首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The HIV-1 regulatory proteins Tat and Rev are encoded by multiply spliced mRNAs that differ by the use of alternative 3' splice sites at the beginning of the internal exon. If these internal exons are skipped, the expression of these genes, and hence HIV-1 multiplication, should be inhibited. We have previously developed a strategy, based on antisense derivatives of U7 small nuclear RNA, that allows us to induce the skipping of an internal exon in virtually any gene. Here, we have successfully applied this approach to induce a partial skipping of the Tat, Rev (and Nef) internal exons. Three functional U7 constructs were subcloned into a lentiviral vector. Two of them strongly reduced the efficiency of lentiviral particle production compared to vectors carrying either no U7 insert or unrelated U7 cassettes. This defect could be partly or fully compensated by coexpressing Rev from an unspliced mRNA in the producing cell line. Upon stable transduction into CEM-SS or CEM T-lymphocytes, the most efficient of these constructs inhibits HIV-1 multiplication. Although the inhibition is not complete, it is more efficient in combination with another mechanism inhibiting HIV multiplication. Therefore, this new approach targeting HIV-1 regulatory genes at the level of pre-mRNA splicing, in combination with other antiviral strategies, may be a useful new tool in the fight against HIV/AIDS.  相似文献   

3.
Argonaute 2 (Ago2) is the only mammalian Ago protein capable of mRNA cleavage. It has been reported that the activity of the short interfering RNA targeting coding sequence (CDS), but not 3′ untranslated region (3′UTR) of an mRNA, is solely dependent on Ago2 in vitro. These studies utilized extremely high doses of siRNAs and overexpressed Ago proteins, as well as were directed at various highly expressed reporter transgenes. Here we report the effect of Ago2 in vivo on targeted knockdown of several endogenous genes by siRNAs, targeting both CDS and 3′UTR. We show that siRNAs targeting CDS lose their activity in the absence of Ago2, whereas both Ago1 and Ago3 proteins contribute to residual 3′UTR-targeted siRNA-mediated knockdown observed in the absence of Ago2 in mouse liver. Our results provide mechanistic insight into two components mediating RNAi under physiological conditions: mRNA cleavage dependent and independent. In addition our results contribute a novel consideration for designing most efficacious siRNA molecules with the preference given to 3′UTR targeting as to harness the activity of several Ago proteins.  相似文献   

4.
Competition for RISC binding predicts in vitro potency of siRNA   总被引:4,自引:3,他引:1  
Short interfering RNAs (siRNA) guide degradation of target RNA by the RNA-induced silencing complex (RISC). The use of siRNA in animals is limited partially due to the short half-life of siRNAs in tissues. Chemically modified siRNAs are necessary that maintain mRNA degradation activity, but are more stable to nucleases. In this study, we utilized alternating 2′-O-methyl and 2′-deoxy-2′-fluoro (OMe/F) chemically modified siRNA targeting PTEN and Eg5. OMe/F-modified siRNA consistently reduced mRNA and protein levels with equal or greater potency and efficacy than unmodified siRNA. We showed that modified siRNAs use the RISC mechanism and lead to cleavage of target mRNA at the same position as unmodified siRNA. We further demonstrated that siRNAs can compete with each other, where highly potent siRNAs can compete with less potent siRNAs, thus limiting the ability of siRNAs with lower potency to mediate mRNA degradation. In contrast, a siRNA with low potency cannot compete with a highly efficient siRNA. We established a correlation between siRNA potency and ability to compete with other siRNAs. Thus, siRNAs that are more potent inhibitors for mRNA destruction have the potential to out-compete less potent siRNAs indicating that the amount of a cellular component, perhaps RISC, limits siRNA activity.  相似文献   

5.
RNA interference (RNAi) has become an invaluable tool for functional genomics. A critical use of this tool depends on an understanding of the factors that determine the specificity and activity of the active agent, small interfering RNA (siRNA). Several studies have concluded that tolerance of mutations can be considerable and hence lead to off-target effects. In this study, we have investigated in vivo the toleration of wobble (G:U) mutations in high activity siRNAs against Flap Endonuclease 1 (Fen1) and Aquaporin-4 (Aqp4). Mutations in the central part of the antisense strand caused a pronounced decrease in activity, while mutations in the 5′ and 3′ends were tolerated very well. Furthermore, based on analysis of nine different mutated siRNAs with widely differing intrinsic activities, we conclude that siRNA activity can be significantly enhanced by wobble mutations (relative to mRNA), in the 5′ terminal of the antisense strand. These findings should facilitate design of active siRNAs where the target mRNA offers limited choice of siRNA positions.  相似文献   

6.
Small hairpin RNAs (shRNAs) with 19-base-pair, or shorter, stems (short shRNAs [sshRNAs]) have been found to constitute a class whose mechanism of action appears to be distinct from that of small interfering RNAs (siRNAs) or longer shRNAs. These sshRNAs can be as active as canonical siRNAs or longer shRNAs. Their activity is affected by whether the antisense strand is positioned 5′ or 3′ to the loop (L or R sshRNAs, respectively). Dicer seems not to be involved in the processing of sshRNAs, although the mechanism of target gene suppression by these hairpins is through Ago2-mediated mRNA cleavage. In this study, the effects of chemical modifications on the potency, serum stability, and innate immune response of sshRNAs were investigated. Deoxynucleotide substitution and 2′-O-methyl (2′-OMe) modification in the sense strand and loop did not affect silencing activity, but, unlike with siRNAs, when placed in the antisense strand these modifications were detrimental. Conjugation with bulky groups at the 5′-end of L sshRNAs or 3′-end of R sshRNAs had a negative impact on the potency. Unmodified sshRNAs in dimer form or with blunt ends were immunostimulatory. Some modifications such as 3′-end conjugation and phosphorothioate linkages on the backbone of the sshRNAs could also induce inflammatory cytokine production. However, 2′-OMe substitution of sshRNAs abrogated the innate immune response and improved the serum stability of the hairpins.  相似文献   

7.
Locked nucleic acids (LNAs) and double-stranded small interfering RNAs (siRNAs) are rather new promising antisense molecules for cell culture and in vivo applications. Here, we compare LNA–DNA–LNA gapmer oligonucleotides and siRNAs with a phosphorothioate and a chimeric 2′-O-methyl RNA–DNA gapmer with respect to their capacities to knock down the expression of the vanilloid receptor subtype 1 (VR1). LNA–DNA–LNA gapmers with four or five LNAs on either side and a central stretch of 10 or 8 DNA monomers in the center were found to be active gapmers that inhibit gene expression. A comparative co-transfection study showed that siRNA is the most potent inhibitor of VR1–green fluorescent protein (GFP) expression. A specific inhibition was observed with an estimated IC50 of 0.06 nM. An LNA gapmer was found to be the most efficient single-stranded antisense oligonucleotide, with an IC50 of 0.4 nM being 175-fold lower than that of commonly used phosphorothioates (IC50 ~70 nM). In contrast, the efficiency of a 2′-O-methyl-modified oligonucleotide (IC50 ~220 nM) was 3-fold lower compared with the phosphorothioate. The high potency of siRNAs and chimeric LNA–DNA oligonucleotides make them valuable candidates for cell culture and in vivo applications targeting the VR1 mRNA.  相似文献   

8.
The nuclear antisense properties of a series of tricyclo (tc)-DNA oligonucleotide 9–15mers, targeted against the 3′ and 5′ splice sites of exon 4 of cyclophilin A (CyPA) pre-mRNA, were evaluated in HeLa cells and compared with those of corresponding LNA-oligonucleotides. While the 9mers showed no significant antisense effect, the 11–15mers induced exon 4 skipping and exon 3+4 double skipping to about an equal extent upon lipofectamine mediated transfection in a sequence- and dose-dependent manner, as revealed by a RT–PCR assay. The antisense efficacy of the tc-oligonucleotides was found to be superior to that of the LNA-oligonucleotides in all cases by a factor of at least 4–5. A tc-oligonucleotide 15mer completely abolished CyPA mRNA production at 0.2 µM concentration. The antisense effect was confirmed by western blot analysis which revealed a reduction in CyPA protein to 13% of its normal level. Fluorescence microscopic investigations with a fluorescein labeled tc-15mer revealed a strong propensity for homogeneous nuclear localization of this backbone type after lipofectamine mediated transfection, while the corresponding lna 15mer showed a less clear cellular distribution pattern. Transfection without lipid carrier showed no significant internalization of both tc- and LNA- oligonucleotides. The obtained results confirm the power of tc-DNA for nuclear antisense applications. Moreover, CyPA may become an interesting therapeutic target due to its important role in the early steps of the viral replication of HIV-1.  相似文献   

9.
siRNA-directed inhibition of HIV-1 infection   总被引:133,自引:0,他引:133  
RNA interference silences gene expression through short interfering 21 23-mer double-strand RNA segments that guide mRNA degradation in a sequence-specific fashion. Here we report that siRNAs inhibit virus production by targeting the mRNAs for either the HIV-1 cellular receptor CD4, the viral structural Gag protein or green fluorescence protein substituted for the Nef regulatory protein. siRNAs effectively inhibit pre- and/or post-integration infection events in the HIV-1 life cycle. Thus, siRNAs may have potential for therapeutic intervention in HIV-1 and other viral infections.  相似文献   

10.
Small non-coding RNAs of 18–25 nt in length can regulate gene expression through the RNA interference (RNAi) pathway. To characterize small RNAs in HIV-1-infected cells, we performed linker-ligated cloning followed by high-throughput pyrosequencing. Here, we report the composition of small RNAs in HIV-1 productively infected MT4 T-cells. We identified several HIV-1 small RNA clones and a highly abundant small 18-nt RNA that is antisense to the HIV-1 primer-binding site (PBS). This 18-nt RNA apparently originated from the dsRNA hybrid formed by the HIV-1 PBS and the 3′ end of the human cellular tRNAlys3. It was found to associate with the Ago2 protein, suggesting its possible function in the cellular RNAi machinery for targeting HIV-1.  相似文献   

11.
Promoter choice affects the potency of HIV-1 specific RNA interference   总被引:25,自引:4,他引:21       下载免费PDF全文
RNA interference (RNAi) is mediated by small interfering (si) RNAs that target and degrade mRNA in a sequence-specific manner. Cellular expression of siRNA can be achieved by the use of expression cassettes driven by RNA polymerase III (pol III) promoters. Here, we demonstrate that a modified tRNAmet-derived (MTD) promoter effectively drives the cellular expression of HIV-1-specific siRNA. We observed up to 56% greater inhibition of virus production when the MTD promoter was used to drive the expression of short hairpin (sh) RNA targeting the HIV-1 transactivator protein tat compared to cassettes containing other pol III promoters such as H1, U6+1 and U6+27. We conclude that the MTD promoter is ideally suited to drive intracellular expression of HIV-1 specific siRNA and may serve as an important component of future RNAi vector delivery systems.  相似文献   

12.
The 5′-cap structure of most spliceosomal small nuclear RNAs (snRNAs) and certain small nucleolar RNAs (snoRNAs) undergoes hypermethylation from a 7-methylguanosine to a 2,2,7-trimethylguanosine structure. 5′-Cap hypermethylation of snRNAs is dependent upon a conserved sequence element known as the Sm site common to most snRNAs. Here we have performed a mutational analysis of U3 and U14 to determine the cis-acting sequences required for 5′-cap hypermethylation of Box C/D snoRNAs. We have found that both the conserved sequence elements Box C (termed C′ in U3) and Box D are necessary for cap hypermethylation. Furthermore, the terminal stem structure that is formed by sequences that flank Box C (C′ in U3) and Box D is also required. However, mutation of other conserved sequences has no effect on hypermethylation of the cap. Finally, the analysis of fragments of U3 and U14 RNAs indicates that the Box C/D motif, including Box C (C′ in U3), Box D and the terminal stem, is capable of directing cap hypermethylation. Thus, the Box C/D motif, which is important for snoRNA processing, stability, nuclear retention, protein binding, nucleolar localization and function, is also necessary and sufficient for cap hypermethylation of these RNAs.  相似文献   

13.
Small interfering RNAs regulate gene expression in diverse biological processes, including heterochromatin formation and DNA elimination, developmental regulation, and cell differentiation. In the single-celled eukaryote Entamoeba histolytica, we have identified a population of small RNAs of 27 nt size that (i) have 5′-polyphosphate termini, (ii) map antisense to genes, and (iii) associate with an E. histolytica Piwi-related protein. Whole genome microarray expression analysis revealed that essentially all genes to which antisense small RNAs map were not expressed under trophozoite conditions, the parasite stage from which the small RNAs were cloned. However, a number of these genes were expressed in other E. histolytica strains with an inverse correlation between small RNA and gene expression level, suggesting that these small RNAs mediate silencing of the cognate gene. Overall, our results demonstrate that E. histolytica has an abundant 27 nt small RNA population, with features similar to secondary siRNAs from C. elegans, and which appear to regulate gene expression. These data indicate that a silencing pathway mediated by 5′-polyphosphate siRNAs extends to single-celled eukaryotic organisms.  相似文献   

14.
15.
16.
Synthetic 21-bp-long short interfering RNAs (siRNA) can stimulate sequence-specific mRNA degradation in mammalian cell cultures, a process referred to as RNA interference (RNAi). In the present study, the potential of RNAi was compared to the traditional antisense approach, acting mainly via RnaseH, for targeting the recombinant rat pain-related cation-channel P2X3 expressed in CHO-K1 and a rat brain tumour-derived cell line, 33B. Downregulation of the P2X3 receptor was evaluated at the mRNA, protein, and functional levels. In this study, four siRNA duplexes induced up to 95% sequence-specific inhibition of the P2X3 mRNA, independent of the type of 2 nt 3′-overhang modification and the location of the targeted sequences. Furthermore, we detected and characterised an independent combinatorial effect of antisense oligonucleotides (ASOs) and RNAi-mediated specific inhibition of the P2X3 receptor. Enhanced downregulation was observed only when siRNA was combined with nonhomologous ASO, targeting distant regions on the common P2X3 mRNA. The two reagents resulted in more efficient downregulation of P2X3 mRNA when administered in combination rather than separately. To our knowledge, this is the first investigation at the molecular level of the potential benefits of mixed antisense and RNAi-mediated treatment for inhibiting expression of a medically relevant pain-related gene.  相似文献   

17.
RNA polymerase III (Pol III) expression systems for short hairpin RNAs (U6 shRNAs or chimeric VA1 shRNAs) or individually expressed sense/antisense small interfering RNA (siRNA) strands have been used to trigger RNA interference (RNAi) in mammalian cells. Here we show that individually expressed siRNA expression constructs produce 21-nucleotide siRNAs that strongly accumulate as duplex siRNAs in the nucleus of human cells, exerting sequence-specific silencing activity similar to cytoplasmic siRNAs derived from U6 or VA1-expressed hairpin precursors. In contrast, 29-mer siRNAs separately expressed as sense/antisense strands fail to elicit RNAi activity, despite accumulation of these RNAs in the nucleus. Our findings delineate different intracellular accumulation patterns for the three expression strategies and suggest the possibility of a nuclear RNAi pathway that requires 21-mer duplexes.  相似文献   

18.
RNA interference is mediated by small interfering RNAs (siRNAs) that upon incorporation into the RNA-induced silencing complex (RISC) can target complementary mRNA for degradation. Standard siRNA design usually feature a 19–27 base pair contiguous double-stranded region that is believed to be important for RISC incorporation. Here, we describe a novel siRNA design composed of an intact antisense strand complemented with two shorter 10–12 nt sense strands. This three-stranded construct, termed small internally segmented interfering RNA (sisiRNA), is highly functional demonstrating that an intact sense strand is not a prerequisite for RNA interference. Moreover, when using the sisiRNA design only the antisense strand is functional in activated RISC thereby completely eliminating unintended mRNA targeting by the sense strand. Interestingly, the sisiRNA design supports the function of chemically modified antisense strands, which are non-functional within the context of standard siRNA designs. This suggests that the sisiRNA design has a clear potential of improving the pharmacokinetic properties of siRNA in vivo.  相似文献   

19.
Single-stranded antisense siRNAs guide target RNA cleavage in RNAi   总被引:75,自引:0,他引:75  
Small interfering RNAs (siRNAs) are the mediators of mRNA degradation in the process of RNA interference (RNAi). Here, we describe a human biochemical system that recapitulates siRNA-mediated target RNA degradation. By using affinity-tagged siRNAs, we demonstrate that a single-stranded siRNA resides in the RNA-induced silencing complex (RISC) together with eIF2C1 and/or eIF2C2 (human GERp95) Argonaute proteins. RISC is rapidly formed in HeLa cell cytoplasmic extract supplemented with 21 nt siRNA duplexes, but also by adding single-stranded antisense RNAs, which range in size between 19 and 29 nucleotides. Single-stranded antisense siRNAs are also effectively silencing genes in HeLa cells, especially when 5'-phosphorylated, and expand the repertoire of RNA reagents suitable for gene targeting.  相似文献   

20.
Small interfering RNAs (siRNAs) are short, double-stranded RNAs that use the endogenous RNAi pathway to mediate gene silencing. Phosphorylation facilitates loading of a siRNA into the Ago2 complex and subsequent cleavage of the target mRNA. In this study, 2′, 3′ seco nucleoside modifications, which contain an acylic ribose ring and are commonly called unlocked nucleic acids (UNAs), were evaluated at all positions along the guide strand of a siRNA targeting apolipoprotein B (ApoB). UNA modifications at positions 1, 2 and 3 were detrimental to siRNA activity. UNAs at positions 1 and 2 prevented phosphorylation by Clp1 kinase, abrogated binding to Ago2, and impaired Ago2-mediated cleavage of the mRNA target. The addition of a 5′-terminal phosphate to siRNA containing a position 1 UNA restored ApoB mRNA silencing, Ago2 binding, and Ago2 mediated cleavage activity. Position 1 UNA modified siRNA containing a 5′-terminal phosphate exhibited a partial restoration of siRNA silencing activity in vivo. These data reveal the complexity of interpreting the effects of chemical modification on siRNA activity, and exemplify the importance of using multiple biochemical, cell-based and in vivo assays to rationally design chemically modified siRNA destined for therapeutic use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号