首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Most proteins within living organisms contain glycans. Glycan structures can modulate the biological properties and functions of glycoproteins. The major glycans of glycoproteins can be classified into two groups, N-glycans and O-glycans, according to their glycan-peptide linkage regions. Developments in glycobiology have revealed a new type of glycosidic linkage to the peptide portion, the O-mannosyl linkage, in mammals, while so far it had been thought to be specific to yeast. This review will give an outline of the O-mannosyl glycans of mammalian glycoproteins. Since one of the most well known O-mannosyl-modified mammalian glycoproteins is dystroglycan, the functional aspects of the O-mannosyl glycan of dystroglycan will be described to help understand this new glycobiological field.  相似文献   

2.
The N-glycans of recombinant glycoproteins expressed in insect cells mainly contain high mannose or tri-mannose structures, which are truncated forms of the sialylated N-glycans found in mammalian cells. Because asialylated glycoproteins have a shorter half-life in blood circulation, we investigated if sialylated therapeutic glycoprotein can be produced from insect cells by enhancing the N-glycosylation machinery of the cells. We co-expressed in two insect cell lines, Sf9 and Ea4, the human alpha1-antitrypsin (halpha1AT) protein with a series of key glycosyltransferases, including GlcNAc transferase II (GnT2), beta1,4-galactosyltransferase (beta14GT), and alpha2,6-sialyltransferase (alpha26ST) by a single recombinant baculovirus. We demonstrated that the enhancement of N-glycosylation is cell type-dependent and is more efficient in Ea4 than Sf9 cells. Glycan analysis indicated that sialylated halpha1AT proteins were produced in Ea4 insect cells expressing the above-mentioned exogenous glycosyltransferases. Therefore, our expression strategy may simplify the production of humanized therapeutic glycoproteins by improving the N-glycosylation pathway in specific insect cells, with an ensemble of exogenous glycosyltransferases in a single recombinant baculovirus.  相似文献   

3.
The characterization of the repertoire of glycans at the quantitative and qualitative levels on cells and glycoproteins is a necessary step to the understanding of glycan functions in biology. In addition, there is an increasing demand in the field of biotechnology for the monitoring of glycosylation of recombinant glycoproteins, an important issue with regard to their safety and biological activity. The enzymatic release followed by fluorescent derivatization of glycans and separation by normal phase high-performance liquid chromatography (HPLC) has proven for many years to be a powerful approach to the quantification of glycans. Characterization of glycans has classically been performed by mass spectrometry (MS) with external standardization. Here, we report a new method for the simultaneous quantification and characterization of the N-glycans on glycoproteins without the need for external standardization. This method, which we call glycan nanoprofiling, uses nanoLC-coupled electrospray ionization (ESI)-MS with an intercalated nanofluorescence reader and provides effective single glycan separation with subpicomolar sensitivity. The method relies on the isolation and coumaric derivatization of enzymatically released glycans collected by solid phase extraction with porous graphitized carbon and their separation over polyamide-based nanoHPLC prior to serial nanofluorescence and nanoelectrospray mass spectrometric analysis. Glycan nanoprofiling is a broadly applicable and powerful approach that is sufficient to identify and quantify many glycan oligomers in a single run. Glycan nanoprofiling was successfully applied to resolve the glycans of monoclonal antibodies, showing that this method is a fast and sensitive alternative to available methods.  相似文献   

4.
Glycan microarrays are emerging as increasingly used screening tools with a high potential for unraveling protein-carbohydrate interactions: probing hundreds or even thousands of glycans in parallel, they provide the researcher with a vast amount of data in a short time-frame, while using relatively small amounts of analytes. Natural glycan microarrays focus on the glycans' repertoire of natural sources, including both well-defined structures as well as still-unknown ones. This article compares different natural glycan microarray strategies. Glycan probes may comprise oligosaccharides from glycoproteins as well as glycolipids and polysaccharides. Oligosaccharides may be purified from scarce biological samples that are of particular relevance for the carbohydrate-binding protein to be studied. We give an overview of strategies for glycan isolation, derivatization, fractionation, immobilization and structural characterization. Detection methods such as fluorescence analysis and surface plasmon resonance are summarized. The importance of glycan density and multivalency is discussed. Furthermore, some applications of natural glycan microarrays for studying lectin and antibody binding are presented.  相似文献   

5.
Glycan microarrays are emerging as increasingly used screening tools with a high potential for unraveling protein–carbohydrate interactions: probing hundreds or even thousands of glycans in parallel, they provide the researcher with a vast amount of data in a short time-frame, while using relatively small amounts of analytes. Natural glycan microarrays focus on the glycans’ repertoire of natural sources, including both well-defined structures as well as still-unknown ones. This article compares different natural glycan microarray strategies. Glycan probes may comprise oligosaccharides from glycoproteins as well as glycolipids and polysaccharides. Oligosaccharides may be purified from scarce biological samples that are of particular relevance for the carbohydrate-binding protein to be studied. We give an overview of strategies for glycan isolation, derivatization, fractionation, immobilization and structural characterization. Detection methods such as fluorescence analysis and surface plasmon resonance are summarized. The importance of glycan density and multivalency is discussed. Furthermore, some applications of natural glycan microarrays for studying lectin and antibody binding are presented.  相似文献   

6.
Glycosylation, the addition of carbohydrates to a peptide backbone, is the most extensive cotranslational and posttranslational modification made to proteins by eukaryotic cells. The glycosylation profile of a recombinant glycoprotein can significantly affect its biological activity, which is particularly important when being used in human therapeutic applications. Therefore, defining glycan structures to ensure consistency of recombinant glycoproteins among different batches is critical. In this study we describe a method to prepare N-linked glycans derived from insect cell glycoproteins for structural analysis by capillary electrophoresis. Briefly, glycoproteins obtained from uninfected Spodoptera frugiperda Sf-9 insect cells were precipitated with ammonium sulfate and the glycans were chemically cleaved by hydrazinolysis. Following the regeneration of the glycan reducing terminal residue and the removal of contaminating proteins and peptides, the glycans were fluorescently labeled by reductive amination. Fluorescent labeling greatly enhanced the detection limit of the glycan structures determined by capillary electrophoresis. Five major glycan structures were found that migrated between tetra-mannosylated hexasaccharide and nonamannosylated undecasaccharide standards. Upon alpha-mannosidase digestion the number of glycan structures was reduced to two major structures with shorter migration times than the undigested glycans. None of the glycans were susceptible to hexosaminidase or galactosidase treatment. These results are consistent with the majority of previous results demonstrating hypermannosylated glycan structures in Sf-9 insect cells.  相似文献   

7.
Our growing comprehension of the biological roles of glycan moieties has created a clear need for expression systems that can produce mammalian-type glycoproteins. In turn, this has intensified interest in understanding the protein glycosylation pathways of the heterologous hosts that are commonly used for recombinant glycoprotein expression. Among these, insect cells are the most widely used and, particularly in their role as hosts for baculovirus expression vectors, provide a powerful tool for biotechnology. Various studies of the glycosylation patterns of endogenous and recombinant glycoproteins produced by insect cells have revealed a large variety of O- and N-linked glycan structures and have established that the major processed O- and N-glycan species found on these glycoproteins are (Gal beta1,3)GalNAc-O-Ser/Thr and Man3(Fuc)GlcNAc2-N-Asn, respectively. However, the ability or inability of insect cells to synthesize and compartmentalize sialic acids and to produce sialylated glycans remains controversial. This is an important issue because terminal sialic acid residues play diverse biological roles in many glycoconjugates. While most work indicates that insect cell-derived glycoproteins are not sialylated, some well-controlled studies suggest that sialylation can occur. In evaluating this work, it is important to recognize that oligosaccharide structural determination is tedious work, due to the infinite diversity of this class of compounds. Furthermore, there is no universal method of glycan analysis; rather, various strategies and techniques can be used, which provide glycobiologists with relatively more or less precise and reliable results. Therefore, it is important to consider the methodology used to assess glycan structures when evaluating these studies. The purpose of this review is to survey the studies that have contributed to our current view of glycoprotein sialylation in insect cell systems, according to the methods used. Possible reasons for the disagreement on this topic in the literature, which include the diverse origins of biological material and experimental artifacts, will be discussed. In the final analysis, it appears that if insect cells have the genetic potential to perform sialylation of glycoproteins, this is a highly specialized function that probably occurs rarely. Thus, the production of sialylated recombinant glycoproteins in the baculovirus-insect cell system will require metabolic engineering efforts to extend the native protein glycosylation pathways of insect cells.  相似文献   

8.
Glycan structures of glycoproteins secreted in the spent medium of tobacco BY2 suspension-cultured cells were analyzed. The N-glycans were liberated by hydrazinolysis and the resulting oligosaccharides were labeled with 2-aminopyridine. The pyridylaminated (PA) glycans were purified by reversed-phase and size-fractionation HPLC. The structures of the PA sugar chains were identified by a combination of the two-dimensional PA sugar chain mapping, MS analysis, and exoglycosidase digestion. The ratio (40:60) of the amount of glycans with high-mannose-type structure to that with plant-complex-type structure of extracellular glycoproteins is significantly different from that (ratio 10:90) previously found in intracellular glycoproteins [Palacpac et al., Biosci. Biotechnol. Biochem. 63 (1999) 35-39]. Extracellular glycoproteins have six distinct N-glycans (marked by *) from intracellular glycoproteins, and the high-mannose-type structures account for nearly 40% (Man5GlcNAc2, 28.8%; Man6GlcNAc2*, 6.4%; and Man7GlcNAc2*, 3.8%), while the plant-complex-type structures account for nearly 60% (GlcNAc2Man3Xyl1GlcNAc2*, 32.1%; GlcNAc1Man3Xyl1GlcNAc2 (containing two isomers)*, 6.2%; GlcNAc2Man3GlcNAc2*, 4.9%; Man3Xyl1Fuc1GlcNAc2, 8.3%; and Man3Xyl1GlcNAc2, 3.7%).  相似文献   

9.
M Takeuchi  A Kobata 《Glycobiology》1991,1(4):337-346
Erythropoietin (EPO) is a haemopoietic hormone specific to cells of erythroid lineage. EPO has recently become available for the treatment of anaemia as the first human recombinant biomedicine produced in heterologous mammalian cells. Human EPO is characterized by its large carbohydrate chains, which occupy close to 40% of its total mass. These sugar moieties were thought to be important for the biological activity of EPO, but detailed studies were not performed until the structures were elucidated. The variety of roles for the sugar chains were then immediately found once the structures were known. EPO is an excellent model for investigating the roles of sugar chains on glycoproteins, since its gene and its multiple glycoforms are available, as well as sensitive bioassays for testing. In this review, we will first summarize the known sugar chain structures of EPO from different host cells, and then discuss the host-cell dependent and peptide structure-dependent glycosylation of glycoproteins. We will then address how one investigates the roles of sugar chains of glycoproteins, show several examples of such investigations, and discuss the functional roles of HuEPO's sugar chains in its biosynthesis and secretion, its in vitro and in vivo biological activities, and its half-life in blood circulation.  相似文献   

10.
The covalent attachment of carbohydrate to proteins is a very common co- or post-translational event in the biosynthesis of glycoproteins. The type and heterogeneity of these oligosaccharides can affect a range of physico-chemical and biological properties of a glycoprotein. Thus the development of sensitive, reliable and robust analytical methods for carbohydrate analysis is important in the pharmaceutical industry, especially in the recombinant production of experimental and therapeutic glycoproteins. In this report we have reviewed methodology for the in-gel enzymatic release of N-linked oligosaccharides from glycoproteins separated by electrophoresis. These oligosaccharides are derivatised by reductive amination using 3-acetamido-6-aminoacridine (AA-Ac), a novel, highly fluorescent probe. A major advantage of this technique is that glycan derivatives are amenable to analysis by an array of chromatographic and mass spectrometric methods, allowing the resolution and characterisation of a wide variety of glycan structures. It is hoped that in due course the methodology described will be applied to proteomics studies, especially in identifying the role of carbohydrate in protein function and disease.  相似文献   

11.
The application of recombinant DNA technology to restructure metabolic networks can change metabolite and protein products by altering the biosynthetic pathways in an organism. Although some success has been achieved, a more detailed and thorough investigation of this approach is certainly warranted since it is clear that such methods hold great potential based on the encouraging results obtained so far. In last decade, there have been tremendous advances in the field of glycobiology and the stage has been set for the biotechnological production of glycoproteins for therapeutic use. Today glycoproteins are one of the most important groups of pharmaceutical products. In this study the attempt was made to focus on identifying technologies that may have general application for modifying glycosylation pathway of the yeast cells in order to produce glycoproteins of therapeutic use. The carbohydrates of therapeutic recombinant glycoproteins play very important roles in determining their pharmacokinetic properties. A number of biological interactions and biological functions mediated by glycans are also being targeted for therapeutic manipulationin vivo. For a commercially viable production of therapeutic glycoproteins a metabolic engineering of a host cell is yet to be established.  相似文献   

12.
The tetrameric form of native serum-derived bovine acetylcholinesterase is retained in the circulation for much longer periods (mean residence time, MRT = 1390 min) than recombinant bovine acetylcholinesterase (rBoAChE) produced in the HEK-293 cell system (MRT = 57 min). Extensive matrix-assisted laser desorption ionization-time of flight analyses established that the basic structures of the N-glycans associated with the native and recombinant enzymes are similar (the major species (50-60%) are of the biantennary fucosylated type and 20-30% are of the triantennary type), yet the glycan termini of the native enzyme are mostly capped with sialic acid (82%) and alpha-galactose (12%), whereas glycans of the recombinant enzyme exhibit a high level of exposed beta-galactose residues (50%) and a lack of alpha-galactose. Glycan termini of both fetal bovine serum and rBoAChE were altered in vitro using exoglycosidases and sialyltransferase or in vivo by a HEK-293 cell line developed specifically to allow efficient sialic acid capping of beta-galactose-exposed termini. In addition, the dimeric and monomeric forms of rBoAChE were quantitatively converted to tetramers by complexation with a synthetic peptide representing the human ColQ-derived proline-rich attachment domain. Thus by controlling both the level and nature of N-glycan capping and subunit assembly, we generated and characterized 9 distinct bovine AChE glycoforms displaying a 400-fold difference in their circulatory lifetimes (MRT = 3.5-1390 min). This revealed some general rules and a hierarchy of post-translation factors determining the circulatory profile of glycoproteins. Accordingly, an rBoAChE was generated that displayed a circulatory profile indistinguishable from the native form.  相似文献   

13.
Glycan structures on glycoproteins and glycolipids play critical roles in biological recognition, targeting, and modulation of functions in animal systems. Many classes of glycan structures are capped with terminal sialic acid residues, which contribute to biological functions by either forming or masking glycan recognition sites on the cell surface or secreted glycoconjugates. Sialylated glycans are synthesized in mammals by a single conserved family of sialyltransferases that have diverse linkage and acceptor specificities. We examined the enzymatic basis for glycan sialylation in animal systems by determining the crystal structures of rat ST6GAL1, an enzyme that creates terminal α2,6-sialic acid linkages on complex-type N-glycans, at 2.4 Å resolution. Crystals were obtained from enzyme preparations generated in mammalian cells. The resulting structure revealed an overall protein fold broadly resembling the previously determined structure of pig ST3GAL1, including a CMP-sialic acid-binding site assembled from conserved sialylmotif sequence elements. Significant differences in structure and disulfide bonding patterns were found outside the sialylmotif sequences, including differences in residues predicted to interact with the glycan acceptor. Computational substrate docking and molecular dynamics simulations were performed to predict and evaluate the CMP-sialic acid donor and glycan acceptor interactions, and the results were compared with kinetic analysis of active site mutants. Comparisons of the structure with pig ST3GAL1 and a bacterial sialyltransferase revealed a similar positioning of donor, acceptor, and catalytic residues that provide a common structural framework for catalysis by the mammalian and bacterial sialyltransferases.  相似文献   

14.
Carbohydrates and their conjugates are involved in various biological events, including viral and bacterial infection, the immune response, differentiation and development, and the progression of tumor cell metastasis. Glycan arrays are a new technology that has enabled the high-sensitivity and rapid analysis carbohydrate-protein interaction and contribute to significant advances in glycomics. Glycan arrays use a minute amount of materials and can be used for high-throughput profiling and quantitative analysis and provide information for the development of carbohydrate-based vaccines and new drug discovery.  相似文献   

15.
Glycosylation of recombinant proteins is of particular importance because it can play significant roles in the clinical properties of the glycoprotein. In this work, the N-glycan structures of recombinant human Factor IX (tg-FIX) produced in the transgenic pig mammary gland were determined. The majority of the N-glycans of transgenic pig-derived Factor IX (tg-FIX) are complex, bi-antennary with one or two terminal N-acetylneuraminic acid (Neu5Ac) moieties. We also found that the N-glycan structures of tg-FIX produced in the porcine mammary epithelial cells differed with respect to N-glycans from glycoproteins produced in other porcine tissues. tg-FIX contains no detectable Neu5Gc, the sialic acid commonly found in porcine glycoproteins produced in other tissues. Additionally, we were unable to detect glycans in tg-FIX that have a terminal Galalpha(1,3)Gal disaccharide sequence, which is strongly antigenic in humans. The N-glycan structures of tg-FIX are also compared to the published N-glycan structures of recombinant human glycoproteins produced in other transgenic animal species. While tg-FIX contains only complex structures, antithrombin III (goat), C1 inhibitor (rabbit), and lactoferrin (cow) have both high mannose and complex structures. Collectively, these data represent a beginning point for the future investigation of species-specific and tissue/cell-specific differences in N-glycan structures among animals used for transgenic animal bioreactors.  相似文献   

16.
The carbohydrate structures of blotted glycoproteins can be analyzed by probing them with lectins. Here we describe a method where lectins conjugated with digoxigenin are used in combination with an anti-digoxigenin antibody AP conjugate as a very sensitive detection system for this type of analysis. The specificity of the lectins used, and the sensitivity of the detection system, provide valuable conclusions on the glycan structures. Only small amounts of glycoproteins are required for the analysis. The binding specificity of a set of lectins is demonstrated with various glycoproteins of defined carbohydrate structure. The application of these labeled lectins in combination with specific glycosidases for the characterization of the carbohydrate chains of recombinant tissue plasminogen activator and erythropoietin is presented.  相似文献   

17.
The chitin-binding domain of human macrophage chitinase was expressed as a fusion protein with glutathione S-transferase in Escherichia coli and assayed for its binding activity. The purified recombinant chitin-binding domain bound to chitin, but not to glucan, xylan, or mannan. The binding of the recombinant chitin-binding domain to chitin was inhibited by N-acetylglucosamine, di-N-acetylchitobiose, and hyaluronan, but not by N-acetylgalactosamine or chondroitin. Furthermore, a solid-phase binding assay showed that the recombinant domain interacts specifically with hyaluronan and hybrid-type N-linked oligosaccharide chains on glycoproteins, and that the oligosaccharide-binding characteristics are similar to those of wheat germ agglutinin, a lectin that binds to chitin. The results suggest that human chitinase chitin-binding domain may be involved in tissue remodeling through binding to polysaccharides or extracellular matrix glycoproteins, and this recombinant protein can be used to elucidate biological functions of the enzyme.  相似文献   

18.
Many proteins in the living body are glycoproteins, which present glycans linked on their surface. Glycan structures reflect the degree of cell differentiation or canceration and are cell specific. These characteristics are advantageous in the development of various disease biomarkers. Glycoprotein-based biomarkers (glyco-biomarkers) are developed by utilizing the specific changes in the glycan structure on a glycoprotein secreted from the diseased cells of interest. Therefore, quantification of the altered glycan structures is the key to developing a new glyco-biomarker. Glycoscience is a relatively new area of molecular science, and recent advancement of glycotechnologies is remarkable. In the author’s institute, new glycoscience technologies have been designed to be efficiently utilized for the development of new diagnostic agents. This paper introduces a strategy for glyco-biomarker development, which was successfully applied in the development of Wisteria floribunda agglutinin-positive Mac-2 binding protein M2BPGi, a liver fibrosis marker now commercially available for clinical use.  相似文献   

19.
Terminal sialic acid on oligosaccharides of glycoproteins shows several biological functions of the glycoproteins. The yeast Pichia pastoris normally does not contain sialic acid on the oligosaccharides of glycoproteins. A sialyltransferase (ST) gene was transfected into P. pastoris to assess the possibility of using yeast cells as a host to produce sialoglycoproteins. The expression vectors pPIC3.5 and pPIC9 were used as carriers. The recombinant P. pastoris harbouring ST-pPIC3.5 and ST-pPIC9 had sialyltransferase activity of 1.1 and 10.2 mU l(-1) respectively. The ability of the recombinant ST-pPIC3.5 and ST-pPIC9 to transfer the fluoresceinyl-NeuAc into the cell glycoproteins was 36.9 and 20.9 pmol mg -1 protein respectively.  相似文献   

20.
With the increasing demand for recombinant proteins and glycoproteins, research on hosts for producing these proteins is focusing increasingly on more cost-effective expression systems. Yeasts and other fungi are promising alternatives because they provide easy and cheap systems that can perform eukaryotic post-translational modifications. Unfortunately, yeasts and other fungi modify their glycoproteins with heterogeneous high-mannose glycan structures, which is often detrimental to a therapeutic protein’s pharmacokinetic behavior and can reduce the efficiency of downstream processing. This problem can be solved by engineering the glycosylation pathways to produce homogeneous and, if so desired, human-like glycan structures. In this review, we provide an overview of the most significant recently reported approaches for engineering the glycosylation pathways in yeasts and fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号