首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Endocannabinoids primarily influence neuronal synaptic communication within the nervous system. To exert their function, endocannabinoids need to travel across the intercellular space. However, how hydrophobic endocannabinoids cross cell membranes and move extracellularly remains an unresolved problem. Here, we show that endocannabinoids are secreted through extracellular membrane vesicles produced by microglial cells. We demonstrate that microglial extracellular vesicles carry on their surface N-arachidonoylethanolamine (AEA), which is able to stimulate type-1 cannabinoid receptors (CB1), and inhibit presynaptic transmission, in target GABAergic neurons. This is the first demonstration of a functional role of extracellular vesicular transport of endocannabinoids.  相似文献   

4.
ABSTRACT

Bacteria can communicate through diffusible signaling molecules that are perceived by cognate receptors. It is now well established that bacterial communication regulates hundreds of genes. Hydrophobic molecules which do not diffuse in aqueous environments alone have been identified in bacterial communication, that raised the question on how these molecules are transported between cells and trigger gene expressions. Recent studies show that these hydrophobic signaling molecules, including a long-chain N-acyl homoserine lactone signal produced in Paracoccus denitrificans, are carried by membrane vesicles (MVs). MVs were thought to be formed only through the blebbing of the cell membrane, but new findings in Pseudomonas aeruginosa and Bacillus subtilis revealed that different types of MVs can be formed through explosive cell lysis or bubbling cell death, which findings have certain implications on our view of bacterial interactions.  相似文献   

5.
Hemoglobin has been studied and well characterized in red blood cells for over 100 years. However, new work has indicated that the hemoglobin α subunit (Hbα) is also found within the blood vessel wall, where it appears to localize at the myoendothelial junction (MEJ) and plays a role in regulating nitric oxide (NO) signaling between endothelium and smooth muscle. This discovery has created a new paradigm for the control of endothelial nitric oxide synthase activity, nitric oxide diffusion, and, ultimately, vascular tone and blood pressure. This review discusses the current knowledge of hemoglobin׳s properties as a gas exchange molecule in the bloodstream and extrapolates the properties of Hbα biology to the MEJ signaling domain. Specifically, we propose that Hbα is present at the MEJ to regulate NO release and diffusion in a restricted physical space, which would have powerful implications for the regulation of blood flow in peripheral resistance arteries.  相似文献   

6.
A number of nuclear receptors are involved in maintenance of normal vessel wall physiology as well as in pathophysiological processes such as atherosclerosis, restenosis and remodelling. Recent studies revealed a previously unrecognized function of the NR4A subfamily of nuclear receptors as key regulatory proteins in vascular disease. The NR4A subfamily comprises the members Nur77, Nurr1 and NOR-1 and in the current review a comprehensive overview is given of the data supporting functional involvement of these nuclear receptors in three major cell types in vascular (patho)physiology; endothelial cells, smooth muscle cells and monocytes-macrophages.  相似文献   

7.
Toxoplasma gondii infects a wide range of hosts worldwide, including humans and domesticated animals causing toxoplasmosis disease. Recently, exosomes, small extracellular vesicles (EV) that contain nucleic acids, proteins, and lipids derived from their original cells were linked with disease protection. The effect of EVs derived from T. gondii on the immune response and its relevance in a physiological context is unknown. Here we disclose the first proteomic profiling of T. gondii EVs compared to EVs isolated from a human foreskin fibroblast infected cell line cultured in a vesicle‐free medium. Our results reveal a broad range of canonical exosomes proteins. Data are available via ProteomeXchange with the identifier PXD004895.  相似文献   

8.
9.
Amyloid at the blood vessel wall   总被引:5,自引:0,他引:5  
Hardy J  Cullen K 《Nature medicine》2006,12(7):756-757
  相似文献   

10.
11.
Exosomes: small vesicles participating in intercellular communication   总被引:1,自引:0,他引:1  
Exosomes are small membrane vesicles, which eukaryotic cells secrete into their extracellular environment. They are formed as intraluminal vesicles by inward budding of the limiting membrane into the lumen of late endosomes. Upon fusion of thus arising multivesicular bodies with the plasma membrane, these vesicles are released as exosomes and enter body fluids such as blood plasma, urine and saliva. Containing certain combinations of lipids, adhesion and intercellular signaling molecules as well as RNAs, exosomes participate in intercellular communication processes. Depending on their origin, exosomes can modulate immune-regulatory processes, set up tumor escape mechanisms and mediate regenerative or degenerative processes, amongst others. In summary, exosomes are molecular complex intercellular signaling organelles with multiple functions, which appear as promising new tools for the clinical diagnostics and potentially for novel therapeutic strategies.  相似文献   

12.
Rheological aspects of platelet-vessel wall interactions involve cell-cell encounters, platelet - vessel wall encounters and platelet-thrombus interactions. The cell-cell encounters are usually caused by convection of cells in shear flows rather than by Brownian motion; this is important in aggregation and in the enhancement of the diffusion of platelets by red cell motion. Platelet - vessel wall interactions can involve transient adhesion (lasting from a fraction of a second to a few minutes) as well as more permanent adhesion. Reaction rates between platelets and walls are generally very small except on damaged vessels and some artificial surfaces. Ultra-filtration through the vessel wall affects cell-wall interactions. Rheological analyses of thrombus formation have been made and shown interesting relations to experimental observations. Some experimental results have indicated that platelets are capable of reacting within a small fraction of a second. Red cells may act as mechanoreceptors for increases in shear rate and facilitate the speed of response of platelets. Surface geometrical forms such as bumps and cavities tend to prolong residence times and facilitate thrombus formation.  相似文献   

13.
The transmural distributions of stress and strain at the in vivo state have important implications for the physiology and pathology of the vessel wall. The uniform transmural strain hypothesis was proposed by Takamyzawa and Hayashi (Takamizawa K and Hayashi K. J Biomech 20: 7-17, 1987; Biorheology 25: 555-565, 1988) as describing the state of arteries in vivo. From this hypothesis, they derived the residual stress and strain at the no-load condition and the opening angle at the zero-stress state. However, the experimental evidence cited by Takamyzawa and Hayashi (J Biomech 20: 7-17, 1987; and Biorheology 25: 555-565, 1988) to support this hypothesis was limited to arteries whose opening angles (theta) are <180 degrees. It is well known, however, that theta > 180 degrees do exist in the cardiovascular system. Our hypothesis is that the transmural strain distribution cannot be uniform when theta; is >180 degrees. We present both theoretical and experimental evidence for this hypothesis. Theoretically, we show that the circumferential stretch ratio cannot physically be uniform across the vessel wall when theta; exceeds 180 degrees and the deviation from uniformity will increase with an increase in theta; beyond 180 degrees. Experimentally, we present data on the transmural strain distribution in segments of the porcine aorta and coronary arterial tree. Our data validate the theoretical prediction that the outer strain will exceed the inner strain when theta > 180 degrees. This is the converse of the gradient observed when the residual strain is not taken into account. Although the strain distribution may not be uniform when theta exceeds 180 degrees, the uniformity of stress distribution is still possible because of the composite nature of the blood vessel wall, i.e., the intima-medial layer is stiffer than the adventitial layer. Hence, the larger strain at the adventitia can result in a smaller stress because the adventitia is softer at physiological loading.  相似文献   

14.
A large body of evidence has implicated amyloid precursor protein (APP) and its proteolytic derivatives as key players in the physiological context of neuronal synaptogenesis and synapse maintenance, as well as in the pathology of Alzheimer's Disease (AD). Although APP processing and release are known to occur in response to neuronal stimulation, the exact mechanism by which APP reaches the neuronal surface is unclear. We now demonstrate that a small but relevant number of synaptic vesicles contain APP, which can be released during neuronal activity, and most likely represent the major exocytic pathway of APP. This novel finding leads us to propose a revised model of presynaptic APP trafficking that reconciles existing knowledge on APP with our present understanding of vesicular release and recycling.  相似文献   

15.
16.
The biotechnology for in vitro embryo production is becoming increasingly popular, being applied to humans and domestic animals. Embryo development can be achieved with either 20% or 5% oxygen tension. The extracellular vesicles (EVs) are secreted by different cell types and carry bioactive materials. Our objective was to determine the secretion pattern and micro RNA (miRNA) contents of EVs released in the bovine embryo culture environment—embryo and cumulus cell monolayer—on Days 3 and 7 of in vitro culture under two different oxygen tensions: High (20%) and low (5%). The EVs were isolated from the medium and analyzed to determine size, concentration, and miRNA levels. EVs concentration in low oxygen tension increased on Day 3 and decreased on Day 7. Additionally, altered EV miRNAs derived from the embryo‐cumulus culture medium were predicted to regulate survival and proliferation‐related pathways on Days 3 and 7. Moreover, miR‐210 levels decreased in EVs isolated from the culture medium under high oxygen tension suggesting that this miRNA can be used as a marker for normoxia since it is associated with low oxygen tension. In summary, this study provides knowledge of the oxygen tension effects on EVs release and content, and potentially, on cell‐to‐cell communication during in vitro bovine embryo production.  相似文献   

17.
18.
Atherosclerosis is intimately coupled to blood flow by the presence of predilection sites. The coupling is through mechanotransduction of endothelial cells and approximately 2000 gene are associated with this process. This paper describes a new platform to study and identify new signalling pathways in endothelial cells covering an atherosclerotic plaque. The identified networks are synthesized in primary cells to study their reaction to flow. This synthetic approach might lead to new insights and drug targets.  相似文献   

19.
Forty-nine patients with decreased fibrinolytic activity in the vessel walls or a decreased release mechanism, or both, were treated with ethyloestrenol for three to 17 months. Forty-five of the patients had had recurrent, phlebographically verified, deep venous thrombosis (DVT) and four had arterial thrombosis. Ethyloestrenol 8 mg/day was given to 31 patients and 4 mg/day was given to 12. The remaining six patients had been treated with a combination of phenformin and ethloestrenol. The phenformin was withdrawn but they were kept on ethyloestrenol 8 mg/day. Another 15 patients with a normal fibrinolytic system--four with recurrent DVT and 11 with severe arteriosclerosis--were given ethyloestrenol 8 mg/day. The spontaneous fibrinolytic activity, local fibrinolytic activity during standardised venous occlusion of the arms, and fibrinolytic activity of the vessel walls increased significantly after treatment with ethyloestrenol 8 mg/day for three months. No further increase occurred after three months, and ethyloestrenol 4 mg/day had no effect. No values rose significantly in the patients with a normal fibrinolytic system. One patient suffered a recurrence within three months of treatment, before the fibrinolytic system became normal. In one patient the fibrinolytic defect reappeared after 10 months in spite of continued treatment. Two of the three women of fertile age developed irregular cycles and intermenstrual bleeding, which disappeared when the treatment was withdrawn. No other side effects were observed.  相似文献   

20.
Heparanase, the sole mammalian endoglycosidase degrading heparan sulfate, is causally involved in cancer metastasis, angiogenesis, inflammation and kidney dysfunction. Despite the wide occurrence and impact of heparan sulfate proteoglycans in vascular biology, the significance of heparanase in vessel wall disorders is underestimated. Blood vessels are highly active structures whose morphology rapidly adapts to maintain vascular function under altered systemic and local conditions. In some pathologies (restenosis, thrombosis, atherosclerosis) this normally beneficial adaptation may be detrimental to overall function. Enzymatic dependent and independent effects of heparanase on arterial structure mechanics and repair closely regulate arterial compliance and neointimal proliferation following endovascular stenting. Additionally, heparanase promotes thrombosis after vascular injury and contributes to a pro-coagulant state in human carotid atherosclerosis. Importantly, heparanase is closely associated with development and progression of atherosclerotic plaques, including stable to unstable plaque transition. Consequently, heparanase levels are markedly increased in the plasma of patients with acute myocardial infarction. Noteworthy, heparanase activates macrophages, resulting in marked induction of cytokine expression associated with plaque progression towards vulnerability. Together, heparanase emerges as a regulator of vulnerable lesion development and potential target for therapeutic intervention in atherosclerosis and related vessel wall complications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号