首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
We report the overexpression, purification, and properties of the regulatory protein, GlnR, for glutamine synthetase synthesis of Bacillus cereus. The protein was found to be a dimer with a molecular weight of approximately 30,000, and its subunit molecular weight was 15,000 in agreement with that (15,025) of deduced amino acid sequence of GlnR. The purified GlnR protein bound specifically to the promoter region of the glnRA operon of B. cereus and Bacillus subtilis. The binding of the GlnR protein to the DNA fragment was enhanced by the presence of glutamine synthetase, the product of glnA, of B. cereus or B. subtilis, although the affinity of the GlnR protein for DNA was not affected in the presence of glutamate, glutamine, Mg2+, Mn2+, or ammonia. These results indicate the existence of an interaction between GlnR and glutamine synthetase, and support the hypothesis that the regulation of glnA expression requires both GlnR protein and glutamine synthetase in Bacillus.  相似文献   

4.
5.
6.
7.
8.
9.
10.
Acute intoxication with large doses of ammonia leads to rapid death. The main mechanism for ammonia elimination in brain is its reaction with glutamate to form glutamine. This reaction is catalyzed by glutamine synthetase and consumes ATP. In the course of studies on the molecular mechanism of acute ammonia toxicity, we have found that glutamine synthetase activity and glutamine content in brain are modulated by NMDA receptors and nitric oxide. The main findings can be summarized as follows.Blocking NMDA receptors prevents ammonia-induced depletion of brain ATP and death of rats but not the increase in brain glutamine, indicating that ammonia toxicity is not due to increased activity of glutamine synthetase or formation of glutamine but to excessive activation of NMDA receptors.Blocking NMDA receptors in vivo increases glutamine synthetase activity and glutamine content in brain, indicating that tonic activation of NMDA receptors maintains a tonic inhibition of glutamine synthetase.Blocking NMDA receptors in vivo increases the activity of glutamine synthetase assayed in vitro, indicating that increased activity is due to a covalent modification of the enzyme. Nitric oxide inhibits glutamine synthetase, indicating that the covalent modification that inhibits glutamine synthetase is a nitrosylation or a nitration.Inhibition of nitric oxide synthase increases the activity of glutamine synthetase, indicating that the covalent modification is reversible and it must be an enzyme that denitrosylate or denitrate glutamine synthetase.NMDA mediated activation of nitric oxide synthase is responsible only for part of the tonic inhibition of glutamine synthetase. Other sources of nitric oxide are also contributing to this tonic inhibition.Glutamine synthetase is not working at maximum rate in brain and its activity may be increased pharmacologically by manipulating NMDA receptors or nitric oxide content. This may be useful, for example, to increase ammonia detoxification in brain in hyperammonemic situations.  相似文献   

11.
Nitrogen metabolism genes of Bacillus subtilis are regulated by the availability of rapidly metabolizable nitrogen sources, but not by any mechanism analogous to the two-component Ntr regulatory system found in enteric bacteria. Instead, at least three regulatory proteins independently control the expression of gene products involved in nitrogen metabolism in response to nutrient availability. Genes expressed at high levels during nitrogen-limited growth are controlled by two related proteins, GlnR and TnrA, which bind to similar DNA sequences under different nutritional conditions. The TnrA protein is active only during nitrogen limitation, whereas GlnR-dependent repression occurs in cells growing with excess nitrogen. Although the nitrogen signal regulating the activity of the GlnR and TnrA proteins is not known, the wild-type glutamine synthetase protein is required for the transduction of this signal to the GlnR and TnrA proteins. Examination of GlnR- and TnrA-regulated gene expression suggests that these proteins allow the cell to adapt to growth during nitrogen-limited conditions. A third regulatory protein, CodY, controls the expression of several genes involved in nitrogen metabolism, competence and acetate metabolism in response to growth rate. The highest levels of CodY-dependent repression occur in cells growing rapidly in a medium rich in amino acids, and this regulation is relieved during the transition to nutrient-limited growth. While the synthesis of amino acid degradative enzymes in B. subtilis is substrate inducible, their expression is generally not regulated in response to nitrogen availability by GlnR and TnrA. This pattern of regulation may reflect the fact that the catabolism of amino acids produced by proteolysis during sporulation and germination provides the cell with substrates for energy production and macromolecular synthesis. As a result, expression of amino acid degradative enzymes may be regulated to ensure that high levels of these enzymes are present in sporulating cells and in dormant spores.  相似文献   

12.
The specific activity of glutamine synthetase in cultured Chinese hamster cells is inversely related to the concentration of glutamine in the surrounding solution. Enzyme specific activity increases 8- to 10-fold when glutamine is removed from serum-free F12 growth media. The induction of glutamine synthetase activity occurs only after glutamine removal and not after the removal of other amino acids (methionine, leucine, or isoleucine). The analysis of the glutamine-mediated decrease in glutamine synthetase activity has been simplified by the finding that depression proceeds in nutrient-free buffered saline solution (141 mM NaCl, 5.4 mM KCl and 30 mM Tricine (pH 7.4). Under these conditions, 0.1 mM cyanide blocks glutamine-mediated depression. The cyanide inhibition is reversed by the addition of 1.0 mM glucose which suggests that ATP is required for depression. Glutamine-mediated depression is temperature-dependent, occurring between 25 and 45 degrees with an optimum rate at 37 degrees. Studies of the time course of induction and depression as a function of glutamine concentration suggest that glutamine regulates the rate at which the enzyme is either modified or degraded. We have employed an antibody prepared against homogeneous Chinese hamster liver glutamine synthetase to measure the amount of glutamine synthetase protein in extracts of cells containing induced or depressed levels of enzyme activity. A highly sensitive immunoprecipitation procedure enables quantitation of nanogram amounts of glutamine synthetase protein. Glutamine synthetase in cell extracts containing induced levels of enzyme activity possesses the same molecular specific activity (ratio of activity to antigenicity) as homogeneous Chinese hamster liver glutamine synthetase. The molecular specific activity of glutamine synthetase is almost the same in extracts of cells with depressed levels of enzyme obtained by growth for short (2 hours) and long (24 hours) times in the presence of glutamine. These data suggest that glutamine-mediated depression of glutamine synthetase results from degradation of enzyme molecules.  相似文献   

13.
14.
Mutations in a site, glnF, linked by P1-mediated transduction of argG on the chromosome of Klebsiella aerogenes, result in a requirement for glutamine. Mutants in this gene have in all media a level of glutamine synthetase (GS) corresponding to the level found in the wild-type strain grown in the medium producing the strongest repression of GS. The adenylylation and deadenylylation of GS in glnF mutants is normal. The glutamine requirement of glnF mutants could be suppressed by mutations in the structural gene for GS, glnA. These mutations result in altered regulation of GS synthesis, regardless of the presence or absence of the glnF mutation (GlnR phenotype). In GlnR mutants the GS level is higher than in the wild-type strain when the cells are cultured in strongly repressing medium, but lower than in the wild-type strain when cells are cultured in a derepressing medium. Heterozygous merodiploids carrying a normal glnA gene as well as a glnA gene responsible for the GlnR phenotype behave in every respect like merodiploids carrying two normal glnA genes. These results confirm autogenous regulation of GS synthesis and indicate that GS is both a repressor and an activator of GS synthesis. The mutation in glnA responsible for the GLnR phenotype has apparently resulted in the formation of a GS that is incompetent both as repressor and as activator of GS synthesis. According to this hypothesis, the product of the glnF gene is necessary for activation of the glnA gene by GS.  相似文献   

15.
16.
The phototrophic purple bacterium Rhodopseudomonas sphaeroides, strain 2R, can assimilate ammonium by means of glutamine synthetase and glutamate synthase. A higher activity of glutamine synthetase is displayed by cells grown in the medium with glutamate or in the atmosphere of molecular nitrogen. The activity of glutamate synthase also rises when cells grow in the atmosphere of N2. However, in contrast to glutamine synthetase, the activity of glutamate synthase does not decrease in the presence of considerable NH4+ amounts. The glutamine synthetase of R. sphaeroides is modified by adenylylation/deadenylylation. In the presence of nitrogenase in R. sphaeroides, the glutamine synthetase is found mainly in the deadenylylation state. Methionine sulfone, an inhibitor of glutamine synthetase, partly restores the activity of nitrogenase in the presence of ammonium, and prevents adenylylation of glutamine synthetase.  相似文献   

17.
Astrocytes are the primary site of glutamate conversion to glutamine in the brain. We examined the effects of treatment with either dibutyryl cyclic AMP and/or the synthetic glucocorticoid dexamethasone on glutamine synthetase enzyme activity and steady-state mRNA levels in cultured neonatal rat astrocytes. Treatment of cultures with dibutyryl cyclic AMP alone (0.25 mM–1.0 mM) increased glutamine synthetase activity and steady state mRNA levels in a dose-dependent manner. Similarly, treatment with dexamethasone alone (10–7–10–5 M) increased glutamine synthetase mRNA levels and enzyme activity. When astrocytes were treated with both effectors, additive increases in glutamine synthetase activity and mRNA were obtained. However, the additive effects were observed only when the effect of dibutyryl cyclic AMP alone was not maximal. These findings suggest that the actions of these effectors are mediated at the level of mRNA accumulation. The induction of glutamine synthetase mRNA by dibutyryl cyclic AMP was dependent on protein synthesis while the dexamethasone effect was not. Glucocorticoids and cyclic AMP are known to exert their effects on gene expression by different molecular mechanisms. Possible crosstalk between these effector pathways may occur in regulation of astrocyte glutamine synthetase expression.Abbreviations used GS glutamine synthetase - dbcAMP dibutyryl cyclic AMP - MEM minimal essential medium - cyx cycloheximide - GRE glucocorticoid response element - CRE cyclic AMP response element  相似文献   

18.
S H Kovacs 《In vitro》1977,13(1):24-30
Primary cultures of 10-day embryonic chick neural retinas were used to investigate early aspects of the mechanism of hydrocortisone action on glutamine synthetase activity. As little as 2 hr of hydrocortisone exposure served to initiate significant increases in the glutamine synthetase activity levels assayed after 24 hr culture. Time course studies indicated that the increase in glutamine synthetase activity observed after 24 hr in culture resulted from a two-phase rise in activity and that cycloheximide was effective in suppressing the second-phase rise. Additional inhibition studies demonstrated that the second-phase increase in enzyme activity required continuous protein synthesis during the initial 6 hr. The evidence suggests a mechanism of hydrocortisone action involving the production of a protein which is important for the induction of glutamine synthetase activity by hydrocortisone.  相似文献   

19.
Summary Primary cultures of 10-day embryonic chick neural retinas were used to investigate early aspects of the mechanism of hydrocortisone action on glutamine synthetase activity. As little as 2 hr of hydrocortisone exposure served to initiate significant increases in the glutamine synthetase activity levels assayed after 24 hr culture. Time course studies indicated that the increase in glutamine synthetase activity observed after 24 hr in culture resulted from a two-phase rise in activity and that cycloheximide was effective in suppressing the second-phase rise. Additional inhibition studies demonstrated that the second-phase increase in enzyme activity required continuous protein synthesis during the initial 6 hr. The evidence suggests a mechanism of hydrocortisone action involving the production of a protein which is important for the induction of glutamine synthetase activity by hydrocortisone. This work was supported by a National Science Foundation (U.S.A.) Training Grant.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号