightly when culture temperature was increased from 15 °C to 30 °C. Phospholipid levels remained constant at the two temperatures, but slightly decreased in the stationary phase. Glycolipids in the exponentially growing cells were higher than those from stationary growth phase and increased with temperature. Polyunsaturated fatty acids (PUFAs) predominated in glycolipids and phospholipids. Cells grown at 15 °C contained higher proportion of 18:3 (n–3) and 22:6 (n–3) with a corresponding decrease in 18:2 (n–6), monounsaturated and saturated fatty acids. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号