首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distribution of 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine: acetyl hydrolase acetyl hydrolase activity between different types of human plasma lipoproteins was studied. It was found that lipoprotein-depleted plasma is practically devoid of acetyl hydrolase and of almost all acetyl hydrolase activities recovered in the plasma lipoprotein fraction. Among different types of plasma lipoproteins the bulk of acetyl hydrolase is bound to low density lipoproteins; of those not more than 5-10% is associated with high density lipoproteins. Isolated plasma high density lipoproteins do not influence the activity of acetyl hydrolase associated with low density lipoproteins. It is suggested that low and high density lipoprotein acetyl hydrolase may play different functional roles in human plasma.  相似文献   

2.
The present study has examined the catabolism of 1-O-[3H]hexadecyl-2-acetyl-GPC (C16-PAF) and of 1-O-octadecyl-2-acetyl-GPC (C18-PAF) in spleen-derived PT-18 murine mast cells (mast cells). Mast cells catabolized exogenous PAF into two inactive metabolites, 1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine (lysoPAF) and 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholine (1-O-alkyl-2-acyl-GPC). The rate of conversion of C16-PAF to metabolites was more rapid than that of C18-PAF. Analysis of the acyl composition of 1-O-alkyl-2-acyl-GPC formed during the metabolism of PAF revealed that arachidonic acid (20:4) was the major fatty acyl chain incorporated at the sn-2 position. However, 25% of newly formed 1-O-alkyl-2-acyl-GPC was reacylated with docosahexaenoic acid (22:6). The influence of cellular fatty acid content on PAF catabolism was further explored in mast cells in which the ratio of fatty acids within cellular phosphoglycerides had been altered by supplementing the cells with various fatty acids in culture. Mast cells supplemented with 20:4 or 22:6 converted PAF to 1-O-alkyl-2-acyl-GPC at a significantly higher rate than non-supplemented cells. In contrast, cells supplemented with linoleic acid (18:2) metabolized PAF at rates similar to non-supplemented cells. Analysis of the acyl composition of 1-O-alkyl-2-acyl-GPC derived from the metabolism of PAF in 20:4-supplemented cells indicated that 20:4 was incorporated exclusively into the sn-2 position. Conversely, 22:6-supplemented cells incorporated predominantly 22:6 at the sn-2 position of 1-alkyl-2-lyso-GPC. Supplementation with 18:2 had no effect on the acylation pattern seen in newly formed 1-O-alkyl-2-acyl-GPC. Activation of passively sensitized mast cells with antigen or with ionophore A23187 significantly enhanced the rate of catabolism of exogenously-provided PAF but had no effect on the acylation pattern of 1-O-alkyl-2-acyl-GPC. Experiments performed with the soluble fraction of the cells showed that acetyl hydrolase activity was increased in mast cells stimulated with antigen. In addition, supernatant fluids from antigen or ionophore-treated mast cells converted PAF to lysoPAF, suggesting that acetyl hydrolase activity was released during cell activation. These data indicate that the ability of mast cells to catabolize PAF to inactive metabolites is influenced by cell activation and by the cellular levels of certain fatty acids.  相似文献   

3.
Platelet-activating factor (PAF) is a glycerophospholipid that has diverse potent biological actions. A plasma enzyme catalyzes the hydrolysis of the sn-2 acetoyl group of PAF and thereby abolishes its bioactivity. This PAF acetylhydrolase is specific for phospholipids, such as PAF, with a short acyl group at the sn-2 position. The majority of it (60-70%) is associated with low density lipoprotein (LDL), and the remainder is with high density lipoprotein (HDL). LDL also has a phospholipase A2 activity that is specific for oxidized polyunsaturated fatty acids, which may be important in determining how LDL is recognized by cellular receptors. We previously have purified and characterized the PAF acetylhydrolase from human plasma. We now have found that the purified PAF acetylhydrolase catalyzes the hydrolysis of the oxidized fragments of arachidonic acid from the sn-2 position of phosphatidylcholine. One of the preferred substrates appeared by mass spectrometry to have 5-oxovalerate at the sn-2 position. We synthesized 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine and found that the PAF acetylhydrolase had the same apparent Km for it (11.3 microM) as for PAF (12.5 microM), with Vmax values of 100 and 167 mumol/h/mg of protein, respectively. We also conclude that the PAF acetylhydrolase is the sole activity in LDL that degrades oxidized phospholipids since we found co-localization of the activity against both substrates to LDL and HDL, and precipitation of enzyme activity with an antibody to the PAF acetylhydrolase. Thus, the PAF acetylhydrolase in human plasma degrades oxidized phospholipids, which may be involved in the modification of apolipoprotein B100 and other pathological processes.  相似文献   

4.
The platelet activating factor (PAF: 1-O-alkyl-2-O-acetyl-sn-glycero-3-phosphocholine) and its analogs were examined to determine their effects on guinea pig peritoneal macrophages. PAF activated macrophages, but its effect on macrophages was much weaker than that observed on platelets: the concentration required for 50% maximum activation was 8.5 X 10(-6) M for macrophages and 2.9 X 10(-10) M for platelets. Three PAF agonists, 1-O-octadecyl-2-O-(N,N-dimethylcarbamoyl)-glycero-3-phosphocholine (Compound I), 1-O-octadecyl-2-acetamido-2-deoxy-glycero-3-phosphocholine (Compound II), and 1-O-octadecyl-2-O-methyl-glycero-3-phosphocholine (Compound III), showed higher activity in stimulating macrophage function than PAF. The abilities of these non-metabolizable PAF agonists to activate macrophage paralleled their relative potency to induce platelet activation. The sn-3 enantiomers of PAF and Compound III exhibited activity, while the sn-1 did not. By comparing the activities of derivatives of Compound III, it was shown that the long-chain alkyl-ether group in the glycerol-1 position, a relatively small size of the substituent on the hydroxy group at the sn-2 position, and the choline moiety in the glycerol-3 position must play critical roles in the process of macrophage activation. A specific PAF antagonist, CV3988, which inhibits PAF-induced platelet activation and hypotension, inhibited the activation of macrophages caused by PAF and its agonists.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The specific precursor for platelet-activating factor, 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholine, constitutes 10 per cent of the 1-radyl-2-acyl-sn-glycero-3-phosphocholines in endothelial cells. Stimulation of endothelial cells results in accumulation of PAF and its sn-1-acyl- analog (acylPAF), with acylPAF the predominant product. Mass spectrometry confirmed these relative amounts and confirmed that stimulated endothelial cells accumulate 1-3 ng PAF per million cells. These data suggest that stimulated endothelial cells accumulate both PAF and acylPAF and that the PAF synthetic pathway in endothelial cells is not highly selective for the specific PAF precursor (1-O-alkyl-2-acyl-sn-glycero-3-phosphocholine).  相似文献   

6.
The binding of 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine, a platelet activating factor (PAF), to plasma components was studied. Gel filtration and lipoprotein fractionation revealed the presence in the plasma of PAF-binding fractions corresponding to plasma albumin as well as of low and high density lipoproteins. Incubation of PAF-containing lipoproteins with rabbit platelets resulted in a transfer of PAF to the platelets. PAF bound to plasma albumin is less exchangeable than PAF bound to lipoproteins. The PAF-transferring efficiency of high density lipoproteins (HDL) and of low density lipoproteins (LDL) correlates with the amounts of HDL- and LDL-receptors on the platelet surface. It may thus be assumed that PAF released by various cells interacts with lipoproteins which further transport the bound PAF to target cells carrying lipoprotein receptors.  相似文献   

7.
The structure of the potent inflammatory mediator, platelet-activating factor, is 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine (AGEPC, PAF-acether). Human sera contain an acid labile factor (ALF) that is a Ca+2-independent 2-acylhydrolase-specific for AGEPC and AGEPC-like molecules. The enzyme functions by catalytically removing the sn-2 acetyl moiety from AGEPC, producing the biologically inactive sn-2 hydroxy form or 2-lyso-GEPC. Incubation of ALF with sn-2 acyl PAF analogs indicated that the enzyme hydrolyzes the sn-2 fatty acid only if the chain length is five carbons or less, the sn-1 position fatty acid length is greater than 10 carbon units, and at least one methyl group is present on the terminal amine of the choline group. The enzyme was active with either an ether or ester linkage at the sn-1 position. ALF is inactivated by heating to 65 degrees C for 30 min. It is pronase and trypsin sensitive but resistant to papain and papain with dithiothreitol. Further characteristics of human ALF indicated a broad pH range of activity with an optimum of pH 6.2 and an isoelectric point of 6.2 to 6.7. The specificity and Ca+2 independence of human ALF sets it apart from phospholipase A2. It is proposed that human ALF be called human serum PAF-acylhydrolase to distinguish it from other hydrolases currently known to exist.  相似文献   

8.
The subcellular distribution of an alkyllyso-GPC: acetyl-CoA acetyltransferase (EC 2.3.1.67) and transacylase, two important enzyme activities involved in the remodeling pathway for the biosynthesis of platelet-activating factor (1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine, PAF) have been examined in leukocytes isolated from the pronephros of the rainbow trout, Oncorhynchus mykiss. Contrary to mammalian systems, in which the acetyltransferase is localized to intracellular membranes, the subcellular distribution of an acetyltransferase activity in rainbow trout leukocytes was localized to the plasma membrane. Analysis of the acetyltransferase products by thin-layer chromatography (TLC) and high performance liquid chromatography (HPLC) confirmed synthesis of two subclasses of PAF, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine and 1-acyl-2-acetyl-sn-glycero-3-phosphocholine. The transacylase activity in this study was detected in membrane fractions in two domains of the intermediate density region which also contained the NADH dehydrogenase activity, a marker enzyme for the endoplasmic reticulum. Acylation of lysoPAF (1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine) exhibited approximately 95% specificity for omega-3 fatty acids. Acylation patterns were not significantly different in either domain of the endoplasmic reticulum. A model is proposed herein for the metabolism of PAF in rainbow trout leukocytes.  相似文献   

9.
Min JH  Wilder C  Aoki J  Arai H  Inoue K  Paul L  Gelb MH 《Biochemistry》2001,40(15):4539-4549
Platelet-activating factor acetylhydrolases (PAF-AHs) are a group of enzymes that hydrolyze the sn-2 acetyl ester of PAF (phospholipase A(2) activity) but not phospholipids with two long fatty acyl groups. Our previous studies showed that membrane-bound human plasma PAF-AH (pPAF-AH) accesses its substrate only from the aqueous phase, which raises the possibility that this enzyme can hydrolyze a variety of lipid esters that are partially soluble in the aqueous phase. Here we show that pPAF-AH has broad substrate specificity in that it hydrolyzes short-chain diacylglycerols, triacylglycerols, and acetylated alkanols, and displays phospholipase A(1) activity. On the basis of all of the substrate specificity results, it appears that the minimal structural requirement for a good pPAF-AH substrate is the portion of a glyceride derivative that includes an sn-2 ester and a reasonably hydrophobic chain in the position occupied by the sn-1 chain. In vivo, pPAF-AH is bound to high and low density lipoproteins, and we show that the apparent maximal velocity for this enzyme is not influenced by lipoprotein binding and that the enzyme hydrolyzes tributyroylglycerol as well as the recombinant pPAF-AH does. Broad substrate specificity is also observed for the structurally homologous PAF-AH which occurs intracellularly [PAF-AH(II)] as well as for the PAF-AH from the lower eukaryote Physarum polycephalum although pPAF-AH and PAF-AH(II) tolerate the removal of the sn-3 headgroup better than the PAF-AH from P. polycephalum does. In contrast, the intracellular PAF-AH found in mammalian brain [PAF-AH(Ib) alpha 1/alpha 1 and alpha 2/alpha 2 homodimers] is more selectively operative on compounds with a short acetyl chain although this enzyme also displays significant phospholipase A(1) activity.  相似文献   

10.
Platelet-activating factor (PAF) is a phospholipid (1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) with diverse physiological effects. It has been implicated as a mediator of inflammation, allergy, shock, and thrombosis. Plasma contains an enzyme, PAF acetylhydrolase, that catalyzes the degradation of PAF, and the level of this enzyme may regulate the concentration of PAF in the blood and extracellular spaces under some conditions. Thus, the cellular source(s) of this enzyme and the factors that regulate its synthesis and secretion are issues that may have important physiological and pathological implications. We found that cultures of Hep G2, a human hepatocarcinoma line, secreted PAF acetylhydrolase activity. Optimal secretion occurred in medium that contained serum, and the newly secreted PAF acetylhydrolase was associated with high density and low density lipoproteins (LDL and HDL, respectively), just as the enzyme is in plasma. In the absence of serum. PAF acetylhydrolase was secreted with a particle that had a density similar to HDL. Apolipoproteins B and E were found in the same fractions. We tested the effects of a variety of hormones on the secretion of PAF acetylhydrolase and found that secretion was inhibited by 17 alpha-ethynylestradiol with a maximal effect at 30 microM. This may account for the observation of others that estrogens reduce the activity of PAF acetylhydrolase in the plasma. The PAF acetylhydrolase secreted by Hep G2 cells appeared to be identical to the enzyme in human plasma based on substrate specificity, association with LDL and HDL, response to inhibitors, and reactivity with antibodies against the plasma PAF acetylhydrolase. In conclusion, we have demonstrated that hepatocytes in culture secrete a PAF acetylhydrolase that is apparently identical to the plasma form. The secretion is constitutive but may also be regulated in response to hormonal stimulation.  相似文献   

11.
Platelet-activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) activates neutrophils (polymorphonuclear leukocytes, PMN) through a receptor that specifically recognizes short sn-2 residues. We oxidized synthetic [2-arachidonoyl]phosphatidylcholine to fragment and shorten the sn-2 residue, and then examined the phospholipid products for the ability to stimulate PMN. 1-Palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine was fragmented by ozonolysis to 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine. This phospholipid activated human neutrophils at submicromolar concentrations, and is effects were inhibited by specific PAF receptor antagonists WEB2086, L659,989, and CV3988. 1-Palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine next was fragmented by an uncontrolled free radical-catalyzed reaction: it was treated with soybean lipoxygenase to form its sn-2 15-hydroperoxy derivative (which did not activate neutrophils) and then allowed to oxidize under air. The secondary oxidation resulted in the formation of numerous fragmented phospholipids (Stremler, K. E., Stafforini, D. M., Prescott, S. M., and McIntyre, T. M. (1991) J. Biol. Chem. 266, 11095-11103), some of which activated PMN. Hydrolysis of sn-2 residues with phospholipase A2 destroyed biologic activity, as did hydrolysis with PAF acetylhydrolase. PAF acetylhydrolase is specific for short or intermediate length sn-2 residues and does not hydrolyze the starting material (Stremler, K. E., Stafforini, D. M., Prescott, S. M., and McIntyre, T. M. (1991) J. Biol. Chem. 266, 11095-11103). Neutrophil activation was completely blocked by L659,989, a specific PAF receptor antagonist. We conclude that diacylphosphatidylcholines containing an sn-2 polyunsaturated fatty acyl residue can be oxidatively fragmented to species with sn-2 residues short enough to activate the PAF receptor of neutrophils. This suggests a new mechanism for the appearance of biologically active phospholipids, and shows that PAF receptor antagonists block the action of both PAF and these PAF-like lipids.  相似文献   

12.
Platelet-activating factor (PAF) is a bioactive phospholipid (1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) synthesized by a variety of mammalian cell types. PAF induces hypotension, and activates neutrophils and platelets, among other actions. Removal of the acetyl moiety abolishes biological activity, so this reaction may regulate the concentration of PAF and its physiological effects. We have studied the significance of this reaction, which is catalyzed in vitro by an acetylhydrolase present in mammalian plasma, blood cells, and tissues. We have shown that the plasma PAF-acetylhydrolase is responsible for the degradation of PAF in whole human blood and that alternate pathways for PAF degradation in plasma or blood cells are negligible. Human plasma PAF-acetylhydrolase is associated with low and high density lipoproteins (LDL and HDL with apoE). We have confirmed that the activity is a stable component of these particles by density gradient ultracentrifugation, chromatography on heparin-agarose, and immunoprecipitation. The LDL-associated activity accounts for most or all of the PAF degradation that occurs in plasma ex vivo, while the HDL-associated activity contributes little to this process. However, the two activities likely are due to a single protein since the HDL- and LDL-associated PAF-acetylhydrolase activities can transfer from one lipoprotein to the other. These transfer processes are pH-dependent and specific, since they only occur from LDL to a well characterized subclass of HDL (apoE-containing HDL) and vice versa. We discuss the equilibrium between the two particles and the role that this process may have in vivo.  相似文献   

13.
The lipid mediators, platelet activating factor (PAF) and the eicosanoids, can be coordinately produced from the common phospholipid precursor, 1-O-alkyl-2-arachidonoylglycerophosphocholine (1-O-alkyl-2-arachidonoyl-GPC), through the initial action of a phospholipase A2 that cleaves arachidonic acid from the sn-2 position. The mouse macrophage cell line RAW 264.7, which was used as a model macrophage system to study the arachidonoyl-hydrolyzing phospholipase A2 enzyme(s), could be induced to release arachidonic acid in response to inflammatory stimuli. A phospholipase A2 that hydrolyzed 1-O-hexadecyl-2-[3H]arachidonoyl-GPC was identified in the cytosolic fraction of these macrophages. This phospholipase activity was optimal at pH 8 and dependent on calcium. Enzyme activity could be stimulated 3-fold by heparin, suggesting the presence of phospholipase inhibitory proteins in the macrophage cytosol. Compared to 1-alkyl-2-arachidonoyl-GPC, the enzyme hydrolyzed 1-acyl-2-arachidonoylglycerophosphoethanolamine (1-acyl-2-arachidonoyl-GPE) with similar activity but showed slightly greater activity against 1-acyl-2-arachidonoyl-GPC, suggesting no specificity for the sn-1 linkage or the phospholipid base group. Although comparable activity against 1-acyl-2-arachidonoylglycerophosphoinositol (1-acyl-2-arachidonoyl-GPI) could be achieved, the enzyme exhibited much lower affinity for the inositol-containing substrate. The enzyme did, however, show apparent specificity for arachidonic acid at the sn-2 position, since much lower activity was observed against choline-containing substrates with either linoleic or oleic acids at the sn-2 position. The cytosolic phospholipase A2 was purified by first precipitating the enzyme with ammonium sulfate followed by chromatography over Sephadex G150, where the phospholipase A2 eluted between molecular weight markers of 67,000 and 150,000. The active peak was then chromatographed over DEAE-cellulose, phenyl-Sepharose, Q-Sepharose, Sephadex G150 and finally hydroxylapatite. The purification scheme has resulted in over a 1000-fold increase in specific activity (2 mumol/min per mg protein). Under non-reducing conditions, a major band on SDS-polyacrylamide gels at 70 kDa was observed, which shifted to a lower molecular weight, 60,000, under reducing conditions. The properties of the purified enzyme including the specificity for sn-2-arachidonoyl-containing phospholipids was similar to that observed for the crude enzyme. The results demonstrate the presence of a phospholipase A2 in the macrophage cell line. RAW 264.7, that preferentially hydrolyzes arachidonoyl-containing phospholipid substrates.  相似文献   

14.
Interleukin 1 promotes the conversion of the biologically inactive lyso-platelet activating factor (lyso-PAF) to the bioactive platelet activating factor (PAF) by an acetylation reaction in cultured human endothelial cells. After 2 h stimulation with interleukin 1, 1-O-alkyl-2-lysoglycero-3-phosphocholine (GPC): acetyl CoA acetyltransferase is activated, reaching a plateau after 6 h and then declining to the basal value within 24 h. This time course is comparable to that of PAF production. These cells are able to incorporate [3H]acetate and [3H]lyso-PAF into PAF. Synthetized [3H]PAF is then catabolized in [3H]alkylacyl phosphoglycerides. 1-O-alkyl-2-acetylglycerol: CDP-choline cholinephosphotransferase and 1-O-alkyl-2-acetyl-GPC: acetylhydrolase activities are both present in endothelial cells, but are not activated under our conditions of stimuli. These findings indicate that interleukin 1 induces the PAF synthesis by a deacylation/reacetylation mechanism into human endothelial cells.  相似文献   

15.
The enzyme 1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine: acetyl-CoA acetyltransferase (EC 2.3.1.67) was purified from rat spleen approx. 1500-fold in 1.6% yield. The specific activity of the purified enzyme was 0.317 +/- 0.089 mumol/min per mg of protein (mean +/- S.D., n = 6). The Km for the substrate acetyl-CoA was 137 +/- 13 microM and the pH optimum was about 8. Incubation of the purified enzyme was 1-O-[3H]octadecyl-2-lyso-sn-glycero-3-phosphocholine followed by electrophoresis resulted in the incorporation of radioactivity into a protein of Mr 29,000. The enzyme was most active towards 1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine as substrate, 1-palmitoyl-2-lyso-glycero-3-phosphocholine being a poor substrate. In addition, the enzyme preferred acetyl-CoA to palmitoyl-CoA or oleoyl-CoA as substrate.  相似文献   

16.
Our study has examined platelet-activating factor (PAF) biosynthesis in neutrophils from individuals on a fish oil-enriched diet and in mast cells enriched with eicosapentaenoic acid (EPA) in vitro. Neutrophils isolated from males who were fed fish oil supplement (EPA; 2.8 g/day) for 5 wk contained large quantities of eicosapentaenoate in phosphatidylcholine (PC) and phosphatidylethanolamine and less in phosphatidylinositol. The ratio arachidonate/eicosapentaenoate in PC and phosphatidylethanolamine decreased from greater than 10 before the enriched diet to approximately 3 after the diet. The putative precursor of PAF, 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholine (1-O-alkyl-2-acyl-GPC) contained the bulk of eicosapentaenoate in PC subclasses with smaller quantities found in 1-acyl and 1-alk-1'-enyl linked species. Ionophore A23187-stimulated neutrophils produced similar quantities of PAF before and after enriched diet. Neutrophils during normal diet acylated 1-O-alkyl-2-lyso-GPC only with arachidonate whereas neutrophils from individuals on enriched diet transferred both arachidonate and eicosapentaenoate into exogenously-provided 1-O-alkyl-2-lyso-GPC. This allowed for the labeling of neutrophils with 1-O-[3H]-alkyl-2-arachidonoyl-GPC (before diet) as well as neutrophils with 1-O-[3H]-alkyl-2-eicosapentaenoyl-GPC and 1-O-[3H]-alkyl-2-arachidonoyl-GPC (after diet). Neutrophils after diet converted similar quantities of these labeled precursors to labeled PAF upon stimulation as those before the diet. Analysis of the nature of the long chain acyl residue remaining in the sn-2 position of 1-alkyl-2-acyl-GPC after cell stimulation indicated that arachidonate and eicosapentaenoate were both released from 1-O-alkyl-2-acyl-GPC at comparable rates. Finally, in vitro supplementation of murine mast cells (PT-18) with arachidonic acid or EPA caused a marked increase in the amount of PAF produced by the cell without having any effect on histamine release. Data from these experiments suggest that EPA is incorporated into a PAF precursor pool. However, this appears not to inhibit PAF production because phospholipase A2 can use eicosapentaenoate- as well as arachidonate-containing phospholipids in the initial step of PAF biosynthesis.  相似文献   

17.
The molecular heterogeneity of platelet-activating factor (PAF) synthesized by unstimulated and Ca2+ ionophore (A23187)-stimulated PMN from rat, mouse, and guinea pig and by rat basophilic leukemia (RBL) cells was investigated by gas chromatography-negative ion chemical ionization mass spectrometry. Several molecular species of PAF ranging from C14:0 to C19:0 were detected in all of the cells studied. PAF produced by each cell type exhibited a unique pattern of molecular species distribution. Although C16:0 was the major PAF molecular species of rat PMN and RBL cells representing 96% and 85% of the total PAF, respectively, PAF from mice PMN contained 81% of C16:0, 10% of C18:1, and 6% of C18:0. Alternatively, A23187-stimulated guinea pig PMN yielded PAF molecular species 35% in C16:0, 35% in C17:0, 8% in C18:1, and 3% in C18:0. Small but significant differences in the PAF molecular species distribution of resting and ionophore stimulated cells were also observed. In contrast to the PAF molecular species composition, the precursor 1-O-alkyl-2-acyl-glycero-3-phosphocholine of all the cell types was predominantly hexadecyl (C16:0) alkyl chain in the sn-1 position, representing 60 to 80% of the total 1-O-alkyl-2-acyl-glycero-3-phosphocholine. Thus, these results not only indicate a high degree of selectivity for utilization of precursor substrates for PAF biosynthesis, but also demonstrate that the selectivity is species specific.  相似文献   

18.
The existence of an intracellular phospholipase A2 (PLA2) involved in the production of 1-O-alkyl-sn-glycero-3-phosphocholine and free arachidonic acid has been repeatedly postulated. Using 1-O-hexadecyl-2-[3H]arachidonoyl-sn-glycero-3-phosphocholine as a substrate and a series of conventional and high-pressure liquid chromatographic techniques, we have purified a PLA2 from the soluble fraction of differentiated human monocytic U937 cells. The enzyme has been purified nearly 2000-fold to homogeneity. The purified enzyme has a molecular mass of 56 kDa, under reducing conditions, by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. The enzyme activity has a pH optimum of 8.0 and is calcium concentration-dependent. The EC50 for the activation of the enzyme activity by calcium is 300 nM. When the cells were homogenized in the presence of the calcium chelator EGTA (0.2 mM), the enzyme was found to be soluble (more than 90% of the activity in the 100,000 x g supernatant). However, when Ca2+ concentration was controlled from 10 nM to 100 microM in Ca2(+)-EGTA buffers, increasing amounts of the activity were found in the particulate fraction (100,000 x g pellet). This suggests that membrane translocation and activation of the soluble PLA2 may be regulated by physiological intracellular levels of Ca2+. The purified enzyme hydrolyzed different phosphatidylcholine substrates presented in either vesicular or Triton X-100 mix micellar forms. In both situations, the enzyme showed a high degree of specificity for arachidonic acid on the sn-2 position of the substrate. Substitution of palmitic or oleic on the sn-2 position substantially reduced the hydrolytic activity of the enzyme. When vesicles of arachidonic acid-containing phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol were presented to the purified enzyme, all of them were hydrolyzed with comparable efficiency. However, only phosphatidylcholine and phosphatidylinositol were hydrolyzed when presented in Triton X-100 mixed micelles.  相似文献   

19.
A phospholipase A2 activity directed against phosphatidylcholine was previously described in brush-border membrane from guinea pig intestine (Diagne, A., Mitjavila, S., Fauvel, J., Chap, H., and Douste-Blazy, L. (1987) Lipids 22, 33-40). In the present study, this enzyme was solubilized either with Triton X-100 or upon papain treatment, suggesting a structural similarity with other intestinal hydrolases such as leucine aminopeptidase, sucrase, or trehalase. The papain-solubilized form, which is thought to lack the short hydrophobic tail responsible for membrane anchoring, was purified 1800-fold to about 90% purity by ion exchange chromatography on DEAE-Sephacel, gel filtration on Ultrogel AcA44, and hydrophobic chromatography on phenyl-Sepharose. Upon polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, a main band with an apparent molecular mass of 97 kDa was detected under reducing and nonreducing conditions. In the latter case, phospholipase A2 activity could be recovered from the gel and was shown to coincide with the 97-kDa protein detected by silver staining. The enzyme activity was unaffected by EGTA and slightly inhibited by CaCl2. The purified enzyme displayed a similar activity against phosphatidylcholine and phosphatidylethanolamine, whereas 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholine hydrolysis was reduced by 50% compared to diacylglycerophospholipids. Using phosphatidylcholine labeled with either [3H]palmitic acid or [14C]linoleic acid in the 1- or 2-positions, respectively, the purified enzyme catalyzed the removal of [3H]palmitic acid, although at a lower rate compared to [14C]linoleic acid. This resulted in the formation of sn-glycero-3-phosphocholine, but only 1-[3H]palmitoyl-sn-glycero-3-phosphocholine was detected as an intermediary product. In agreement with this, 1-acyl-2-lyso-sn-[14C]glycero-3-phosphocholine was deacylated at almost the same rate as the sn-2-position of phosphatidylcholine. Since upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the two hydrolytic activities were detected at the same position as 97-kDa protein, the enzyme is thus considered as a phospholipase A2 with lysophospholipase activity (phospholipase B), which might be involved in phospholipid digestion.  相似文献   

20.
Vasodepressor phospholipid with platelet-aggregating activity was highly purified from a lipid extract of bovine brain and subjected to field desorption-mass spectrometry. It was further analyzed by gas-liquid chromatography-mass spectrometry after hydrolysis with phospholipase C and conversion to tert-butyldimethylsilyl derivatives. Results indicated the presence of four species of platelet activating factor (1-0-alkyl-2-acetyl-sn-glycero-3-phosphocholine, PAF) and ten acyl analogues of PAF. The acyl analogues of PAF included species having an sn-2-propionyl or sn-2-butyryl group, which have not been previously detected in natural sources. The total amount of acyl analogues of PAF was much higher than that of PAF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号