首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
A technique has been devised for isolation of lumenal plasma membranes from transitional epithelial cells lining the urinary bladder in rabbits and for subsequent separation of particle-bearing plaque regions from particle-free areas of the membranes. The success of the procedures employed and their effects on the isolates were assessed by electron microscopy of conventional plastic sections, negatively stained preparations, and freeze-etch replicas. When bladders are distended with a solution of 0.01 M thioglycolic acid, which reduces sulfhydryl bridges, cytoplasmic filaments are disrupted, and large segments of the lumenal membranes rupture and float free into the lumen. A centrifugation procedure was developed for isolating a fraction enriched with the large fragments. A comparison of membranes isolated in the presence of thioglycolate with those isolated from epithelial cells homogenized in sucrose medium indicates that thioglycolate has little effect on their fine structure except for the removal of filaments which are normally associated with their cytoplasmic surface. The curved plaques of hexagonally arrayed particles and the particle-free interplaque regions, both characteristic of membranes before exposure to thioglycolate, are well preserved. Subsequent treatment of thioglycolate-isolated lumenal membranes with 1% sodium desoxycholate (DOC) severs many of the interplaque regions, releasing individual plaques in which the particles are more clearly visible than before exposure to desoxycholate. Presumably, DOC acts by disrupting the hydrophobic bonds within the membrane; therefore, this type of cohesive force probably is a major factor maintaining the structural integrity of interplaque regions. This conclusion is consistent with the observation that interplaque regions undergo freeze-cleaving like simple bilayers with a plane of hydrophobic bonding.  相似文献   

2.
The ultrastructure of the lumenal plasma membrane of the cow urianry bladder has been studied in thin sections of glutaraldehyde- and glutaraldehyde-H2O2-fixed specimens, by negative staining and freeze fracture. A regular hexagonal array of particles confined to polygonal plaques 0-1-0-4-mum in diameter and separated by 0-02-mum interplaque areas is revealed by all 3 techniques. Cross-sections through particulate areas fixed with glutarayldehyde-H2O2 display a tetralaminar structure consisting of the usual approximately 8-nm-thick trilamellar unit membrane structure, on the external dense leaflet of which is located an additional approximately 4-nm-thick stratum which is occasionally resolved into a row of regulrly spaced approximately 4-nm-diameter particles. Non-particulate areas feature only the approximately 8-nm-thick trilamellar structure. Tangential sections reveal an hexagonal array of particles with a unit cell of approximately 16 nm. Four membrane faces can be revealed by freeze fracture and etching of membranes of the cow urinary bladder; 2 complementary split inner membrane faces (A and B) revealed by the cleaving process and the lumenal and cytoplasmic membrane surfaces exposed by etching. Face B, which belongs to the external membrane leaflet and faces the cytoplasm, displays plaques of particles arranged in a hexagonal lattice with a unit cell of approximately 16 nm. Face A, which belongs to the cytoplasmic membrane leaflet and faces the lumen, displays a complementary array of hexagonally packed pits. The hexagonally arranged particles also protrude into the lumenal membrane surface where they can occasionally be resolved into 6 approximately 5-nm-diameter subunits; the cytoplasmic surface appears smooth. Six approximately 5-nm-diameter subunits are also revealed in negatively stained preparations. The data are consistent with a model for the membrane in which the particles forming the hexagonal structure protrude above the lumenal membrane surface and also bridge most of the thickness of the membrane.  相似文献   

3.
An "apical endocytic complex" in the ileal lining cells of suckling rats is described. The complex consists of a continuous network of membrane-limited tubules which originate as invaginations of the apical plasma membrane at the base of the microvilli, some associated vesicles, and a giant vacuole. The lumenal surface of this tubular network of membranes and associated vesicles is covered with a regular repeating particulate structure. The repeating unit is an ~7.5-nm diameter particle which has a distinct subunit structure composed of possibly nine smaller particles each ~3 nm in diameter. The ~7.5-nm diameter particles are joined together with a center-to-center separation of ~15 nm to form long rows. These linear aggregates, when arranged laterally, give rise to several square and oblique two-dimensional lattice arrangements of the particles which cover the surface of the membrane. Whether a square or oblique lattice is generated depends on the center-to-center separation of the rows and on the relative displacement of the particles in adjacent rows. Four membrane faces are revealed by fracturing frozen membranes of the apical tubules and vesicles: two complementary inner membrane faces exposed by the fracturing process and the lumenal and cytoplasmic membrane surfaces revealed by etching. The outer membrane face reveals a distinct array of membrane particles. This array also sometimes can be seen on the outer (B) fracture face and is sometimes faintly visible on the inner (A) fracture face. Combined data from sectioned, negatively stained, and freeze-etched preparations indicate that this regular particulate structure is a specialization that is primarily localized in the outer half of the membrane mainly in the outer leaflet.  相似文献   

4.
The lumenal plasma membrane has been isolated from transitional epithelial cells (urothelium) lining the urinary bladder in sheep by a modified technique involving treatment with hypotonic thioglycolate. The isolated membranes, like those in situ, are distinguished morphologically by arrays of hexagonal particles (in plague regions) separated by smooth interplaque regions. These plaque regions, specifically, can be isolated from the lumenal plasma membrane. Of the proteins constituting the lumenal plasma membrane, five were found to characterize the plaque regions and, in particular, the 33,000-dalton species appears to be most heavily concentrated in the sodium dodecyl sulfate-polyacrylamide gel pattern of the isolated plaque regions. Lipid analyses showed that there are approximately 0.93 mg of phospholipid and 0.27 mg of cholesterol for each milligram of protein, giving a value of 55% lipids and 45% proteins for the composition of the lumenal plasma membrane. The total sialic acid content was measured to be approximately 0.038 micronmol/mg protein for the plasma membrane. Several plasma membrane marker enzymes were found to be associated with the lumenal plasma membrane fraction, but only the 5'-nucleotidase activity was found to be further enriched in the plaque region fraction. Amino acid analysis of the intrinsic proteins of the plaques indicated a polarity index of 45%.  相似文献   

5.
1. Urinary bladders are found in the amphibia, chelonian reptiles and mammals. In these orders liquid urine is stored in the bladder and eliminated at intervals from the body by micturation. 2. In the amphibia and chelonian reptiles, the urinary bladder is a functional extension of the renal tubules. The composition of the urine in the bladder is modified by the active movement of water and ions across the bladder wall, and these transporting processes are under hormonal control. The bladder acts as a water reservoir which can be drawn upon in times of water shortage. 3. The mammalian bladder separates two widely differing water phases, namely the urine which is frequently hypertonic to the blood and the tissue fluids which are isotonic. Its function is uniquely one of storage, and no adjustment to the composition of the urine is made by active transport of either water or ions across the bladder wall. 4. The epithelium lining the mammalian bladder is the site of the osmotic barrier between urine and tissue fluids. This functional barrier is dependent on the structure of the epithelium and is maintained despite large alterations in the surface area of the epithelium as the bladder rapidly contracts, or slowly dilates. 5. The epithelium is of mixed mesodermal and endodermal origin, is transitional in type and is usually 3 or 4 cell-layers thick. If this urothelium is damaged, it has a high capacity for regeneration and rapidly re-establishes an intact barrier over the luminal surface. 6. The superficial cell layer of this epithelium is composed of large, polyploid, highly differentiated squamous cells which have a long life span. These cells are limited on their free surface by an unusual, angular, semi-rigid luminal membrane. This membrane is assembled in the Golgi complex. 7. The luminal membrane is composed of thickened, discoidal plaques, separated by narrow bands of thinner membrane. When the bladder contracts, the membrane folds along the thinner ‘hinge’ regions, and the rigid discoidal plates invaginate to form fusiform, cytoplasmic vacuoles. The thickened plaques contain a hexagonal lattice of sub-units, spaced at 14 nm centre-to-centre. Each sub-unit in the lattice is itself composed of 12 smaller particles. These particles may be envisaged as small rods 3 nm in diameter and 12 nm long, and are inserted into matrix from which they project on the luminal face by about 3 nm. Each rod has a central hydrophobic portion separating distal hydrophilic ends. 8. The chemical composition of this luminal membrane is unusual. Cerebroside is a major component of the polar lipid fraction and there is an unusually high proline content in the protein fraction. When the mucoproteins are adequately dispersed, and the proteins separated by electrophoresis, a few major proteins are revealed in 33000–80000 dalton range of molecular weight. 9. If the normal structure of the luminal membrane is altered, either by physical damage or by failure of the cells to produce it, the barrier function of the epithelium is lost. 10. The structure and function of this membrane depend ultimately on its chemical composition. Cerebroside is known to decrease the permeability of lipid bi-layers to water, but for maximum impermeability a lipid bi-layer must be maintained in a condensed configuration. The stresses of bladder distension and contraction might be expected to disrupt the bi-layer, and it is suggested that the function of the rigid plaque regions is to reduce mechanical stresses in the membrane to a minimum. The plaque areas occupy between 73 and 90 % of the membrane surface, and only the remaining 10–27% of the membrane is thus subject to bending and distortion when the bladder contracts or expands. The structure of the plaque areas is probably determined by the nature of the complex proteins which form the sub-units. Proline is known to confer rigidity on polypeptide chains, and may play an important rôle in ordering the structure of the plaques. 11. The bladder epithelium, though normally differentiated as a transitional epithelium, has other biologicai potentialities. It can undergo squamous metaplasia to form a stratified cornified epithelium in response to mechanical irritation and/or vitamin A deficiency. If transplanted from its normal location, it can induce other supporting mesenchyme tissues to lay down bone. When regenerating in response to damage, the newly formed transitional cells can act as phagocytes and engulf and digest damaged or dying cells. In the normal animal the epithelium is largely protected from tumour formation by cell-mediated immunological surveillance. The defensive mechanisms are triggered by tissue-type specific antigens which develop in neoplastic bladder epithelial cells.  相似文献   

6.
The membranes of Limulus (horseshoe crab) sperm were examined before and during the acrosomal reaction by using the technique of freeze-fracturing and thin sectioning. We focused on three areas. First, we examined stages in the fusion of the acrosomal vacuole with the cell surface. Fusion takes place in a particle-free zone which is surrounded by a circlet of particles on the P face of the plasma membrane and an underlying circlet of particles on the P face of the acrosomal vauole membrane. These circlets of particles are present before induction. Up to nine focal points of fusion occur within the particle-free zone. Second, we describe a system of fine filaments, each 30 A in diameter, which lies between the acrosomal vacuole and the plasma membrane. These filaments change their orientation as the vacuole opens, a process that takes place in less than 50 ms. Membrane particles seen on the P face of the acrosomal vacuole membrane change their orientation at the same time and in the same way as do the filaments, thus indicating that the membrane particles and filaments are probably connected. Third, we examined the source and the point of fusion of new membrane needed to cover the acrosomal process. This new membrane is almost certainly derived from the outer nuclear envelope and appears to insert into the plasma membrane in a particle-free area adjacent to an area rich in particles. The latter is the region where the particles are probably connected to the cytoplasmic filaments. The relevance of these observations in relation to the process of fertilization of this fantastic sperm is discussed.  相似文献   

7.
Summary The three-dimensional structure of synaptic ribbons in photoreceptor cells of the frog retina was studied with freeze-etching and freeze-substitution methods, combined with a rapid-freezing technique. Although the synaptic ribbon consisted of two electron-dense plaques bisected by an electron-lucent layer in conventional thin sections, such lamellar nature was not so evident in freeze-etched replicas. The cytoplasmic surfaces of the synaptic ribbon presented an extremely regular arrangements of small particles 4–6 nm in diameter. Fine filaments 8–10 nm in diameter and 30–50 nm in length connected synaptic vesicles and the ribbon surface. These connections were mediated by large particles on both ends of the filaments. Approximately 3–5 filaments attached to one synaptic vesicle. Synaptic ribbons were anchored to a characteristic meshwork underlying the presynaptic membrane via another group of similar fine filaments. The meshwork seemed to be an etched replicated image of the presynaptic archiform density observed in thin sections.  相似文献   

8.
The distribution and fate of two junctional complexes, zonula adhaerens and desmosomes, after dissociation of cell-cell contacts is described in MDBK cells. Junctions were split between adjacent cells by treatment with EGTA and proteins associated with the plaques of zonulae adhaerentes and desmosomes were localized by immunological methods. Splitting of these junctions is accompanied by the dislocation of desmosomal plaque protein from the cell periphery and its distribution in punctate arrays over the whole cytoplasm. By contrast, vinculin associated with zonulae adhaerentes is still seen at early times (0.5-1 h) in a conspicuous belt-like structure which, however, is displaced from the plasma membrane. Strong vinculin staining is maintained on leading edges of free cell surfaces. Electron microscopy of EGTA-treated cells exposed to colloidal gold particles reveals the disappearance of junctional structures from the cell periphery and the concomitant appearance of a distinct class of gold particle-containing vesicles which are coated by dense plaques. These vesicle plaques react with antibodies to desmosomal plaque proteins and are associated with filaments of the cytokeratin type. In the same cells, extended dense aggregates are seen which are most probably the membrane-detached vinculin-rich material from the zonula adhaerens . The experiments show that, upon release from their junction-mediated connections with adjacent cells, major proteins associated with the cytoplasmic side of the junctions remain, for several hours, clustered within plaques displaced from the cell surface. While plaque material of adhaerens junctions containing vinculin is recovered in large belt-like aggregates, desmosomal plaque protein remains attached to membrane structures and appears on distinct vesicles endocytotically formed from half-desmosomal equivalents.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Desmosomes of larval and post-metamorphic newt epidermis have been studied by freeze-fracture replication both with and without prior glutaraldehyde fixation. Characteristic particles of a diameter (70-130 A) similar to that of typical membrane associated particles are found clustered on the exposed internal faces of adherent desmosomal membranes. They remain attached to the B-face in unfixed material, but occupy the desmosomal A-face after fixation. Membrane associated particles of nondesmosomal surfaces are found predominantly on the A-face in both fixed and unfixed epidermis. Suitably oriented replicas of unfixed desmosomes reveal profiles of apparent fine filaments extending from the region of tonofilament loops through the desmosomal plaque to traverse the cytoplasmic leaflet of the plasmalemma. They can be traced onto the B-face. Their position correlates to fine linear profiles noted in tannic acid/glutaraldehyde-fixed and sectioned desmosomes. The possibility that these represent a mechanism for anchorage of tonofilaments to the plaque and to the membrane is discussed. These and other fine structural features are compared and contrasted to the properties of hemidesmosomes described in the preceding report.  相似文献   

10.
Summary The chloroplasts ofEuglena gracilis have been examined by freeze-cleaving and deep-etching techniques.The two chloroplast envelope membranes exhibit distinct fracture faces which do not resemble any of the thylakoid fracture faces.Freeze-cleaved thylakoid membranes reveal four split inner faces. Two of these faces correspond to stacked membrane regions, and two to unstacked regions. Analysis of particle sizes on the exposed faces has revealed certain differences from other chloroplast systems, which are discussed. Thylakoid membranes inEuglena are shown to reveal a constant number of particles per unit area (based on the total particle number for both complementary faces) whether they are stacked or unstacked.Deep-etchedEuglena thylakoid membranes show two additional faces, which correspond to true inner and outer thylakoid surfaces. Both of these surfaces carry very uniform populations of particles. Those on the external surface (the A surface) are round and possess a diameter of approximately 9.5 nm. Those on the inner surface (the D surface) appear rectangular (as paired subunits) and measure approximately 10 nm in width and 18 nm in length. Distribution counts of particles show that the number of particles per unit area revealed by freeze-cleaving within the thylakoid membrane approximates closely the number of particles exposed on the external thylakoid surface (the A surface) by deep-etching. The possible significance of this correlation is discussed. The distribution of rectangular particles on the inner surface of the thylakoid sac (D surface) seems to be the same in both stacked and unstacked membrane regions. We have found no correlation between the D surface particles and any clearly defined population of particles on internal, freeze-cleaved membrane faces. These and other observations suggest that stacked and unstacked membranes are similar, if not identical in internal structure.  相似文献   

11.
Ono TA  Murata N 《Plant physiology》1982,69(1):125-129
The lipid phase of cytoplasmic membrane was studied by freeze-fracture electron microscopy in the chilling-susceptible blue-green alga, Anacystis nidulans. At growth temperatures, intramembrane particles were distributed at random in the fracture faces of cytoplasmic membrane, whereas, at chilling temperatures, the fracture faces were composed of particle-free and particle-containing regions. These findings indicate that lipids of the cytoplasmic membrane were in the liquid-crystalline state at the growth temperatures and in the phase-separation state at the chilling temperatures. Temperatures for the onset of phase separation were 5 and 16°C in cells grown at 28 and 38°C, respectively.  相似文献   

12.
Ileal lining cells of the suckling rat possess an "apical endocytic complex" capable of sequestering intact protein from the intestinal lumen. The complex consists of a network of invaginations of the apical plasma membrane, a number of subjacent small vesicles, and a giant supranuclear vacuole. The first two components initially incorporate material from the intestinal lumen and then transfer it to the giant vacuole where it is stored. Their limiting membrane displays striking structural modifications when viewed in various planes of section. Its lumenal dense leaflet appears discontinuous and consists of an ordered array of minute discrete plaques. A dense particle approximately 70 A in diameter is centered over each plaque. The particles are arranged in a two-dimensional square lattice with center-to-center spacing of approximately 120 A.  相似文献   

13.
L Surchev 《Acta anatomica》1988,131(2):132-135
The shape of the synaptic sites (specialized contact areas) was examined on the synaptic membrane fracture faces of freeze-etched rat cortical synaptosomes. Simple and complex synapses were differentiated on the basis of the absence or presence of unspecialized areas in the synaptic sites. The particle-free nature of these areas is discussed.  相似文献   

14.
The structural organization and protein composition of lens fiber junctions isolated from adult bovine and calf lenses were studied using combined electron microscopy, immunolocalization with monoclonal and polyclonal anti-MIP and anti-MP70 (two putative gap junction-forming proteins), and freeze-fracture and label-fracture methods. The major intrinsic protein of lens plasma membranes (MIP) was localized in single membranes and in an extensive network of junctions having flat and undulating surface topologies. In wavy junctions, polyclonal and monoclonal anti-MIPs labeled only the cytoplasmic surface of the convex membrane of the junction. Label-fracture experiments demonstrated that the convex membrane contained MIP arranged in tetragonal arrays 6-7 nm in unit cell dimension. The apposing concave membrane of the junction displayed fracture faces without intramembrane particles or pits. Therefore, wavy junctions are asymmetric structures composed of MIP crystals abutted against particle-free membranes. In thin junctions, anti-MIP labeled the cytoplasmic surfaces of both apposing membranes with varying degrees of asymmetry. In thin junctions, MIP was found organized in both small clusters and single membranes. These small clusters also abut against particle-free apposing membranes, probably in a staggered or checkerboard pattern. Thus, the structure of thin and wavy junctions differed only in the extent of crystallization of MIP, a property that can explain why this protein can produce two different antibody-labeling patterns. A conclusion of this study is that wavy and thin junctions do not contain coaxially aligned channels, and, in these junctions, MIP is unlikely to form gap junction-like channels. We suggest MIP may behave as an intercellular adhesion protein which can also act as a volume-regulating channel to collapse the lens extracellular space. Junctions constructed of MP70 have a wider overall thickness (18-20 nm) and are abundant in the cortical regions of the lens. A monoclonal antibody raised against this protein labeled these thicker junctions on the cytoplasmic surfaces of both apposing membranes. Thick junctions also contained isolated clusters of MIP inside the plaques of MP70. The role of thick junctions in lens physiology remains to be determined.  相似文献   

15.
The luminal and discoid vacuole membranes of the superficial cell layer of the transitional epithelium of the mammalian urinary bladder have been studied by thin-sectioning and freeze-fracture-etch (FFE) electron microscope methods. For the FFE studies membranes were deposited on a cationized glass surface, covered by a thin copper disc, and fractured under liquid N2. Specimens were etched at -100 degrees C and replicated at -190 degrees C. A model of the lattice membrane derived from thin sections was used to predict the heights of the fracture faces above the glass surface. A hexagonal pattern of globular intramembrane particles spaced 160 A apart was seen in the external fracture (EF) face plaques as previously described and regarded as the dominant structure. However, very extensive areas of another pattern, seen before in only limited areas, have beeen found in the EF faces. The pattern consists of a smooth hexagonal lattice with the same space constant as the globular one but a different structure. By image analysis it consists of overlapping domains bordered by shared but incomplete metal rims. Each domain has a central spot of metal encircled by a shadow. The surface of the smooth lattice is partly complementary to the corresponding protoplasmic fracture (PF) face which shows a similar hexagonal lattice with the same space constant. The height of the smooth EF lattice above the glass substrate is the same as the plane of the center of the lipid bilayer predicted by the model. The mean heights of the particles of the globular EF lattice are greater than the total thickness of the membrane as predicted by the model and confirmed by measurements. The globular EF lattice is not complementary and it is concluded that the globular particles do not exist in the native membrane but arise artifactually during the preparatory procedures.  相似文献   

16.
Two fracture faces in each half of the freeze-fractured tegumental membrane of adult Schistosoma mansoni indicate the presence of two trilaminate membranes. This result is compatible with the heptalaminate appearance of the tegumental membrane in ultrathin sections. Intramembranous particles are located mainly in the outermost leaflet of the outer membrane and in the cytoplasmic leaflet of the inner membrane. The tegumental membrane of the cercaria (infective larva) has a single fracture plane, which conforms with its trilaminate appearance in sections. Intramembranous particles are extremely numerous and are almost all located in the cytoplasmic leaflet.  相似文献   

17.
The organization of the cytoskeleton in the podosomes of osteoclasts was studied by use of cell shearing, rotary replication, and fluorescence cytochemical techniques. After shearing, clathrin plaques and particles associated with the cytoskeleton were left behind on the exposed cytoplasmic side of the membrane. The cytoskeleton of the podosomes was characterized by two types of actin filaments: relatively long filaments in the portion surrounding the podosome core, and highly branched short filaments in the core. Individual actin filaments radiating from the podosomes interacted with several membrane particles along the length of the filaments. Many lateral contacts with the membrane surface by the particles were made along the length of individual actin filaments. The polarity of actin filaments in podosomes became oriented such that their barbed ends were directed toward the core of podosomes. The actin cytoskeletons terminated or branched at the podosomes, where the membrane tightly adhered to the substratum. Microtubules were not usually present in the podosome structures; however, certain microtubules appeared to be morphologically in direct contact with the podosome core. Most of the larger clathrin plaques consisted of flat sheets of clathrin lattices that interconnected neighboring clathrin lattices to form an extensive clathrin area. However, the small deeply invaginated clathrin plaques and the podosomal cytoskeleton were located close together. Thus, the clathrin plaques on the ventral membrane of osteoclasts might be involved in both cell adhesion and the formation of receptor-ligand complexes, i.e., endocytosis. This work was supported by the following grants to T.A.: Grants-in-Aid for Scientific Research (C) (18592020) from the Ministry of Education, Science, and Culture of Japan and the Miyata Research Fund of Asahi University.  相似文献   

18.
Pulmonary endothelial cells are capable of metabolizing a variety of circulating hormonal substances. Indirect evidence indicates that some of the relevant enzymes are located on the plasma membrane. The associated caveolae are of special interest as globular subunits, possibly enzyme clusters, are evident in their membranes. In the present study, freeze-etch techniques were used to improve understanding of the fine structure of endothelial cells and to extend our investigations of possible sites of enzymes capable of metabolizing circulating vasoactive agents. As in other cells studied by freeze-etching, intramembranous particles are found on both inner aspects of the plasma membrane. In undifferentiated areas of plasma membrane, the particles appear to have a random distribution. These areas fracture such that approximately equal proportions of the particles adhere to the cytoplasmic aspect of the outer leaflet and the extracellular aspect of the inner leaflet. However, the particles organize into rosettes and plaques at the base of caveolae, and, after fracture, the rosettes and plaques adhere predominantly to the cytoplasmic aspect of the outer leaflet. The peculiar organization of particles in association with caveolae supports the concept that caveolae have a stomal skeletal structure and raises the possibility that the organization may be in some way related to pinocytosis.  相似文献   

19.
The luminal surface of the bladder epithelium is continuously exposed to urine that differs from blood in its ionic composition and osmolality. The apical plasma membrane of facet or umbrella cells, facing the urine, is covered with rigid-looking plaques consisting of hexagonal uroplakin particles. Together with tight junctions these plaques form a specialized membrane compartment that represents one of the tightest and most impermeable barriers in the body. Plaques also occur in the membrane of cytoplasmic discoid vesicles. Here it is shown shown that synaptobrevin, SNAP23 and syntaxin are perfectly colocalized with uroplakin III at the apical plasma membrane as well as with membranes of discoid vesicles. Such a distribution suggests that discoid vesicles in facet cells may gain access to the apical plasma membrane probably by combination of homotypic and heterotypic fusion events. Furthermore, we detected uroplakin III-containing membranes of different sizes in the urine of healthy humans and rats. Probably facet cells maintain their permeability barrier by a process of continuous membrane regeneration that includes the cutting off of areas of the apical membrane and its replacement by newly fused discoid vesicles.  相似文献   

20.
Urothelial surface is covered by numerous plaques (consisting of asymmetric unit membranes or AUM) that are interconnected by ordinary looking hinge membranes. We describe an improved method for purifying bovine urothelial plaques using 2% sarkosyl and 25 mM NaOH to remove contaminating membrane and peripheral proteins selectively. Highly purified plaques interconnected by intact hinge areas were obtained, indicating that the hinges are as detergent-insoluble as the plaques. These plaque/hinge preparations contained uroplakins, an as yet uncharacterized 18-kDa plaque-associated protein, plus an 85-kDa glycoprotein that is known to be hinge-associated in situ. Examination of the isolated, in vitro-resealed bovine AUM vesicles by quick-freeze deep-etch showed that each AUM particle consists of a 16-nm, luminally exposed "head" anchored to the lipid bilayer via a 9-mm transmembranous "tail", and that an AUM plaque can break forming several smaller plaques separated by newly formed particle-free, hinge-like areas. These data lend support to our recently proposed three-dimensional model of mouse urothelial plaques. In addition, our findings suggest that urothelial plaques are dynamic structures that can rearrange giving rise to new plaques with intervening hinges; that the entire urothelial apical surface (both plaque and hinge areas) is highly specialized; and that these two membrane domains may be equally important in fulfilling some of the urothelial functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号