首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cells of the red alga Porphyridium cruentum (ATCC 50161) exposed to increasing growth irradiance exhibited up to a three-fold reduction in photosystems I and II (PSI and PSII) and phycobilisomes but little change in the relative numbers of these components. Batch cultures of P. cruentum were grown under four photon flux densities of continuous white light; 6 (low light, LL), 35 (medium light, ML), 180 (high light, HL), and 280 (very high light, VHL) microeinsteins per square meter per second and sampled in the exponential phase of growth. Ratios of PSII to PSI ranged between 0.43 and 0.54. About three PSII centers per phycobilisome were found, regardless of growth irradiance. The phycoerythrin content of phycobilisomes decreased by about 25% for HL and VHL compared to LL and ML cultures. The unit sizes of PSI (chlorophyll/P700) and PSII (chlorophyll/QA) decreased by about 20% with increase in photon flux density from 6 to 280 microeinsteins per square meter per second. A threefold reduction in cell content of chlorophyll at the higher photon flux densities was accompanied by a twofold reduction in β-carotene, and a drastic reduction in thylakoid membrane area. Cell content of zeaxanthin, the major carotenoid in P. cruentum, did not vary with growth irradiance, suggesting a role other than light-harvesting. HL cultures had a growth rate twice that of ML, eight times that of LL, and slightly greater than that of VHL cultures. Cell volume increased threefold from LL to VHL, but volume of the single chloroplast did not change. From this study it is evident that a relatively fixed stoichiometry of PSI, PSII, and phycobilisomes is maintained in the photosynthetic apparatus of this red alga over a wide range of growth irradiance.  相似文献   

2.
Cyanobacterial Acclimation to Photosystem I or Photosystem II Light   总被引:9,自引:4,他引:5       下载免费PDF全文
The organization and function of the photochemical apparatus of Synechococcus 6301 was investigated in cells grown under yellow and red light regimes. Broadband yellow illumination is absorbed preferentially by the phycobilisome (PBS) whereas red light is absorbed primarily by the chlorophyll (Chl) pigment beds. Since PBSs are associated exclusively with photosystem II (PSII) and most of the Chl with photosystem I (PSI), it follows that yellow and red light regimes will create an imbalance of light absorption by the two photosystems. The cause and effect relationship between light quality and photosystem stoichiometry in Synechococcus was investigated. Cells grown under red light compensated for the excitation imbalance by synthesis/assembly of more PBS-PSII complexes resulting in high PSII/PSI = 0.71 and high bilin/Chl = 1.30. The adjustment of the photosystem stoichiometry in red light-grown cells was necessary and sufficient to establish an overall balanced absorption of red light by PSII and PSI. Cells grown under yellow light compensated for this excitation imbalance by assembly of more PSI complexes, resulting in low PSII/PSI = 0.27 and low bilin/Chl = 0.42. This adjustment of the photosystem stoichiometry in yellow light-grown cells was necessary but not quite sufficient to balance the absorption of yellow light by the PBS and the Chl pigment beds. A novel excitation quenching process was identified in yellow light-grown cells which dissipated approximately 40% of the PBS excitation, thus preventing over-excitation of PSII under yellow light conditions. It is hypothesized that State transitions in O2 evolving photosynthetic organisms may serve as the signal for change in the stoichiometry of photochemical complexes in response to light quality conditions.  相似文献   

3.
Ley AC  Butler WL 《Plant physiology》1980,65(4):714-722
Cells of Porphyridium cruentum were grown in different colors of light which would be absorbed primarily by chlorophyll (Chl) (red and blue light) or by the phycobilisomes (green or two intensities of cool-white fluorescent light), and samples of these cells were frozen to −196 C for measurements of absorption and fluorescence emission spectra. Cells grown in the high intensity white light had least of all of the photosynthetic pigments, a higher ratio of carotenoid/Chl, but essentially the same ratio of phycobilin to Chl as cells grown in the low intensity white light. The ratio of photosystem II (PSII) to photosystem I (PSI) pigments was affected by light quality; the ratios of phycobilin to Chl and of short wavelength (PSII) Chl to long wavelength (PSI) Chl were both greater in the cells grown in red or blue light.  相似文献   

4.
Acclimation of the photosynthetic apparatus to changes in the light environment was studied in the unicellular red alga Porphyridium cruentum (American Type Culture Collection No. 50161). Absolute or relative amounts of four photosynthetic enzymes and electron carriers were measured, and the data were compared with earlier observations on light-harvesting components (F.X. Cunningham, Jr., R.J. Dennenberg, L. Mustárdy, P.A. Jursinic, E. Gantt [1989] Plant Physiol 91: 1179-1187; F.X. Cunningham, Jr., R.J. Dennenberg, P.A. Jursinic, E. Gantt [1990] Plant Physiol 93: 888-895) and with measurements of photosynthetic capacity. Pmax, the light-saturated rate of photosynthesis on a chlorophyll (Chl) basis, increased more than 4-fold with increase in growth irradiance from 6 to 280 μeinsteins·m−2·s−1. Amounts of ferredoxin-NADP+ reductase, ribulose-1,5-bisphosphate carboxylase, and cytochrome f increased in parallel with Pmax, whereas numbers of the light-harvesting complexes (photosystem [PS] I, PSII, and phycobilisomes) changed little, and ATP synthase increased 7-fold relative to Chl. The calculated minimal turnover time for PSII under the highest irradiance, 5 ms, was thus about 4-fold faster than that calculated for cultures grown under the lowest irradiance (19 ms). A change in the spectral composition of the growth light (irradiance kept constant at 15 μeinsteins·m−2·s−1) from green (absorbed predominantly by the phycobilisome antenna of PSII) to red (absorbed primarily by the Chl antenna of PSI) had little effect on the amounts of ribulose-1,5-bisphosphate carboxylase, ATP synthase, and phycobilisomes on a Chl, protein, or thylakoid area basis. However, the number of PSI centers declined by 40%, cytochrome f increased by 40%, and both PSII and ferredoxin-NADP+ reductase increased approximately 3-fold on a thylakoid area basis. The substantial increase in ferredoxin-NADP+ reductase under PSI light is inconsistent with a PSI-mediated reduction of NADP as the sole function of this enzyme. Our results demonstrate a high degree of plasticity in content and composition of thylakoid membranes of P. cruentum.  相似文献   

5.
Acclimation of the photosynthetic apparatus to light absorbed primarily by phycobilisomes (which transfer energy predominantly to photosystem II) or absorbed by chlorophyll a (mainly present in the antenna of photosystem I) was studied in the macroalga Palmaria palmata L. In addition, the influence of blue and yellow light, exciting chlorophyll a and phycobilisomes, respectively, ivas investigated. All results were compared to a white light control. Complementary chromatic adaptation in terms of an enhanced ratio of phycoerythrin to phycocyanin under green light conditions was observed. Red light (mainly absorbed by chlorophyll a) and green light (mainly absorbed by phycobilisomes) caused an increase of the antenna system, which was not preferentially excited. Yellow and blue light led to intermediate states comparable to each other and white light. Growth was reduced under all light qualities in comparison to white light, especially under conditions preferably exciting phycobilisomes (green light-adapted algae had a 58% lower growth rate compared to white light-adapted algae). Red and blue light-adapted algae showed maximal photosynthetic capacity with white light excitation and significantly lower values with green light excitation. In contrast, green and yellow light-adapted algae exhibited comparable photosynthetic capacities at all excitation wavelengths. Low-temperature fluorescence emission analysis showed an increase of photosystem II emission in red light-adapted algae and a decrease in green light-adapted algae. A small increase of photosystem I emission teas also found in green light-adapted algae, but this was much less than the photosystem II emission increase observed in red light-adapted algae (both compared to phycobilisome emission). Efficiency of energy transfer from phycobilisomes to photosystem II was higher in red than in green light-adapted algae. The opposite was found for the energy transfer efficiency from phycobilisomes to photosystem I. Zeaxanthin content increased in green and blue light-adapted algae compared to red, white, and yellow light-adapted algae. Results are discussed in comparison to published data on unicellular red algae and cyanobacteria.  相似文献   

6.
Tradescantia albiflora (Kunth) was grown under two different light quality regimes of comparable light quantity: in red + far-red light absorbed mainly by photosystem I (PSI light) and yellow light absorbed mainly by photosystem II (PSII light). The composition, function and ultrastructure of chloroplasts, and photoinhibition of photosynthesis in the two types of leaves were compared. In contrast to regulation by light quantity (Chow et al. 1991. Physiol. Plant. 81: 175–182), light quality exerted an effect on the composition of pigment complexes, function and structure of chloroplasts in Tradescantia: PSII light-grown leaves had higher Chl a/b ratios, higher PSI concentrations, lower PSII/PSI reaction centre ratios and less extensive thylakoid stacking than PSI light-grown leaves. Light quality triggered modulations of chloroplast components, leading to a variation of photosynthetic characteristics. A larger proportion of primary quinone acceptor (QA) in PSI light-grown leaves was chemically reduced at any given irradiance. It was also observed that the quantum yield of PSII photochemistry was lower in PSI light-grown leaves. PSI light-grown leaves were more sensitive to photoinihibition and recovery was slower compared to PSII light-grown leaves, showing that the PSII reaction centre in PSI light-grown leaves was more easily impaired by photoinhibition. The increase in susceptibility of leaves to photoinhibition following blockage of chloroplast-encoded protein synthesis was greater in PSII light-grown leaves, showing that these leaves normally have a greater capacity for PSII repair. Inhibition of zeaxanthin formation by dithiothreitol slightly increased sensitivity to photoinhibition in both PSI and PSII light-grown leaves.  相似文献   

7.
The response of the photosynthetic apparatus in the green alga Dunaliella salina, to irradiance stress was investigated. Cells were grown under physiological conditions at 500 millimoles per square meter per second (control) and under irradiance-stress conditions at 1700 millimoles per square meter per second incident intensity (high light, HL). In control cells, the light-harvesting antenna of photosystem I (PSI) contained 210 chlorophyll a/b molecules. It was reduced to 105 chlorophyll a/b in HL-grown cells. In control cells, the dominant form of photosystem II (PSII) was PSIIα(about 63% of the total PSII) containing >250 chlorophyll a/b molecules. The smaller antenna size PSIIβ centers (about 37% of PSII) contained 135 ± 10 chlorophyll a/b molecules. In sharp contrast, the dominant form of PSII in HL-grown cells accounted for about 95% of all PSII centers and had an antenna size of only about 60 chlorophyll a molecules. This newly identified PSII unit is termed PSIIγ. The HL-grown cells showed a substantially elevated PSII/PSI stoichiometry ratio in their thylakoid membranes (PSII/PSI = 3.0/1.0) compared to that of control cells (PSII/PSI = 1.4/1.0). The steady state irradiance stress created a chronic photoinhibition condition in which D. salina thylakoids accumulate an excess of photochemically inactive PSII units. These PSII units contain both the reaction center proteins and the core chlorophyll-protein antenna complex but cannot perform a photochemical charge separation. The results are discussed in terms of regulatory mechanism(s) in the plant cell whose function is to alleviate the adverse effect of irradiance stress.  相似文献   

8.
The effect of light quality on the composition, function and structure of the thylakoid membranes, as well as on the photosynthetic rates of intact fronds from Asplenium australasicum, a shade plant, grown in blue, white, or red light of equal intensity (50 microeinsteins per square meter per second) was investigated. When compared with those isolated from plants grown in white and blue light, thylakoids from plants grown in red light have higher chlorophyll a/chlorophyll b ratios and lower amounts of light-harvesting chlorophyll a/b-protein complexes than those grown in blue light. On a chlorophyll basis, there were higher levels of PSII reaction centers, cytochrome f and coupling factor activity in thylakoids from red light-grown ferns, but lower levels of PSI reaction centers and plastoquinone. The red light-grown ferns had a higher PSII/PSI reaction center ratio of 4.1 compared to 2.1 in blue light-grown ferns, and a larger apparent PSI unit size and a lower PSII unit size. The CO2 assimilation rates in fronds from red light-grown ferns were lower on a unit area or fresh weight basis, but higher on a chlorophyll basis, reflecting the higher levels of electron carriers and electron transport in the thylakoids.

The structure of thylakoids isolated from plants grown under the three light treatments was similar, with no significant differences in the number of thylakoids per granal stack or the ratio of appressed membrane length/nonappressed membrane length. The large freeze-fracture particles had the same size in the red-, blue-, and white-grown ferns, but there were some differences in their density. Light quality is an important factor in the regulation of the composition and function of thylakoid membranes, but the effects depend upon the plant species.

  相似文献   

9.
Seven chloroplast proteins were localized in Porphyridium cruentum (ATCC 50161) by immunolabeling with colloidal gold on electron microscope sections of log phase cells grown under red, green, and white light. Ribulose bisphosphate carboxylase labeling occurred almost exclusively in the pyrenoid. The major apoproteins of photosystem I (56-64 kD) occurred mostly over the stromal thylakoid region and also appeared over the thylakoids passing through the pyrenoid. Labeling for photosystem II core components (D2 and a 45 kD Chl-binding protein), for phycobilisomes (allophycocyanin, and a 91 kD Lcm linker) and for ATP synthase (β subunit) were predominantly present in the thylakoid region but not in the pyrenoid region of the chloroplast. Red light cells had increased labeling per thylakoid length for polypeptides of photosystem II and of phycobilisomes, while photosystem I density decreased, compared to white light cells. Conversely, green light cells had a decreased density of photosystem II and phycobilisome polypeptides, while photosystem I density changed little compared with white light cells. A comparison of the immunogold labeling results with data from spectroscopic methods and from rocket immunoelectrophoresis indicates that it can provide a quantitative measure of the relative amounts of protein components as well as their localization in specific organellar compartments.  相似文献   

10.
Spectrophotometric and kinetic measurements were applied to yield photosystem (PS) stoichiometries and the functional antenna size of PSI, PSIIα, and PSIIβ in Zea mays chloroplasts in situ. Concentrations of PSII and PSI reaction centers were determined from the amplitude of the light-induced absorbance change at 320 and 700 nm, which reflect the photoreduction of the primary electron acceptor Q of PSII and the photooxidation of the reaction center P700 of PSI, respectively. Determination of the functional chlorophyll antenna size (N) for each photosystem was obtained from the measurement of the rate of light absorption by the respective reaction center. Under the experimental conditions employed, the rate of light absorption by each reaction center was directly proportional to the number of light-harvesting chlorophyll molecules associated with the respective photosystem. We determined NP700 = 195, Nα = 230, Nβ = 50 for the number of chlorophyll molecules in the light-harvesting antenna of PSI, PSIIα, and PSIIβ, respectively. The above values were used to estimate the PSII/PSI electron-transport capacity ratio (C) in maize chloroplasts. In mesophyll chloroplasts C > 1.4, indicating that, under green actinic excitation when Chl a and Chl b molecules absorb nearly equal amounts of excitation, PSII has a capacity to turn over electrons faster than PSI. In bundle sheath chloroplasts C < 1, suggesting that such chloroplasts are not optimally poised for linear electron transport and reductant generation.  相似文献   

11.
Chromatic regulation of photosystem stoichiometry in cyanophytes, green algae and probably vascular plants is achieved by regulation of the abundance of PSI in response to thylakoid electron transport state at least under our experimental conditions [cf. Fujita (1997) Photosyn. Res. 53: 83]. However, variation of not only PSI but also PSII, in reverse of each other, is characteristic of the stoichiometry regulation in red algae and some of marine cyanophytes. Our previous study with the red alga Porphyridium cruentum has revealed that PSII is inactivated by 50% upon a light shift from the light absorbed by Chl a, PSI light, to that mainly absorbed by phycobilisomes (PBS), PSII light [Fujita (1999) Plant Cell Physiol. 40: 924]. To evaluate the contribution of the photoinactivation to the chromatic variation of PSII, variation of the abundance of PSI, PSII and PBS, together with the fluorescence parameter and the activity of PSII, was followed after a light shift from PSI light to PSII light. Upon a light shift to PSII light, PSII, determined as Cyt b(559) per PBS, decreased rapidly, following the photoinactivation, down to the level a half of that before the light shift, and remained constant. Since the increase in PBS was not significant during this period, a rapid decrease of PSII/PBS led us to tentatively conclude that the degradation of PSII is a main cause for variation of the abundance of PSII. Photoinactivation of PSII, and also decrease in Cyt b(559), was accelerated, but only slightly, by the addition of chloramphenicol (CAP) at a moderate concentration while CAP at the same concentration significantly suppressed the increment of PSI determined as P700. A selective effect of CAP supports the above conclusion.  相似文献   

12.
Synechococcus elongatus strain PCC7942 cells were grown in high or low environmental concentrations of inorganic C (high-Ci, low-Ci) and subjected to a light shift from 50 µmol m–2 s–1 to 500 µmol m–2 s–1. We quantified photosynthetic reductant (O2 evolution) and molar cellular contents of phycobilisomes, PSII, PSI, and ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco) through the light shift. Upon the increase in light, small initial relative decreases in phycobilisomes per cell resulted from near cessation of phycobilisome synthesis and their dilution into daughter cells. Thus, allocation of reductant to phycobilisome synthesis dropped fivefold from pre- to post-light shift. The decrease in phycobilisome synthesis liberated enough material and reductant to allow a doubling of Rubisco and up to a sixfold increase in PSII complexes per cell. Low-Ci cells had smaller initial phycobilisome pools and upon increased light; their reallocation of reductant from phycobilisome synthesis may have limited the rate and extent of light acclimation, compared to high-Ci cells. Acclimation to increased light involved large reallocations of C, N, and reductant among different components of the photosynthetic apparatus, but total allocation to the apparatus was fairly stable at ca. 50% of cellular N, and drew 25–50% of reductant from photosynthesis.  相似文献   

13.
Red algae contain two types of light‐harvesting antenna systems, the phycobilisomes and chlorophyll a binding polypeptides (termed Lhcr), which expand the light‐harvesting capacity of the photosynthetic reaction centers. In this study, photosystem I (PSI) and its associated light‐harvesting proteins were isolated from the red alga Cyanidioschyzon merolae. The structural and functional properties of the largest PSI particles observed were investigated by biochemical characterization, mass spectrometry, fluorescence emission and excitation spectroscopy, and transmission electron microscopy. Our data provide strong evidence for a stable PSI complex in red algae that possesses two distinct types of functional peripheral light‐harvesting antenna complex, comprising both Lhcr and a PSI‐linked phycobilisome sub‐complex. We conclude that the PSI antennae system of red algae represents an evolutionary intermediate between the prokaryotic cyanobacteria and other eukaryotes, such as green algae and vascular plants.  相似文献   

14.
The features of the two types of short-term light-adaptations of photosynthetic apparatus, State 1/State 2 transitions, and non-photochemical fluorescence quenching of phycobilisomes (PBS) by orange carotene-protein (OCP) were compared in the cyanobacterium Synechocystis sp. PCC 6803 wild type, CK pigment mutant lacking phycocyanin, and PAL mutant totally devoid of phycobiliproteins. The permanent presence of PBS-specific peaks in the in situ action spectra of photosystem I (PSI) and photosystem II (PSII), as well as in the 77 K fluorescence excitation spectra for chlorophyll emission at 690 nm (PSII) and 725 nm (PSI) showed that PBS are constitutive antenna complexes of both photosystems. The mutant strains compensated the lack of phycobiliproteins by higher PSII content and by intensification of photosynthetic linear electron transfer. The detectable changes of energy migration from PBS to the PSI and PSII in the Synechocystis wild type and the CK mutant in State 1 and State 2 according to the fluorescence excitation spectra measurements were not registered. The constant level of fluorescence emission of PSI during State 1/State 2 transitions and simultaneous increase of chlorophyll fluorescence emission of PSII in State 1 in Synechocystis PAL mutant allowed to propose that spillover is an unlikely mechanism of state transitions. Blue–green light absorbed by OCP diminished the rout of energy from PBS to PSI while energy migration from PBS to PSII was less influenced. Therefore, the main role of OCP-induced quenching of PBS is the limitation of PSI activity and cyclic electron transport under relatively high light conditions.  相似文献   

15.
Anacystis nidulans cells grown under high (3%) CO2 partial pressure have greater phycocyanin to chlorophyll ratio (Phc/Chl) relative to cells grown under low (0.2%) CO2 tension (Eley (1971) Plant Cell Physiol 12: 311-316). Absorbance difference spectrophotometry of A. nidulans thylakoid membranes in the ultraviolet (ΔA320) and red (ΔA700) regions of the spectrum reveal photosystem II/photosystem I (PSII/PSI) reaction center ratio (RCII/RCI) changes that parallel those of Phc/Chl. For cells growing under 3% CO2, the Phc/Chl ratio was 0.48 and RCII/RCI = 0.40. At 0.2% CO2, Phc/Chl = 0.38 and RCII/RCI = 0.24. Excitation of intact cells at 620 nm sensitized RCII at a rate approximately 20 times faster than that of RCI, suggesting that Phc excitation is delivered to RCII only. In the presence of DCMU, excitation at 620 nm induced single exponential RCII photoconversion kinetics, suggesting a one-to-one structural-functional correspondance between phycobilisome and PSII complex in the thylakoid membrane. Therefore, phycobilisomes may serve as microscopic markers for the presence of PSII in the photosynthetic membrane of A. nidulans. Neither the size of individual phycobilisomes nor the Chl light-harvesting antenna of PSI changed under the two different CO2 tensions during cell growth. Our results are compatible with the hypothesis that, at low CO2 concentrations, the greater relative amounts of PSI present may facilitate greater rates of ATP synthesis via cyclic electron flow. The additional ATP may be required for the active uptake of CO2 under such conditions.  相似文献   

16.
Detergent preparations isolated from thylakoids of the red alga Porphyridium cruentum, in a sucrose, phosphate, citrate, magnesium chloride medium consist of phycobilisomes and possess high rates of photosystem II activity. Characterization of these particles shows that the O2-evolving activity is stable for several hours and the pH optimum is about 6.5 to 7.2. Response of the system to light, electron donors and acceptors, and inhibitors verify that the observed activity, measured both as O2 evolution and 2,6-dichlorophenol-indophenol reduction, is due to photosystem II. Furthermore, photosystem II is functionally coupled to the phycobilisome in this preparation since green light, absorbed by phycobilisomes of P. cruentum, is effective in promoting both O2 evolution and 2,6-dichlorophenol-indophenol reduction. Photosystem II activity declines when light with wavelengths shorter than 665 nm is removed. Both 3-(3,4-dichlorophenyl)-1,1-dimethylurea and atrazine inhibit photosystem II activity in this preparation, indicating that the herbicide binding site is a component of the photosystem II-phycobilisome particle.  相似文献   

17.
Distribution of phycobilisomes between photosystem I (PSI) and photosystem II (PSII) complexes in the cyanobacterium Spirulina platensis has been studied by analysis of the action spectra of H2 and O2 photoevolution and by analysis of the 77 K fluorescence excitation and emission spectra of the photosystems. PSI monomers and trimers were spectrally discriminated in the cell by the unique 760 nm low-temperature fluorescence, emitted by the trimers under reductive conditions. The phycobilisome-specific 625 nm peak was observed in the action spectra of both PSI and PSII, as well as in the 77 K fluorescence excitation spectra for chlorophyll emission at 695 nm (PSII), 730 nm (PSI monomers), and 760 nm (PSI trimers). The contributions of phycobilisomes to the absorption, action, and excitation spectra were derived from the in vivo absorption coefficients of phycobiliproteins and of chlorophyll. Analyzing the sum of PSI and PSII action spectra against the absorption spectrum and estimating the P700:P680 reaction center ratio of 5.7 in Spirulina, we calculated that PSII contained only 5% of the total chlorophyll, while PSI carried the greatest part, about 95%. Quantitative analysis of the obtained data showed that about 20% of phycobilisomes in Spirulina cells are bound to PSII, while 60% of phycobilisomes transfer the energy to PSI trimers, and the remaining 20% are associated with PSI monomers. A relevant model of organization of phycobilisomes and chlorophyll pigment-protein complexes in Spirulina is proposed. It is suggested that phycobilisomes are connected with PSII dimers, PSI trimers, and coupled PSI monomers.  相似文献   

18.
Clark L1, a normal green soybean [ Glycine max (L.) Merrill] and Clark y9y9, a backross-developed isoline exhibiting pigment deficiency, were grown under continuous red (11 W m−2 and far-red (9 W m−2) light. Chloroplast thylakoids from the unifoliolate leaf (9–10 days old) were isolated and analyzed for pigments, pigment-protein, membrane polypeptides, electron transport and ultrastructural differences. Chloroplasts of soybean plants grown under far-red light have decreased chlorophyll a to chlorophyll b ratio, increased light-harvesting complexes, and grana structure with few stroma-type thylakoids. Photosystem II/photosystem I ratios (PSII/PSI) are higher in far-red due to decreased synthesis of PSI reaction center and/or less antenna associated with PSI.  相似文献   

19.
The PsbU subunit of photosystem II (PSII) is one of three extrinsic polypeptides associated with stabilizing the oxygen evolving machinery of photosynthesis in cyanobacteria. We investigated the influence of PsbU on excitation energy transfer and primary photochemistry by spectroscopic analysis of a PsbU-less (or deltaPsbU) mutant. The absence of PsbU was found to have multiple effects on the excited state dynamics of the phycobilisome and PSII. DeltaPsbU cells exhibited decreased variable fluorescence when excited with light absorbed primarily by allophycocyanin but not when excited with light absorbed primarily by chlorophyll a. Fluorescence emission spectra at 77 K showed evidence for impaired energy transfer from the allophycocyanin terminal phycobilisome emitters to PSII. Picosecond fluorescence decay kinetics revealed changes in both allophycocyanin and PSII associated decay components. These changes were consistent with a decrease in the coupling of phycobilisomes to PSII and an increase in the number of closed PSII reaction centers in the dark-adapted deltaPsbU mutant. Our results are consistent with the assumption that PsbU stabilizes both energy transfer and electron transport in the PBS/PSII assembly.  相似文献   

20.
We have quantified the lateral distribution of 12 thylakoid proteins of Spirodela oligorrhiza by immunoblot analysis of detergent-derived granal and stromal lamellae. The immunological, ultrastructural, cytochemical, and biophysical measurements each indicated the expected overall separation of photosystem II (PSII) and photosystem I (PSI) components; however, certain proteins were not completely localized to one lamellar fraction. The apoproteins of the light harvesting chlorophyll a/b complex, subunit 1 of PSI and the components of the PSII reaction center (the 32 kilodalton, D2, and cytochrome b559 proteins) were dually located between granal and stromal lamellae. Proteins associated exclusively with one of the membrane types were: in granal lamellae, the 43 and 51 kilodalton PSII proteins, and in stromal lamellae, the α and β subunits of the proton ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号