首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The C. elegans proteins MES-2 and MES-6, orthologs of the Polycomb group (PcG) chromatin repressors E(Z) and ESC, exist in a complex with their novel partner MES-3. The MES system participates in silencing the X chromosomes in the hermaphrodite germline. Loss of maternal MES function leads to germline degeneration and sterility. We report here that the MES complex is responsible for di- and trimethylation of histone H3 Lys27 (H3-K27) in the adult germline and in early embryos and that MES-dependent H3-K27 marks are concentrated on the X's. Another H3-K27 HMT functions in adult somatic cells, oocytes, and the PGCs of embryos. In PGCs, the MES complex may specifically convert dimethyl to trimethyl H3-K27. The HMT activity of the MES complex appears to be dependent on the SET domain of MES-2. MES-2 thus joins its orthologs Drosophila E(Z) and human EZH2 among SET domain proteins known to function as HMTs (reviewed in ). Methylation of histones is important for long-term epigenetic regulation of chromatin and plays a key role in diverse processes such as X inactivation and oncogenesis. Our results contribute to understanding the composition and roles of E(Z)/MES-2 complexes across species.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
Bhadra U  Pal-Bhadra M  Birchler JA 《Genetics》1999,152(1):249-268
Immunostaining of chromosomes shows that the male-specific lethal (MSL) proteins are associated with all female chromosomes at a low level but are sequestered to the X chromosome in males. Histone-4 Lys-16 acetylation follows a similar pattern in normal males and females, being higher on the X and lower on the autosomes in males than in females. However, the staining pattern of acetylation and the mof gene product, a putative histone acetylase, in msl mutant males returns to a uniform genome-wide distribution as found in females. Gene expression on the autosomes correlates with the level of histone-4 acetylation. With minor exceptions, the expression levels of X-linked genes are maintained with either an increase or decrease of acetylation, suggesting that the MSL complex renders gene activity unresponsive to H4Lys16 acetylation. Evidence was also found for the presence of nucleation sites for association of the MSL proteins with the X chromosome rather than individual gene binding sequences. We suggest that sequestration of the MSL proteins occurs in males to nullify on the autosomes and maintain on the X, an inverse effect produced by negatively acting dosage-dependent regulatory genes as a consequence of the evolution of the X/Y sex chromosomal system.  相似文献   

10.
11.
In mammals, the X and Y chromosomes are subject to meiotic sex chromosome inactivation (MSCI) during prophase I in the male germline, but their status thereafter is currently unclear. An abundance of X-linked spermatogenesis genes has spawned the view that the X must be active . On the other hand, the idea that the imprinted paternal X of the early embryo may be preinactivated by MSCI suggests that silencing may persist longer . To clarify this issue, we establish a comprehensive X-expression profile during mouse spermatogenesis. Here, we discover that the X and Y occupy a novel compartment in the postmeiotic spermatid and adopt a non-Rabl configuration. We demonstrate that this postmeiotic sex chromatin (PMSC) persists throughout spermiogenesis into mature sperm and exhibits epigenetic similarity to the XY body. In the spermatid, 87% of X-linked genes remain suppressed postmeiotically, while autosomes are largely active. We conclude that chromosome-wide X silencing continues from meiosis to the end of spermiogenesis, and we discuss implications for proposed mechanisms of imprinted X-inactivation.  相似文献   

12.
13.
14.
15.
Silencing of genes on one of the two female X chromosomes early in development helps balance expression of X-linked genes between XX females and XY males and involves chromosome-wide changes in histone variants and modifications. Mouse female embryonic stem (ES) cells have two active Xs, one of which is silenced on differentiation, and provide a powerful model for studying the dynamics of X inactivation. Here, we use immunofluorescence microscopy of metaphase chromosomes to study changes in H3 mono-, di- or tri-methylated at lysine 4 (H3K4mel, -2 or -3) on the inactivating X (Xi) in female ES cells. H3K4me3 is absent from Xi in approximately 25% of chromosome spreads by day 2 of differentiation and in 40-50% of spreads by days 4-6, making it one of the earliest detectable changes on Xi. In contrast, loss of H3K4me2 occurs 1-2 days later, when histone acetylation also diminishes. Remarkably, H3K4mel is depleted on both (active) X chromosomes in undifferentiated female ES cells, and on the single X in males, and remains depleted on Xi. Consistent with this, chromatin immunoprecipitation reveals differentiation-related reductions in H3K4me2 and H3K4me3 at the promoter regions of genes undergoing X-inactivation in female ES cells, but no comparable change in H3K4me1.  相似文献   

16.
17.
Whereas DNA methylation is essential for genomic imprinting, the importance of histone methylation in the allelic expression of imprinted genes is unclear. Imprinting control regions (ICRs), however, are marked by histone H3-K9 methylation on their DNA-methylated allele. In the placenta, the paternal silencing along the Kcnq1 domain on distal chromosome 7 also correlates with the presence of H3-K9 methylation, but imprinted repression at these genes is maintained independently of DNA methylation. To explore which histone methyltransferase (HMT) could mediate the allelic H3-K9 methylation on distal chromosome 7, and at ICRs, we generated mouse conceptuses deficient for the SET domain protein G9a. We found that in the embryo and placenta, the differential DNA methylation at ICRs and imprinted genes is maintained in the absence of G9a. Accordingly, in embryos, imprinted gene expression was unchanged at the domains analyzed, in spite of a global loss of H3-K9 dimethylation (H3K9me2). In contrast, the placenta-specific imprinting of genes on distal chromosome 7 is impaired in the absence of G9a, and this correlates with reduced levels of H3K9me2 and H3K9me3. These findings provide the first evidence for the involvement of an HMT and suggest that histone methylation contributes to imprinted gene repression in the trophoblast.  相似文献   

18.
In eukaryotes, the post-translational addition of methyl groups to histone H3 lysine 4 (H3K4) plays key roles in maintenance and establishment of appropriate gene expression patterns and chromatin states. We report here that an essential locus within chromosome 3L centric heterochromatin encodes the previously uncharacterized Drosophila melanogaster ortholog (dSet1, CG40351) of the Set1 H3K4 histone methyltransferase (HMT). Our results suggest that dSet1 acts as a "global" or general H3K4 di- and trimethyl HMT in Drosophila. Levels of H3K4 di- and trimethylation are significantly reduced in dSet1 mutants during late larval and post-larval stages, but not in animals carrying mutations in genes encoding other well-characterized H3K4 HMTs such as trr, trx, and ash1. The latter results suggest that Trr, Trx, and Ash1 may play more specific roles in regulating key cellular targets and pathways and/or act as global H3K4 HMTs earlier in development. In yeast and mammalian cells, the HMT activity of Set1 proteins is mediated through an evolutionarily conserved protein complex known as Complex of Proteins Associated with Set1 (COMPASS). We present biochemical evidence that dSet1 interacts with members of a putative Drosophila COMPASS complex and genetic evidence that these members are functionally required for H3K4 methylation. Taken together, our results suggest that dSet1 is responsible for the bulk of H3K4 di- and trimethylation throughout Drosophila development, thus providing a model system for better understanding the requirements for and functions of these modifications in metazoans.  相似文献   

19.
X inactivation is the process of a chromosome-wide silencing of the majority of genes on the X chromosome during early mammalian development. This process may be aberrant in cloned animals. Here we show that repressive modifications, such as methylation of DNA, and the presence of methylated histones, H3K9me2 and H3K27me3, exhibit distinct aberrance on the inactive X chromosome in live clones. In contrast, H3K4me3, an active gene marker, is obviously missing from the inactive X chromosome in all cattle studied. This suggests that the disappearance of active histone modifications (H3K4me3) seems to be more important for X inactivation than deposition of marks associated with heterochromatin (DNA methylation, H3K27me3 and H3K9me2). It also implies that even apparently normal clones may have subtle abnormalities in repressive, but not activating epigenetic modifications on the inactive X when they survive to term. We also found that the histone H3 methylations were enriched and co-localized at q21-31 of the active X chromosome, which may be associated with an abundance of LINE1 repeat elements.  相似文献   

20.
The SET domain is an evolutionarily conserved domain found predominantly in histone methyltransferases (HMTs). The Neurospora crassa genome includes nine SET domain genes (set-1 through set-9) in addition to dim-5, which encodes a histone H3 lysine 9 HMT required for DNA methylation. We demonstrate that Neurospora set-2 encodes a histone H3 lysine 36 (K36) methyltransferase and that it is essential for normal growth and development. We used repeat induced point mutation to make a set-2 mutant (set-2(RIP1)) with multiple nonsense mutations. Western analyses revealed that the mutant lacks SET-2 protein and K36 methylation. An amino-terminal fragment that includes the AWS, SET, and post-SET domains of SET-2 proved sufficient for K36 HMT activity in vitro. Nucleosomes were better substrates than free histones. The set-2(RIP1) mutant grows slowly, conidiates poorly, and is female sterile. Introducing the wild-type gene into the mutant complemented the defects, confirming that they resulted from loss of set-2 function. We replaced the wild-type histone H3 gene (hH3) with an allele producing a Lys to Leu substitution at position 36 and found that this hH3(K36L) mutant phenocopied the set-2(RIP1) mutant, confirming that the observed defects in growth and development result from inability to methylate K36 of H3. Finally, we used chromatin immunoprecipitation to demonstrate that actively transcribed genes in Neurospora crassa are enriched for H3 methylated at lysines 4 and 36. Taken together, our results suggest that methylation of K36 in Neurospora crassa is essential for normal growth and development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号