首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Since the discovery of microRNAs (miRNAs) only two decades ago, they have emerged as an essential component of the gene regulatory machinery. miRNAs have seemingly paradoxical features: a single miRNA is able to simultaneously target hundreds of genes, while its presence is mostly dispensable for animal viability under normal conditions. It is known that miRNAs act as stress response factors; however, it remains challenging to determine their relevant targets and the conditions under which they function. To address this challenge, we propose a new workflow for miRNA function analysis, by which we found that the evolutionarily young miRNA family, the mir-310s (mir-310/mir-311/mir-312/mir-313), are important regulators of Drosophila metabolic status. mir-310s-deficient animals have an abnormal diet-dependent expression profile for numerous diet-sensitive components, accumulate fats, and show various physiological defects. We found that the mir-310s simultaneously repress the production of several regulatory factors (Rab23, DHR96, and Ttk) of the evolutionarily conserved Hedgehog (Hh) pathway to sharpen dietary response. As the mir-310s expression is highly dynamic and nutrition sensitive, this signal relay model helps to explain the molecular mechanism governing quick and robust Hh signaling responses to nutritional changes. Additionally, we discovered a new component of the Hh signaling pathway in Drosophila, Rab23, which cell autonomously regulates Hh ligand trafficking in the germline stem cell niche. How organisms adjust to dietary fluctuations to sustain healthy homeostasis is an intriguing research topic. These data are the first to report that miRNAs can act as executives that transduce nutritional signals to an essential signaling pathway. This suggests miRNAs as plausible therapeutic agents that can be used in combination with low calorie and cholesterol diets to manage quick and precise tissue-specific responses to nutritional changes.  相似文献   

2.
rx1 and pax6 are necessary for the establishment of the vertebrate eye field and for the maintenance of the retinal stem cells that give rise to multiple retinal cell types. They also are differentially expressed in cellular layers in the retina when cell fates are being specified, and their expression levels differentially affect the production of amacrine cell subtypes. To determine whether rx1 and pax6 expression after the eye field is established simply maintains stem cell-like qualities or affects cell type differentiation, we used hormone-inducible constructs to increase or decrease levels/activity of each protein at two different neural plate stages. Our results indicate that rx1 regulates the size of the retinal stem cell pool because it broadly affected all cell types, whereas pax6 regulates more restricted retinal progenitor cells because it selectively affected different cell types in a time-dependent manner. Analysis of rx1 and pax6 effects on proliferation, and expression of stem cell or differentiation markers demonstrates that rx1 maintains cells in a stem cell state by promoting proliferation and delaying expression of neural identity and differentiation markers. Although pax6 also promotes proliferation, it differentially regulates neural identity and differentiation genes. Thus, these two genes work in parallel to regulate different, but overlapping aspects of retinal cell fate determination.  相似文献   

3.
Type XVIII collagen is a homotrimeric basement membrane molecule of unknown function, whose COOH-terminal NC1 domain contains endostatin (ES), a potent antiangiogenic agent. The Caenorhabditis elegans collagen XVIII homologue, cle-1, encodes three developmentally regulated protein isoforms expressed predominantly in neurons. The CLE-1 protein is found in low amounts in all basement membranes but accumulates at high levels in the nervous system. Deletion of the cle-1 NC1 domain results in viable fertile animals that display multiple cell migration and axon guidance defects. Particular defects can be rescued by ectopic expression of the NC1 domain, which is shown to be capable of forming trimers. In contrast, expression of monomeric ES does not rescue but dominantly causes cell and axon migration defects that phenocopy the NC1 deletion, suggesting that ES inhibits the promigratory activity of the NC1 domain. These results indicate that the cle-1 NC1/ES domain regulates cell and axon migrations in C. elegans.  相似文献   

4.
5.
We previously cloned RRP14/YKL082c, whose product exhibits two-hybrid interaction with Ebp2p, a regulatory factor of assembly of 60S ribosomal subunits. Depletion of Rrp14p results in shortage of 60S ribosomal subunits and retardation of processing from 27S pre-rRNA to 25S rRNA. Furthermore, 35S pre-rRNA synthesis appears to decline in Rrp14p-depleted cells. Rrp14p interacts with regulatory factors of 60S subunit assembly and also with Utp11p and Faf1p, which are regulatory factors required for assembly of 40S ribosomal subunits. We propose that Rrp14p is involved in ribosome synthesis from the beginning of 35S pre-rRNA synthesis to assembly of the 60S ribosomal subunit. Disruption of RRP14 causes an extremely slow growth rate of the cell, a severe defect in ribosome synthesis, and a depolarized localization of cortical actin patches throughout the cell cycle. These results suggest that Rrp14p has dual functions in ribosome synthesis and polarized cell growth.  相似文献   

6.
Messenger RNA translation is regulated by RNA-binding proteins and small non-coding RNAs called microRNAs. Even though we know the majority of RNA-binding proteins and microRNAs that regulate messenger RNA expression, evidence of interactions between the two remain elusive. The role of the RNA-binding protein GLD-1 as a translational repressor is well studied during Caenorhabditis elegans germline development and maintenance. Possible functions of GLD-1 during somatic development and the mechanism of how GLD-1 acts as a translational repressor are not known. Its human homologue, quaking (QKI), is essential for embryonic development. Here, we report that the RNA-binding protein GLD-1 in C. elegans affects multiple microRNA pathways and interacts with proteins required for microRNA function. Using genome-wide RNAi screening, we found that nhl-2 and vig-1, two known modulators of miRNA function, genetically interact with GLD-1. gld-1 mutations enhance multiple phenotypes conferred by mir-35 and let-7 family mutants during somatic development. We used stable isotope labelling with amino acids in cell culture to globally analyse the changes in the proteome conferred by let-7 and gld-1 during animal development. We identified the histone mRNA-binding protein CDL-1 to be, in part, responsible for the phenotypes observed in let-7 and gld-1 mutants. The link between GLD-1 and miRNA-mediated gene regulation is further supported by its biochemical interaction with ALG-1, CGH-1 and PAB-1, proteins implicated in miRNA regulation. Overall, we have uncovered genetic and biochemical interactions between GLD-1 and miRNA pathways.  相似文献   

7.
8.
When newly hatched Caenorhabditis elegans larvae are starved, their primordial germ cells (PGCs) arrest in the post-S phase. This starvation-induced PGC arrest is mediated by the DAF-18/PTEN-AKT-1/PKB nutrient-sensing pathway. Here, we report that the conserved spindle assembly checkpoint (SAC) component MDF-1/MAD1 is required for the PGC arrest. We identified 2 Akt kinase phosphorylation sites on MDF-1. Expression of a non-phosphorylatable mutant MDF-1 partially suppressed the defect in the starvation-induced PGC arrest in L1 larvae lacking DAF-18, suggesting that MDF-1 regulates germ cell proliferation as a downstream target of AKT-1, thereby demonstrating a functional link between cell-cycle regulation by the SAC components and nutrient sensing by DAF-18-AKT-1 during post-embryonic development. The phosphorylation status of MDF-1 affects its binding to another SAC component, MDF-2/MAD2. The loss of MDF-2 or another SAC component also caused inappropriate germ cell proliferation, but the defect was less severe than that caused by mdf-1 hemizygosity, suggesting that MDF-1 causes the PGC arrest by two mechanisms, one involving MDF-2 and another that is independent of other SAC components.  相似文献   

9.
10.
Programmed cell death (PCD) plays a central role in the sculpting and maturation of developing epithelia. In adult tissue, PCD plays a further role in the prevention of malignancy though removal of damaged cells. Here, we report that mutations in klumpfuss result in an excess of support cells during maturation of the developing Drosophila pupal retina. These ectopic cells are the result of a partial and specific failure of apoptotic death during normal cell fate selection. klumpfuss is required and differentially expressed in the cells that choose the life or death cell fate. We also provide genetic and biochemical evidence that klumpfuss regulates this process through down-regulation of the Epidermal Growth Factor Receptor/dRas1 signaling pathway. Based on its sequence Klumpfuss is an EGR-class nuclear factor, and our results suggest a mechanism by which mutations in EGR-class factors such as Wilms' Tumor Suppressor-1 may result in oncogenic events such as pediatric kidney tumors.  相似文献   

11.
12.
13.
MIR34A (microRNA 34a) is a tumor suppressor gene, but how it regulates chemotherapy response and resistance is not completely understood. Here, we show that the microRNA MIR34A-dependent high mobility group box 1 (HMGB1) downregulation inhibits autophagy and enhances chemotherapy-induced apoptosis in the retinoblastoma cell. HMGB1 is a multifaceted protein with a key role in autophagy, a self-degradative, homeostatic process with a context-specific role in cancer. MIR34A inhibits HMGB1 expression through a direct MIR34A-binding site within the HMGB1 3′ untranslated region. MIR34A inhibition of HMGB1 leads to a decrease in autophagy under starvation conditions or chemotherapy treatment. Inhibition of autophagy promotes oxidative injury and DNA damage and increases subsequent CASP3 activity, CASP3 cleavage, and PARP1 [poly (ADP-ribose) polymerase 1] cleavage, which are important to the apoptotic process. Finally, upregulation of MIR34A, knockdown of HMGB1, or inhibition of autophagy (e.g., knockdown of ATG5 and BECN1) restores chemosensitivity and enhances tumor cell death in the retinoblastoma cell. These data provide new insights into the mechanisms governing the regulation of HMGB1 expression by microRNA and their possible contribution to autophagy and drug resistance.  相似文献   

14.
Organ development is a complex process involving the coordination of cell proliferation, differentiation, and morphogenetic events. Using a screen to identify genes that function coordinately with lin-35/Rb during animal development, we have isolated a weak loss-of-function (LOF) mutation in pha-1. lin-35; pha-1 double mutants are defective at an early step in pharyngeal morphogenesis leading to an abnormal pharyngeal architecture. pha-1 is also synthetically lethal with other class B synthetic multivulval (SynMuv) genes including the C. elegans E2F homolog, efl-1. Reporter analyses indicate that pha-1 is broadly expressed during embryonic development and that its functions reside in the cytoplasm. We also provide genetic and phenotypic evidence to support the model that PHA-1, a novel protein, and UBC-18, a ubiquitin-conjugating enzyme that we have previously shown to function with lin-35 during pharyngeal development, act in parallel pathways to regulate the activity of a common cellular target.  相似文献   

15.
16.
In vertebrates, little is known on the role of programmed cell death (PCD) occurring within the population of dividing neural precursors and newly formed neuroblasts during early neural development. During primary neurogenesis, PCD takes place within the neuroectoderm of Xenopus embryos in a reproducible stereotypic pattern, suggesting a role for PCD during the early development of the CNS. We find that the spatio-temporal pattern of PCD is unaffected in embryos in which cell proliferation has been blocked and whose neuroecotoderm contains half the normal number of cells. This shows that PCD is not dependent on cell division. It further suggests that PCD does not solely function to regulate absolute cell numbers within the neuroectoderm. We demonstrate that PCD can be reproducibly inhibited in vivo during primary neurogenesis by the overexpression of human Bcl-2. Following PCD inhibition, normal neurogenesis is disrupted, as seen by the expansion of the expression domains of XSox-2, XZicr-2, XNgnr-1, XMyT-1, and N-Tubulin, XNgnr-1 being the most affected. PCD inhibition, however, did not affect the outcome of lateral inhibition. We propose, then, that PCD regulates primary neurogenesis at the level of neuronal determination.  相似文献   

17.
18.
19.
The importance of microRNAs in gene expression and disease is well recognized. However, what is less appreciated is that almost half of miRNA genes are organized in polycistronic clusters and are therefore coexpressed. The mir-11∼998 cluster consists of two miRNAs, miR-11 and miR-998. Here, we describe a novel layer of regulation that links the processing and expression of miR-998 to the presence of the mir-11 gene. We show that the presence of miR-11 in the pri-miRNA is required for processing by Drosha, and deletion of mir-11 prevents the expression of miR-998. Replacing mir-11 with an unrelated miRNA rescued miR-998 expression in vivo and in vitro, as did expressing miR-998 from a shorter, more canonical miRNA scaffold. The embedded regulation of miR-998 is functionally important because unchecked miR-998 expression in the absence of miR-11 resulted in pleiotropic developmental defects. This novel regulation of expression of miRNAs within a cluster is not limited to the mir-11∼998 cluster and, thus, likely reflects the more general cis-regulation of expression of individual miRNAs. Collectively, our results uncover a novel layer of regulation within miRNA clusters that tempers the functions of the individual miRNAs. Unlinking their expression has the potential to change the expression of multiple miRNA targets and shift a biological response.  相似文献   

20.
Cell cycle re-entry during vertebrate oocyte maturation is mediated through translational activation of select target mRNAs, culminating in the activation of mitogen-activated protein kinase and cyclin B/cyclin-dependent kinase (CDK) signaling. The temporal order of targeted mRNA translation is crucial for cell cycle progression and is determined by the timing of activation of distinct mRNA-binding proteins. We have previously shown in oocytes from Xenopus laevis that the mRNA-binding protein Musashi targets translational activation of early class mRNAs including the mRNA encoding the Mos proto-oncogene. However, the molecular mechanism by which Musashi function is activated is unknown. We report here that activation of Musashi1 is mediated by Ringo/CDK signaling, revealing a novel role for early Ringo/CDK function. Interestingly, Musashi1 activation is subsequently sustained through mitogen-activated protein kinase signaling, the downstream effector of Mos mRNA translation, thus establishing a positive feedback loop to amplify Musashi function. The identified regulatory sites are present in mammalian Musashi proteins, and our data suggest that phosphorylation may represent an evolutionarily conserved mechanism to control Musashi-dependent target mRNA translation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号