首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Structure of a eukaryotic decoding region A-site RNA   总被引:4,自引:0,他引:4  
The aminoglycoside antibiotics target a region of highly conserved nucleotides in the aminoacyl-tRNA site (A site) of 16 S RNA on the 30 S subunit. The structures of a prokaryotic decoding region A-site oligonucleotide free in solution and bound to the aminoglycosides paromomycin and gentamicin C1A have been determined. Here, the structure of a eukaryotic decoding region A-site oligonucleotide has been determined using homonuclear and heteronuclear NMR spectroscopy, and compared to the unbound prokaryotic rRNA structure. The two structures are similar, with a U1406-U1495 base-pair, a C1407-G1494 Watson-Crick base-pair, and a G1408-A1493 base-pair instead of the A1408-A1493 base-pair of the prokaryotic structure. The two structures differ in the orientation of the 1408 position with respect to A1493; G1408 is rotated toward the major groove, which is the binding pocket for aminoglycosides. The structures also differ in the stacking geometry of G1494 on A1493, which could have slight long-range conformational effects.  相似文献   

2.
Aminoglycosides are antibacterial molecules that decrease translation accuracy by binding to the decoding aminoacyl-tRNA site (A site) on 16S ribosomal RNA. We have solved the crystal structure of an RNA fragment containing the A site bound to geneticin at 2.40A resolution. Geneticin, also known as G418, is a gentamicin-related aminoglycoside: it contains three rings that are functionalized by hydroxyl, ammonium and methyl groups. The detailed comparison of the distinctive behaviour of geneticin (binding to pro- and eukaryotic A sites) with the crystallographic, biochemical and microbiological results obtained so far for aminoglycoside-A site complexes offers new insights on the system. The two sugar rings constituting the neamine part common to most of the aminoglycosides bind to the A site, as already observed in the crystal structures solved previously with paromomycin and tobramycin. The essential hydrogen bonds involving ring I (to A1408) and ring II (to the phosphate oxygen atoms of the bulged adenine bases 1492 and 1493 and to G1494) are conserved and additional contacts are observed from ring III (to phosphate oxygen atoms of G1405 and U1406). The present work illustrates a molecular basis of the range in sensitiveness exhibited by geneticin towards common point A site mutations associated to resistance phenotypes. In addition, analysis and comparisons of the structures cast light on the role played by the conserved U1406.U1495 pair in the recognition of the A site by aminoglycosides.  相似文献   

3.
The codon-anticodon interaction on the ribosome occurs in the A site of the 30 S subunit. Aminoglycoside antibiotics, which bind to ribosomal RNA in the A site, cause misreading of the genetic code and inhibit translocation. Biochemical studies and nuclear magnetic resonance spectroscopy were used to characterize the interaction between the aminoglycoside antibiotic paromomycin and a small model oligonucle otide that mimics the A site ofEscherichia coli16 S ribosomal RNA. Upon chemical modification, the RNA oligonucleotide exhibits an accessibility pattern similar to that of 16 S rRNA in the 30 S subunit. In addition, the oligonucleotide binds specifically aminoglycoside antibiotics. The anti biotic binding site forms an asymmetric internal loop, caused by non-canonical base-pairs. Nucleotides that are important for binding of paromomycin were identified by performing quantitative footprinting on oligonucleotide sequence variants and include the C1407·G1494 base-pair, and A·U base-pair at positions 1410/1490, and nucleotides A1408, A1493 and U1495. The asymmetry of the internal loop, which requires the presence of a nucleotide in position 1492, is also crucial for antibiotic binding. Introduction into the oligonucleotide of base changes that are known to confer aminoglycoside resistance in 16 S rRNA result in weaker binding of paromomycin to the oligonucleotide. Oligonucleotides homologous to eukaryotic rRNA sequences show reduced binding of paromomycin, suggesting a physical origin for the species-specific action of aminoglycosides.  相似文献   

4.
Translational initiation factor 3 (IF3) is an RNA helix destabilizing protein which interacts with strongly conserved sequences in 16S rRNA, one at the 3' terminus and one in the central domain. It was therefore of interest to identify particular residues whose exposure changes upon IF3 binding. Chemical and enzymatic probing of central domain nucleotides of 16S rRNA in 30S ribosomal subunits was carried out in the presence and absence of IF3. Bases were probed with dimethyl sulfate (DMS), at A(N-1), C(N-3), and G(N-7), and with N-cyclohexyl-N'-[2-(N-methyl-4-morpholinio)ethyl] carbodiimide p-toluenesulfonate (CMCT), at G(N-1) and U(N-3). RNase T1 and nuclease S1 were used to probe unpaired nucleotides, and RNase V1 was used to monitor base-paired or stacked nucleotides. 30S subunits in physiological buffers were probed in the presence and absence of IF3. The sites of cleavage and modification were detected by primer extension. IF3 binding to 30S subunits was found to reduce the chemical reactivity and enzymatic accessibility of some sites and to enhance attack at other sites in the conserved central domain of 16S rRNA, residues 690-850. IF3 decreased CMCT attack at U701 and U793 and V1 attack at G722, G737, and C764; IF3 enhanced DMS attack at A814 and V1 attack at U697, G833, G847, and G849. Many of these central domain sites are strongly conserved and with the conserved 3'-terminal site define a binding domain for IF3 which correlates with a predicted cleft in two independent models of the 30S ribosomal subunit.  相似文献   

5.
BACKGROUND: Aminoglycoside antibiotics interfere with translation in both gram-positive and gram-negative bacteria by binding to the tRNA decoding A site of the 16S ribosomal RNA. RESULTS: Crystals of complexes between oligoribonucleotides incorporating the sequence of the ribosomal A site of Escherichia coli and the aminoglycoside paromomycin have been solved at 2.5 A resolution. Each RNA fragment contains two A sites inserted between Watson-Crick pairs. The paromomycin molecules interact in an enlarged deep groove created by two bulging and one unpaired adenines. In both sites, hydroxyl and ammonium side chains of the antibiotic form 13 direct hydrogen bonds to bases and backbone atoms of the A site. In the best-defined site, 8 water molecules mediate 12 other hydrogen bonds between the RNA and the antibiotics. Ring I of paromomycin stacks over base G1491 and forms pseudo-Watson-Crick contacts with A1408. Both the hydroxyl group and one ammonium group of ring II form direct and water-mediated hydrogen bonds to the U1495oU1406 pair. The bulging conformation of the two adenines A1492 and A1493 is stabilized by hydrogen bonds between phosphate oxygens and atoms of rings I and II. The hydrophilic sites of the bulging A1492 and A1493 contact the shallow groove of G=C pairs in a symmetrical complex. CONCLUSIONS: Water molecules participate in the binding specificity by exploiting the antibiotic hydration shell and the typical RNA water hydration patterns. The observed contacts rationalize the protection, mutation, and resistance data. The crystal packing mimics the intermolecular contacts induced by aminoglycoside binding in the ribosome.  相似文献   

6.
M Laughrea  J Tam 《Biochemistry》1991,30(48):11412-11420
We have studied the effect of the binding of ribosomal protein S1 and initiation factor IF3 on the accessibility of nucleotide residues 584-1506 in the small subunit of the Escherichia coli ribosome. Protein S1 strongly decreases RNase V1 attack at G1164, in hairpin 40 of the 3' major domain, and weakly decreases DMS attack at C1302, in the central loop of the 3' major domain, and at A1503, in the 3' minor domain. It also weakly increases the DMS reactivity of A1004, in the 3' major domain, and of A901, in the central domain. Factor IF3 strongly decreases RNase V1 attack (but not dimethyl sulfate attack) at A1408, in the decoding site, and weakly protects A1500, in the 3' minor domain and near the colicin E3 cleavage site. Neomycin does not interfere with this effect of IF3, but IF3 interferes with the protective effect of neomycin against dimethyl sulfate attack at A1408.  相似文献   

7.
The penultimate stem-loop of 16S ribosomal RNA (rRNA), helix 44, plays a central role in ribosome function. Using time-resolved dimethyl sulfate (DMS) probing, we have analyzed time-dependent modifications that occur at specific bases in this helix near the decoding region, resulting from the binding of elongation factor G (EF-G) in various forms. When EF-G-GTP is bound to 70S ribosomes, bases A1492 and A1493 are immediately protected, while other bases in the region show either no change or enhanced modification. When apo-EF-G is bound to 70S ribosomes and GTP is added, substantial transient time-dependent enhancement occurs at bases A1492 and A1493, with somewhat less enhancement occurring at base A1483, all in the first 45 ms. When mRNA and deacylated tRNAs are bound to the 70S ribosome and EF-G-GTP is added, bases A1492 and A1493 again show substantial and continued enhancement, while bases A1408, A1413, and A1418 all show time-dependent protection. These results provide primary, real-time evidence that EF-G induces direct or indirect structural changes in this region as EF-G is bound and as GTP is hydrolyzed.  相似文献   

8.
A small RNA derived from the decoding region of Escherichia coli 16S rRNA can bind to antibiotics of aminoglycosides (neomycin and paromomycin) that act on the small ribosomal subunit [Purohit,P. and Stern,S. (1994) Nature, 370, 659-662]. In the present study, the P-site subdomain was removed from this decoding region RNA to construct a 27mer RNA (designated as ASR-27), which includes the A-site-related region (positions 1402-1412 and 1488-1497) of 16S rRNA. Footprint experiments with dimethyl sulfate as a chemical probe indicated that the ASR-27 RNA can interact with the neomycin family in the same manner as the decoding region RNA. A mutagenesis analysis of the ASR-27 RNA revealed that paromomycin binding of ASR-27 involves the C1407.G1494 and C1409-G1491 base pairs, and the internal loop comprising A1408 and the nucleotides in positions 1492-1493, located between the two C.G base pairs. In addition, a G or U in position 1495, and base pairing between positions 1405 and 1496 are also involved. These structural features were found in a viral RNA element, the Rev-binding site of human immunodeficiency virus type-1, which may explain why neomycin can bind to this viral RNA.  相似文献   

9.
Tet(o) is an elongation factor-like protein found in clinical isolates of Campylobacter jejuni that confers resistance to the protein-synthesis inhibitor tetracycline. Tet(o) interacts with the 70S ribosome and promotes the release of bound tetracycline, however, as shown here, it does not form the same functional interaction with the 30S subunit. Chemical probing demonstrates that Tet(o) changes the reactivity of the 16S rRNA to dimethyl sulphate (DMS). These changes cluster within the decoding site, where C1214 is protected and A1408 is enhanced to DMS reactivity. C1214 is close to, but does not overlap, the primary tetracycline-binding site, whereas A1408 is in a region distinct from the Tet(o) binding site visualized by cryo-EM, indicating that Tet(o) induces long-range rearrangements that may mediate tetracycline resistance. Tetracycline enhances C1054 to DMS modification but this enhancement is inhibited in the presence of Tet(o) unlike the tetracycline-dependent protection of A892 which is unaffected by Tet(o). C1054 is part of the primary binding site of tetracycline and A892 is part of the secondary binding site. Therefore, the results for the first time demonstrate that the primary tetracycline binding site is correlated with tetracycline's inhibitory effect on protein synthesis.  相似文献   

10.
Transfer RNA protects a characteristic set of bases in 16 S rRNA from chemical probes when it binds to ribosomes. We used several criteria, based on construction of well-characterized in vitro ribosome-tRNA complexes, to assign these proteins to A or P-site binding. All of these approaches lead to similar conclusions. In the A site, tRNA caused protection of G529, G530, A1492 and A1493 (strongly), and A1408 and G1494 (weakly). In the P site, the protected bases are G693, A794, C795, G926 and G1401 (strong), and A532, G966, G1338 and G1339 (weak). In contrast to what is observed for 23 S rRNA, blocking the release of EF-Tu.GDP from the ribosome by kirromycin has no detectable effect on the protection of bases in 16 S rRNA.  相似文献   

11.
Modification of 30 S ribosomal subunits with kethoxal causes loss of their ability to associate with 50 S subunits under tight couple conditions. To identify those 16 S RNA sequences important for the association. 32P-labeled 30 S subunits were partially inactivated by reaction with kethoxal. The remaining association-competent 30 S subunits were selected from the modified population by their ability to form 70 S ribosomes. Comparison of kethoxal diagonal maps of the association-competent subunits with those of the total population of modified subunits reveals nine sites in 16 S RNA whose modification leads to loss of association activity. Eight of these sites were previously found to be protected from kethoxal attack and one was shown to have enhanced reactivity in 70 S ribosomes (Chapman &; Noller, 1977). As before, these sites are not distributed thoughout the molecule, but are found to be clustered in two regions, at the middle and at the 3′ terminus of the 16 S RNA chain.We interpret these findings in terms of a simple preliminary model for the functional organization of 16 S RNA, supported by the observations of other investigators, in which we divide the molecule into four domains. (1) Residues 1 to 600 are involved mainly in structural organization and assembly. (2) Residues 600 to 850 include sites which make contact with the 50 S subunit and are essential for subunit association. (3) Sites from the domain comprising residues 850 to 1350 line a pocket at the interface between the two ribosomal subunits. and contribute to the binding site(s) for transfer RNA. (4) Residues 1350 to 1541 also contain sequences which bind the 50 S subunit, but some sites in this domain alternatively participate in the initiation of protein synthesis.  相似文献   

12.
The decoding A site of the small ribosomal subunit is an RNA molecular switch, which monitors codon–anticodon interactions to guarantee translation fidelity. We have solved the crystal structure of an RNA fragment containing two Homo sapiens cytoplasmic A sites. Each of the two A sites presents a different conformational state. In one state, adenines A1492 and A1493 are fully bulged-out with C1409 forming a wobble-like pair to A1491. In the second state, adenines A1492 and A1493 form non-Watson–Crick pairs with C1409 and G1408, respectively while A1491 bulges out. The first state of the eukaryotic A site is, thus, basically the same as in the bacterial A site with bulging A1492 and A1493. It is the state used for recognition of the codon/anticodon complex. On the contrary, the second state of the H.sapiens cytoplasmic A site is drastically different from any of those observed for the bacterial A site without bulging A1492 and A1493.  相似文献   

13.
Paromomycin is an aminoglycosidic antibiotic that targets the RNA of the bacterial small ribosomal subunit. It binds in the A-site, which is one of the three tRNA binding sites, and affects translational fidelity by stabilizing two adenines (A1492 and A1493) in the flipped-out state. Experiments have shown that various mutations in the A-site result in bacterial resistance to aminoglycosides. In this study, we performed multiple molecular dynamics simulations of the mutated A-site RNA fragment in explicit solvent to analyze changes in the physicochemical features of the A-site that were introduced by substitutions of specific bases. The simulations were conducted for free RNA and in complex with paromomycin. We found that the specific mutations affect the shape and dynamics of the binding cleft as well as significantly alter its electrostatic properties. The most pronounced changes were observed in the U1406C∶U1495A mutant, where important hydrogen bonds between the RNA and paromomycin were disrupted. The present study aims to clarify the underlying physicochemical mechanisms of bacterial resistance to aminoglycosides due to target mutations.  相似文献   

14.
Translation initiation factor IF3 is an essential bacterial protein, consisting of two domains (IF3C and IF3N) separated by a linker, which interferes with ribosomal subunit association, promotes codon-anticodon interaction in the P site, and ensures translation initiation fidelity. Using time-resolved chemical probing, we followed the dynamic binding path of IF3 on the 30S subunit and its release upon 30S-50S association. During binding, IF3 first contacts the platform (near G700) of the 30S subunit with the C domain and then the P-decoding region (near A790) with its N domain. At equilibrium, attained within less than a second, both sites are protected, but before reaching binding equilibrium, IF3 causes additional transient perturbations of both the platform edge and the solvent side of the subunit. Upon 30S-50S association, IF3 dissociates concomitantly with the establishment of the 30S-50S bridges, following the reverse path of its binding with the IF3N-A790 interaction being lost before the IF3C-G700 interaction.  相似文献   

15.
RsgA (ribosome-small-subunit-dependent GTPase A, also known as YjeQ) is a unique GTPase in that guanosine triphosphate hydrolytic activity is activated by the small subunit of the ribosome. Disruption of the gene for RsgA from the genome affects the growth of cells, the subunit association of the ribosome, and the maturation of 16S rRNA. To study the interaction of Escherichia coli RsgA with the ribosome, chemical modifications using dimethylsulfate and kethoxal were performed on the small subunit in the presence or in the absence of RsgA. The chemical reactivities at G530, A790, G925, G926, G966, C1054, G1339, G1405, A1413, and A1493 in 16S rRNA were reduced, while those at A532, A923, G1392, A1408, A1468, and A1483 were enhanced, by the addition of RsgA, together with 5′-guanylylimidodiphosphate. Among them, the chemical reactivities at A532, A790, A923, G925, G926, C1054, G1392, A1413, A1468, A1483, and A1493 were not changed when RsgA was added together with GDP. These results indicate that the binding of RsgA induces conformational changes around the A site, P site, and helix 44, and that guanosine triphosphate hydrolysis induces partial conformational restoration, especially in the head, to dissociate RsgA from the small subunit. RsgA has the capacity to coexist with mRNA in the ribosome while it promotes dissociation of tRNA from the ribosome.  相似文献   

16.
Noller HF 《Biochimie》2006,88(8):935-941
Prior to the emergence of crystal structures of the ribosome, different ribosomal functions were identified with specific regions of ribosomal RNA by biochemical and genetic approaches. In particular, three universally conserved bases of 16S rRNA, G530, A1492 and A1493, were implicated in the interaction of the incoming aminoacyl-tRNA with the 30S subunit and mRNA. The conserved region surrounding A1492 and A1493 was called the "decoding site", based on the results of chemical probing experiments and antibiotic resistance mutations. Crystallographic studies from the Ramakrishnan laboratory have now shown that G530 loop, A1492 and A1493 undergo localized conformational changes to form an RNA structure that positions these three bases to inspect the accuracy of the codon-anticodon match with high stereochemical precision, using A-minor interactions. Some results from the pre-X-ray era may provide clues to further aspects of the decoding process.  相似文献   

17.
The ribosome consists of two unequal subunits, which associate via numerous intersubunit contacts. Medium-resolution structural studies have led to grouping of the intersubunit contacts into 12 directly visualizable intersubunit bridges. Most of the intersubunit interactions involve RNA. We have used an RNA modification interference approach to determine Escherichia coli 16S rRNA positions that are essential for the association of functionally active 70S ribosomes. Modification of the N1 position of A702, A1418, and A1483 with DMS, and of the N3 position of U793, U1414, and U1495 with CMCT in 30S subunits strongly interferes with 70S ribosome formation. Five of these positions localize into previously recognized intersubunit bridges, namely, B2a (U1495), B2b (U793), B3 (A1483), B5 (A1418), and B7a (A702). The remaining position displaying interference, U1414, forms a base pair with G1486, which is a part of bridge B3. We contend that these five intersubunit bridges are essential for reassociation of the 70S ribosome, thus forming the functional core of the intersubunit contacts.  相似文献   

18.
D Moazed  H F Noller 《Cell》1986,47(6):985-994
Binding of tRNAPhe to ribosomes shields a set of highly conserved nucleotides in 16S rRNA from attack by a combination of structure-specific chemical probes. The bases can be classified according to whether or not their protection is strictly poly(U)-dependent (G529, G530, U531, A1408, A1492, and A1493) or poly(U)-independent (A532, G693, A794, C795, G926, 2mG966, G1338, A1339, U1381, C1399, C1400, and G1401). A third class (A790, G791, and A909) is shielded by both tRNA and 50S ribosomal subunits. Similar results are obtained when the protecting ligand is tRNAPhe E. Coli, tRNAPhe yeast, tRNAPhe E. Coli lacking its 3' terminal CA, or the 15 nucleotide anticodon stem-loop fragment of tRNAPhe yeast. Implications for structural correlates of the classic ribosomal A- and P-sites and for the possible involvement of 16S rRNA in translational proofreading are discussed.  相似文献   

19.
The effect of 30S subunit attachment on the accessibility of specific sites in 5 S and 23 S RNA in 50 S ribosomal subunits was studied by means of the guanine-specific reagent kethoxal. Oligonucleotides surrounding the sites of kethoxal substitution were resolved and quantitated by diagonal electrophoresis. In contrast to the extensive protection of sites in 16 S RNA in 70 S ribosomes (Chapman &; Noller, 1977), only two strongly (approx. 90%) protected sites were detected in 23 S RNA. The nucleotide sequences at these sites are
in which the indicated kethoxal-reactive guanines (with K above them) are strongly protected by association of 30 S and 50 S subunits. The latter sequence has the potential to base-pair with nucleotides 816 to 821 of the 16 S RNA, a site which has been shown to be protected from kethoxal by 50 S subunits and essential for subunit association. Six additional sites in 23 S RNA are partially (30 to 50%) protected by 30 S subunits. One of these sequences,
is complementary to nucleotides 787 to 792 of 16 S RNA. a site which is also 50 S-protected and essential for association. Of the two kethoxal-reactive 5 S RNA sites in 50 S subunits, G13 is partially protected in 70 S ribosomes. while G41 remains unaffected by subunit association.The relatively small number of kethoxal-reactive sites in 23 S RNA that is strongly protected in 70 S ribosomes suggests that subunit association may involve contacts between single-stranded sites in 16 S RNA and 50 S subunit proteins or non-Watson-Crick interactions with 23 S RNA. in addition to the two suggested base-paired contacts.  相似文献   

20.
Escherichia coli translational initiation factor 3 (IF3) may be crosslinked to the 3' end of 16S RNA in 30S ribosomal subunits. In order to determine the sequence to which IF3 may bind in vivo, samples of 5'-32P labelled 3' terminal 49-nucleotide fragment of 16S RNA were incubated 5 min. at 37 degrees in 40 mM Tris-HOAc, pH 7.4, 100 mM NaCl, 1 mM Mg (OAc)2, 1 mM ZnSO4, with or without IF3, then reacted a further 5 min with nuclease S1, RNase T1, or RNase A. Base pairing between the 5' and 3' legs of the fragment occurs in the absence of IF3, but is disrupted by IF3 binding. IF3 appears to protect some residues near the 5' end of the fragment (U1495, A1499, A1500, A1502, and A1503) from nuclease S1, and potentiates S1 attack on others (G1494, G1497, C1501, G1504, G1505, U1506, G1517, G1529, G1530, and C1533). A series of equimolar reactions at increasing dilution imply an association constant range of 1.4-7.0 X 10(7) M-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号