首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
It has been demonstrated that hydrogen peroxide (H(2)O(2)) is directly associated with elevated matrix metalloproteinase-2 (MMP-2) expression in several cell lines. Electrochemically reduced water (ERW), produced near the cathode during electrolysis, and scavenges intracellular H(2)O(2) in human fibrosarcoma HT1080 cells. RT-PCR and zymography analyses revealed that when HT1080 cells were treated with ERW, the gene expression of MMP-2 and membrane type 1 MMP and activation of MMP-2 was repressed, resulting in decreased invasion of the cells into matrigel. ERW also inhibited H(2)O(2)-induced MMP-2 upregulation. To investigate signal transduction involved in MMP-2 downregulation, mitogen-activated protein kinase (MAPK)-specific inhibitors, SB203580 (p38 MAPK inhibitor), PD98059 (MAPK/extracellular regulated kinase kinase 1 inhibitor) and c-Jun NH(2)-terminal kinase inhibitor II, were used to block the MAPK signal cascade. MMP-2 gene expression was only inhibited by SB203580 treatment, suggesting a pivotal role of p38 MAPK in regulation of MMP-2 gene expression. Western blot analysis showed that ERW downregulated the phosphorylation of p38 both in H(2)O(2)-treated and untreated HT1080 cells. These results indicate that the inhibitory effect of ERW on tumor invasion is due to, at least in part, its antioxidative effect.  相似文献   

2.
Zhu Y  Shi YP  Wu D  Ji YJ  Wang X  Chen HL  Wu SS  Huang DJ  Jiang W 《DNA and cell biology》2011,30(10):809-819
Oxidative stress induces serious tissue injury in cardiovascular diseases. Salidroside, with its strong antioxidative and cytoprotective actions, is of particular interest in the development of antioxidative therapies for oxidative injury in cardiac diseases. We examined the pharmacological effects of salidroside on H9c2 rat cardiomyoblast cells under conditions of oxidative stress induced by hydrogen peroxide (H2O2) challenge. Salidroside attenuated H2O2-impaired cell viability in a concentration-dependent manner, and effectively inhibited cellular malondialdehyde production, lethal sarcolemmal disruption, cell necrosis, and apoptosis induced by H2O2 insult. Salidroside significantly augmented Akt phosphorylation at Serine 473 in the absence or presence of H2O2 stimulation; wortmannin, a specific inhibitor of PI3K, abrogated salidroside protection. Salidroside increased the intracellular mRNA expression and activities of catalase and Mn-superoxide dismutases in a PI3K-dependent manner. Our results indicated that salidroside protected cardiomyocytes against oxidative injury through activating the PI3K/Akt pathway and increasing the expression and activities of endogenous PI3K dependent antioxidant enzymes.  相似文献   

3.
4.
We have previously isolated dieckol, a nutrient polyphenol compound, from the brown alga, Ecklonia cava (Lee et al., 2010a). Dieckol shows both antitumor and antioxidant activity and thus is of special interest for the development of chemopreventive and chemotherapeutic agents against cancer. However, the mechanism by which dieckol exerts its antitumor activity is poorly understood. Here, we show that dieckol, derived from E. cava, inhibits migration and invasion of HT1080 cells by scavenging intracellular reactive oxygen species (ROS). H2O2 or integrin signal-mediated ROS generation increases migration and invasion of HT1080 cells, which correlates with Rac1 activation and increased expression and phosphorylation of focal adhesion kinase (FAK). Rac1 activation is required for ROS generation. Depletion of FAK by siRNA suppresses Rac1-ROS-induced cell migration and invasion. Dieckol treatment attenuated intracellular ROS levels and activation of Rac1 as well as expression and phosphorylation of FAK. Dieckol treatment also decreases complex formation of FAK-Src-p130Cas and expression of MMP2, 9, and 13. These results suggest that the Rac1-ROS-linked cascade enhances migration and invasion of HT1080 cells by inducing expression of MMPs through activation of the FAK signaling pathway, whereas dieckol downregulates FAK signaling through scavenging intracellular ROS. This finding provides new insights into the mechanisms by which dieckol is able to suppress human cancer progresssion and metastasis. Therefore, we suggest that dieckol is a potential therapeutic agent for cancer treatment.  相似文献   

5.
In order to define the role of As2O3 in regulating the tumor cell invasiveness, the effects of As2O3 on secretion of matrix metalloproteinases (MMPs) and urokinase plasminogen activator (uPA), and in vitro invasion of HT1080 human fibrosarcoma cells were examined. As2O3 inhibited cell adhesion to the collagen matrix in a concentration dependent manner, whereas the same treatment enhanced cell to cell interaction. In addition, As2O3 inhibited migration and invasion of HT1080 cells stimulated with phorbol 12-myristate 13-aceate (PMA), and suppressed the expression of MMP-2, -9, membrane type-1 MMP, uPA, and uPA receptor (uPAR). In contrast, As2O3 increased the expression of tissue inhibitor of metalloproteinase (TIMP)-1 and PA inhibitor (PAI)-1, and reduced the MMP-2, -9, and uPA promoter activity in the presence and absence of PMA. Furthermore, the promoter stimulating and DNA binding activity of nuclear factor-kappaB (NF-kappaB) was blocked by As2O3, whereas the activator protein-1 activity was unchanged. Pretreatment of the cells with N-acetyl-L-cysteine (NAC) significantly prevented suppression of MMPs and uPA secretion, DNA binding activity of NF-kappaB, and in vitro invasion of HT1080 cells by As2O3, suggesting a role of reactive oxygen species (ROS) in this process. These results suggest that As2O3 inhibits tumor cell invasion by modulating the MMPs/TIMPs and uPA/uPAR/PAI systems of extracellular matrix (ECM) degradation. In addition, the generation of ROS and subsequent suppression of NF-kappaB activity by As2O3 might partly be responsible for the phenomena. Overall, As2O3 shows potent activity controlling tumor cell invasiveness in vitro.  相似文献   

6.
Oxidative stress can cause injury in retinal endothelial cells. Salidroside is a strong antioxidative and cytoprotective supplement in Chinese traditional medicine. In this study, we investigated the effects of salidroside on H2O2-induced primary retinal endothelial cells injury. Salidroside decreased H2O2-induced cell death, and efficiently suppressed cellular ROS production, malondialdehyde generation, and cell apoptosis induced by H2O2 treatment. Salidroside induced the intracellular mRNA expression, protein expression, and enzymatic activities of catalase and Mn-SOD and increased the ratio of Bcl2/Bax. Our results demonstrated that salidroside protected retinal endothelial cells against oxidative injury through increasing the Bcl2/Bax signaling pathway and activation of endogenous antioxidant enzymes. This finding presents salidroside as an attractive agent with potential to attenuate retinopathic diseases.  相似文献   

7.
Metastasis is a major cause of death in cancer patients. Our previous studies showed that pinosylvin, a naturally occurring trans-stilbenoid mainly found in Pinus species, exhibited a potential cancer chemopreventive activity and also inhibited the growth of various human cancer cell lines via the regulation of cell cycle progression. In this study, we further evaluated the potential antimetastatic activity of pinosylvin in in vitro and in vivo models. Pinosylvin suppressed the expression of matrix metalloproteinase (MMP)-2, MMP-9 and membrane type 1-MMP in cultured human fibrosarcoma HT1080 cells. We also found that pinosylvin inhibited the migration of HT1080 cells in colony dispersion and wound healing assay systems. In in vivo spontaneous pulmonary metastasis model employing intravenously injected CT26 mouse colon cancer cells in Balb/c mice, pinosylvin (10 mg/kg body weight, intraperitoneal administration) significantly inhibited the formation of tumor nodules and tumor weight in lung tissues. The analysis of tumor in lung tissues indicated that the antimetastatic effect of pinosylvin coincided with the down-regulation of MMP-9 and cyclooxygenase-2 expression, and phosphorylation of ERK1/2 and Akt. These data suggest that pinosylvin might be an effective inhibitor of tumor cell metastasis via modulation of MMPs.  相似文献   

8.
9.
10.
11.
Abnormal proliferation and migration of airway smooth muscle cells (ASMCs) have been found to be important for the airway remodeling during the pathogenesis of asthma. Salidroside a bioactive glucoside that exerts antitumor activity via inhibiting the cell proliferation and migration of cancer cells. The aim of the current study was to evaluate the effects of salidroside on the proliferation and migration of ASMCs. Our results showed that salidroside inhibited the proliferation and migration of ASMCs in response to platelet-derived growth factor (PDGF) stimulation. Salidroside markedly attenuated the PDGF-induced production of matrix metalloproteinase 2 (MMP-2) and MMP-9 in ASMCs. The levels of contractile phenotype markers including smooth muscle α-actin and calponin were reduced in response to PDGF stimulation, which was attenuated by salidroside pretreatment. Salidroside diminished the increase in the expression levels of type I collagen and fibronectin in PDGF-stimulated ASMCs. Furthermore, salidroside blocked the PDGF-induced activation of the nuclear factor-κB (NF-κB) pathway in ASMCs. The results suggested that salidroside functionally regulated the proliferation, migration, phenotype plasticity, and extracellular matrix deposition in PDGF-induced ASMCs and the NF-κB pathway might be implicated in the effects of salidroside on ASMCs induced by PDGF.  相似文献   

12.
13.
14.
The hypoglycemia and serum limitation-induced cell death in cultured PC12 cells represents a useful in vitro model for the study of brain ischemia and neurodegenerative disorders. Salidroside is a phenylpropanoid glycoside isolated from Rhodiola rosea L., a traditional Chinese medicinal plant, and has displayed a broad spectrum of pharmacological properties. In this study, MTT assay, Hoechst 33342 staining, and flow cytometry with annexin V/PI staining collectively showed that pretreatment with salidroside attenuated, in a dose-dependent manner, cell viability loss, and apoptotic cell death in cultured PC12 cells induced by hypoglycemia and serum limitation. RT-PCR, Western blot analysis, and enzymatic colorimetric assay indicated the changes in expression levels of Bcl-2, Bax, and caspase3 in PC12 cells on exposure to hypoglycemia and serum limitation with and without salidroside pretreatment, respectively. Rhodamine 123 staining and flow cytometry with 2′,7′-Dichlorofluorescin diacetate staining revealed the changes in the mitochondrial membrane potential and radical oxygen species (ROS) production in PC12 cells on exposure to hypoglycemia and serum limitation with and without salidroside pretreatment, respectively. The experimental results suggest that salidroside protects the PC12 cells against hypoglycemia and serum limitation-induced cytotoxicity possibly by the way of the modulation of apoptosis-related gene expression, the restoration of the mitochondrial membrane potential, and the inhibition of the intracellular ROS production. Our findings might raise a possibility of potential therapeutic applications of salidroside for preventing and treating cerebral ischemic and neurodegenerative diseases.  相似文献   

15.
Lee SJ  Kim MM 《Life sciences》2011,88(11-12):465-472
AimsResveratrol, a silent information regulator 1 (SIRT1) activator, has been reported to act as an antioxidant contained in red wine and prevent the development of cardiovascular diseases. Histone deacetylase such as SIRT1 is involved in the regulation of lifespan extension. In this study, the effect of resveratrol on matrix metalloproteinases (MMPs) that play an important role in metastasis was examined in human fibrosarcoma cell line, HT1080.Main methodsThe effect of resveratrol on MMPs' activity was evaluated using gelatin zymography. Western blot analysis and RT-PCR assay were used to determine the effect of resveratrol on the expression level of MMP-9, MAPK and SIRT1 proteins and genes, respectively.Key findingsIt was observed that resveratrol exhibited not only antioxidant effects on lipid peroxidation and DNA oxidation but also inhibitory effects on the expression of MMP-2 and 9 in HT1080 cells stimulated with either phorbol myristate acetate or phenazine methosulfate. Furthermore, it was found that treatment with resveratrol decreased the level of MMP-9 expression via down-regulation of p-ERK, c-fos and p65. In addition, the level of SIRT1 gene expression was also enhanced by treatment of resveratrol alone but the level of MMP-9 gene expression was decreased.SignificanceThese results suggest that the activation of SIRT1 in the presence of resveratrol especially inhibits the expression of MMP-9 in HT1080 cells, providing evidence that resveratrol can be a potential candidate for chemoprevention of cancer.  相似文献   

16.
Cell migration and proteolysis are two essential processes during tumor invasion and metastasis. Matrix metalloproteinase (MMP)-2 (type IV collagenase; gelatinase A), is implicated in tumor metastasis as well as in primary tumor growth. The Rho family of small GTPases regulates the dynamics of actin cytoskeleton associated with cell motility. In this report, we provide evidence that Rac1, one member of Rho-related small GTPases, is a mediator of MMP-2 activation in HT1080 fibrosarcoma cells cultured in three-dimensional collagen gel (3D-col) and that MMP-2 activation is required for Rac1-promoted cell invasion through collagen barrier. Stable expression of dominant negative (Rac1V12N17) and constitutively active Rac1 (Rac1V12), respectively, in HT1080 cells demonstrates that Rac1 promoted cell invasiveness across type I collagen and collagen-dependent MMP-2 activation. Active Rac1 is sufficient to induce MMP-2 activation in cells cultured in fibrin gel, an extracellular matrix component that does not support MMP-2 activation. The Rac1-dependent MMP-2 activation occurred in a cell-associated fashion and required MMP activities. Because the cell membrane-mediated MMP-2 activation requires MT1-MMP and low amount of issue inhibitor of matrix metalloproteinase-2 (TIMP-2), their expression was examined. Rac1 modulated MT1-MMP mRNA level and the accumulation of a 43-kDa form of MT1-MMP protein, in correlation with MMP-2 activation profile. However, TIMP-2 expression was independent of Rac1 activity. The coordinate modulation of MMP-2 activity and MT1-MMP expression/processing by Rac1 is consistent with cell collagenolytic activity. The C-terminal hemopexin-like domain of MMP-2, which interferes with the cell membrane activation of MMP-2, reduced Rac1-promoted cell invasiveness as monitored by collagen invasion assay. These results suggest that collagen-dependent MMP-2 activation and MT1-MMP expression/processing contribute to Rac-promoted tumor cell invasion through interstitial collagen barrier.  相似文献   

17.
FLZ is a synthetic novel squamosamide derivative and has previously been proved to be a potential drug for Parkinson's disease and Alzheimer's disease. FLZ has strong antioxidant activity, which implies that FLZ could eliminate excessive intracellular reactive oxygen species (ROS) in tumor cells and induce a pathway related to low cellular ROS levels, thereby inhibiting tumor cells proliferation. However, few reports have focused on the antitumor effects of FLZ. In this study, we investigated the antitumor efficacy of FLZ in HepG2 cells and the mechanism of cell growth inhibition. FLZ effectively inhibited HepG2 cell proliferation in a dose- and time-dependent manner; meanwhile, it was minimally toxic to normal cells. FLZ induced a significant decrease in oxidative stress through elimination of excessive intracellular ROS and strengthening of the glutathione antioxidant system. In addition, FLZ can effectively attenuate redundant [Ca(2+)](i), thereby avoiding uncontrolled amplification by Ca(2+)/ROS positive feedback. Furthermore, Western blot showed that FLZ inhibited phosphorylation of Akt and retinoblastoma protein (Rb), down-regulated the expressions of cyclin D1, cyclin E, cyclin-dependent kinase 2 (CDK2), and enhanced the expression of CDK inhibitor p27(kip1), while did not affect CDK4 expression. These results suggest that FLZ has potent anti-proliferative activity against malignant human hepatoma cells via modulation of the expression or activation of cell-cycle regulatory proteins, which are associated with decreased Ca(2+)/ROS levels, and indicate that FLZ is a potential liver cancer drug worthy of further research and development.  相似文献   

18.
Ultraviolet (UV) irradiation regulates UV-responsive genes, including matrix metalloproteinases (MMPs). Moreover, UV-induced MMPs cause connective tissue damage and the skin to become wrinkled and aged. Here, we investigated the effect of eicosapentaenoic acid (EPA), a dietary omega-3 fatty acid, on UV-induced MMP-1 expression in human dermal fibroblasts (HDFs). We found that UV radiation increases MMP-1 expression and that this is mediated by p44 and p42 MAP kinase (ERK) and Jun-N-terminal kinase (JNK) activation but not by p38 activation. Pretreatment of HDFs with EPA inhibited UV-induced MMP-1 expression in a dose-dependent manner and also inhibited the UV-induced activation of ERK and JNK by inhibiting ERK kinase (MEK1) and SAPK/ERK kinase 1 (SEK1) activation, respectively. Moreover, inhibition of ERK and JNK by EPA resulted in the decrease of c-Fos expression and c-Jun phosphorylation/expression induced by UV, respectively, which led to the inhibition of UV-induced activator protein-1 DNA binding activity. This inhibitory effect of EPA on MMP-1 was not mediated by an antioxidant effect. We also found that EPA inhibited 12-O-tetradecanoylphorbol-13-acetate- or tumor necrosis factor-alpha-induced MMP-1 expression in HDFs and UV-induced MMP-1 expression in HaCaT cells. In conclusion, our results demonstrate that EPA can inhibit UV-induced MMP-1 expression by inhibiting the MEK1/ERK/c-Fos and SEK1/JNK/c-Jun pathways. Therefore, EPA is a potential agent for the prevention and treatment of skin aging.  相似文献   

19.
In this study, the antioxidant potentials of crude extracts and solvent-partitioned fractions of Limonium tetragonum were assessed by measuring their ability to scavenge intracellular reactive oxygen species (ROS) generated in HT-1080 cells. Following activity-oriented separation, four flavonol glycosides were isolated as active principles and their chemical structures were determined by 2 D NMR and by comparison with reported spectral data. The isolated compounds (1?C4) were evaluated for their antioxidant capacity using three different activity tests; degree of occurrence of intracellular ROS, lipid peroxidation in HT-1080 cells and the extent of oxidative damage of genomic DNA purified from HT-1080 cells. All compounds exhibited significantly inhibited the generation of intracellular ROS and lipid peroxidation in HT-1080 cells, and significantly inhibited DNA oxidation. In addition, direct free radical scavenging effects of these compounds were investigated using the electron spin resonance (ESR) spin-trap technique.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号