首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The chondrocyte is the cell responsible for the maintenance of the articular cartilage matrix. The negative charges of proteoglycans of the matrix draw cations, principally Na+, into the matrix to balance the negative charge distribution. The Na+,K(+)-ATPase is the plasma membrane enzyme that maintains the intracellular Na+ and K+ concentrations. The enzyme is composed of an alpha and a beta subunit, so far, 4 alpha and 3 beta isoforms have been identified in mammals. Chondrocytes are sensitive to their ionic and osmotic environment and are capable of adaptive responses to ionic environmental perturbations particularly changes to extracellular [Na+]. In this article we show that human fetal and adult chondrocytes express three alpha (alpha 1, alpha 2 and the neural form of alpha 3) and the three beta isoforms (beta 1, beta 2 and beta 3) of the Na+,K(+)-ATPase. The presence of multiple Na+,K(+)-ATPase isoforms in the plasma membrane of chondrocytes suggests a variety of kinetic properties that reflects a cartilage specific and very fine specialization in order to maintain the Na+/K+ gradients. Changes in the ionic and osmotic environment of chondrocytes occur in osteoarthritis and rheumatoid arthritis as result of tissue hydration and proteoglycan loss leading to a fall in tissue Na+ and K+ content. Although the expression levels and cellular distribution of the proteins tested do not vary, we detect changes in p-nitrophenylphosphatase activity "in situ" between control and pathological samples. This change in the sodium pump enzymatic activity suggests that the chondrocyte responds to these cationic environmental changes with a variation of the active isozyme types present in the plasma membrane.  相似文献   

2.
The catalytic alpha isoforms of the Na+, K(+)-ATPase and stimuli controlling the plasma membrane abundance and intracellular distribution of the enzyme were studied in isolated bovine articular chondrocytes which have previously been shown to express low and high ouabain affinity alpha isoforms (alpha 1 and alpha 3 respectively; alpha 1 > alpha 3). The Na+, K(+)-ATPase density of isolated chondrocyte preparations was quantified by specific 3H-ouabain binding. Long-term elevation of extracellular medium [Na+] resulted in a significant (31%; p < 0.05) upregulation of Na+, K(+)-ATPase density and treatment with various pharmacological inhibitors (Brefeldin A, monensin and cycloheximide) significantly (p < 0.001) blocked the upregulation. The subcellular distribution of the Na+, K(+)-ATPase alpha isoforms was examined by immunofluorescence confocal laser scanning microscopy which revealed predominantly plasma membrane immunostaining of alpha subunits in control chondrocytes. In Brefeldin A treated chondrocytes exposed to high [Na+], Na+, K(+)-ATPase alpha isoforms accumulated in juxta-nuclear pools and plasma membrane Na+, K(+)-ATPase density monitored by 3H-ouabain binding was significantly down-regulated due to Brefeldin A mediated disruption of vesicular transport. There was a marked increase in intracellular alpha 1 and alpha 3 staining suggesting that these isoforms are preferentially upregulated following long-term exposure to high extracellular [Na+]. The results demonstrate that Na+, K(+)-ATPase density in chondrocytes is elevated in response to increased extracellular [Na+] through de novo protein synthesis of new pumps containing alpha 1 and alpha 3 isoforms, delivery via the endoplasmic reticulum-Golgi complex constitutive secretory pathway and insertion into the plasma membrane.  相似文献   

3.
The cellular distribution of Na+, K+-ATPase subunit isoforms was mapped in the secretory epithelium of the human prostate gland by immunostaining with antibodies to the alpha and beta subunit isoforms of the enzyme. Immunolabeling of the alpha1, beta1 and beta2 isoforms was observed in the apical and lateral plasma membrane domains of prostatic epithelial cells in contrast to human kidney where the alpha1 and beta1 isoforms of Na+, K+-ATPase were localized in the basolateral membrane of both proximal and distal convoluted tubules. Using immunohistochemistry and PCR we found no evidence of Na+, K+-ATPase alpha2 and alpha3 isoform expression suggesting that prostatic Na+, K+-ATPase consists of alpha1/beta1 and alpha1/beta2 isozymes. Our immunohistochemical findings are consistent with previously proposed models placing prostatic Na+, K+-ATPase in the apical plasma membrane domain. Abundant expression of Na+, K+-ATPase in epithelial cells lining tubulo-alveoli in the human prostate gland confirms previous conclusions drawn from biochemical, pharmacological and physiological data and provides further evidence for the critical role of this enzyme in prostatic cell physiology and ion homeostasis. Na+, K+-ATPase most likely maintains an inwardly directed Na+ gradient essential for nutrient uptake and active citrate secretion by prostatic epithelial cells. Na+, K+-ATPase may also regulate lumenal Na+ and K+, major counter-ions for citrate.  相似文献   

4.
The balance and cross-talk between natruretic and antinatruretic hormone receptors plays a critical role in the regulation of renal Na+ homeostasis, which is a major determinant of blood pressure. Dopamine and angiotensin II have antagonistic effects on renal Na+ and water excretion, which involves regulation of the Na+,K+-ATPase activity. Herein we demonstrate that angiotensin II (Ang II) stimulation of AT1 receptors in proximal tubule cells induces the recruitment of Na+,K+-ATPase molecules to the plasmalemma, in a process mediated by protein kinase Cbeta and interaction of the Na+,K+-ATPase with adaptor protein 1. Ang II stimulation led to phosphorylation of the alpha subunit Ser-11 and Ser-18 residues, and substitution of these amino acids with alanine residues completely abolished the Ang II-induced stimulation of Na+,K+-ATPase-mediated Rb+ transport. Thus, for Ang II-dependent stimulation of Na+,K+-ATPase activity, phosphorylation of these serine residues is essential and may constitute a triggering signal for recruitment of Na+,K+-ATPase molecules to the plasma membrane. When cells were treated simultaneously with saturating concentrations of dopamine and Ang II, either activation or inhibition of the Na+,K+-ATPase activity was produced dependent on the intracellular Na+ concentration, which was varied in a very narrow physiological range (9-19 mm). A small increase in intracellular Na+ concentrations induces the recruitment of D1 receptors to the plasma membrane and a reduction in plasma membrane AT1 receptors. Thus, one or more proteins may act as an intracellular Na+ concentration sensor and play a major regulatory role on the effect of hormones that regulate proximal tubule Na+ reabsorption.  相似文献   

5.
In astrocytes the activity of the Na+,K(+)-ATPase pump maintains an inwardly directed electrochemical sodium gradient used by the Na+-dependent transporters and regulates the extracellular K+ concentration essential for neuronal excitability. We show here that incubation of cultured rat astrocytes with angiotensin II (Ang II) modulates Na+,K(+)-ATPase activity, in a dose- and time-dependent manner. Na+,K(+)-ATPase activation was mediated by binding of Ang II to AT1 receptors as it was completely blocked by DuP 753, a specific AT1 receptor subtype antagonist. Stimulation of Na+,K(+)-ATPase activity by Ang II was dependent on protein kinase C (PKC) activation because PKC antagonists abolished the inducing effect of Ang II and the PKC activator phorbol 12-myristate 13-acetate enhanced transporter activity. Ang II stimulated translocation of PKC-delta but not that of other PKC isoforms from the cytosol to the plasma membrane. These results indicate that the activity of Na+,K(+)-ATPase in astrocytes is increased by physiological concentrations of Ang II and that the AT1 receptor subtype mediates the Na+,K(+)-ATPase response to Ang II via PKC-delta activation.  相似文献   

6.
Distal urinary acidification is thought to be mediated by a proton ATPase (H+-ATPase). We isolated a plasma membrane fraction from human kidney cortex and medulla which contained H+-ATPase activity. In both the cortex and medulla the plasma membrane fraction was enriched in alkaline phosphatase, maltase, Na+,K+-ATPase and devoid of mitochondrial and lysosomal contamination. In the presence of oligomycin (to inhibit mitochondrial ATPase) in the presence of ouabain (to inhibit Na+,K+-ATPase) and in the absence of Ca (to inhibit Ca2+-ATPase) this plasma membrane fraction showed ATPase activity which was sensitive to dicyclohexylcarbodiimide and N-ethylmaleimide. This ATPase activity was also inhibited by vanadate, 4,4'-diisothiocyano-2,2'-disulfonic stilbene and ZnSO4. In the presence of ATP, but not GTP or UTP, the plasma membrane fraction of both cortex and medulla was capable of quenching of acridine orange fluorescence, which could be dissipated by nigericin indicating acidification of the interior of the vesicles. The acidification was not affected by presence of oligomycin or ouabain indicating that it was not due to mitochondrial ATPase or Na+,K+-ATPase, respectively. Dicyclohexylcarbodiimide and N-ethylmaleimide completely abolished the acidification by this plasma membrane fraction. In the presence of valinomycin and an outward-directed K gradient, there was increased quenching of acridine orange, indicating that the H+-ATPase is electrogenic. Acidification was not altered by replacement of Na by K, but was critically dependent on the presence of chloride. In summary, the plasma membrane fraction of the human kidney cortex and medulla contains a H+-ATPase, which is similar to the H+-ATPase described in other species, and we postulate that this H+-ATPase may be involved in urinary acidification.  相似文献   

7.
Controversy has recently developed over the surface distribution of Na+,K+-ATPase in hepatic parenchymal cells. We have reexamined this issue using several independent techniques. A monoclonal antibody specific for the endodomain of alpha-subunit was used to examine Na+,K+-ATPase distribution at the light and electron microscope levels. When cryostat sections of rat liver were incubated with the monoclonal antibody, followed by either rhodamine or horseradish peroxidase-conjugated goat anti-mouse secondary, fluorescent staining or horseradish peroxidase reaction product was observed at the basolateral surfaces of hepatocytes from the space of Disse to the tight junctions bordering bile canaliculi. No labeling of the canalicular plasma membrane was detected. In contrast, when hepatocytes were dissociated by collagenase digestion, Na+,K+-ATPase alpha-subunit was localized to the entire plasma membrane. Na+,K+-ATPase was quantitated in isolated rat liver plasma membrane fractions by Western blots using a polyclonal antibody against Na+,K+-ATPase alpha-subunit. Plasma membranes from the basolateral domain of hepatocytes possessed essentially all of the cell's estimated Na+,K+-ATPase catalytic activity and contained a 96-kD alpha-subunit band. Canalicular plasma membrane fractions, defined by their enrichment in alkaline phosphatase, 5' nucleotidase, gamma-glutamyl transferase, and leucine aminopeptidase had no detectable Na+,K+-ATPase activity and no alpha-subunit band could be detected in Western blots of these fractions. We conclude that Na+,K+-ATPase is limited to the sinusoidal and lateral domains of hepatocyte plasma membrane in intact liver. This basolateral distribution is consistent with its topology in other ion-transporting epithelia.  相似文献   

8.
Inactivation of Na+, K+ -ATPase from cattle brain by sodium fluoride   总被引:3,自引:0,他引:3  
The influence of the physiological ligands and modifiers on the plasma membrane Na+, K+ -ATPase from calf brain inactivation by sodium fluoride (NaF) is studied. ATP-hydrolyzing activity of the enzyme was found to be more stable as to NaF inhibition than its K+ -pNPPase activity. The activatory ions of Na+, K+ -ATPase have different effects on the process of the enzyme inhibition by NaF. K+ intensifies inhibition, but Na+ does not affect it. An increase of [Mg2+free] in the incubation medium (from 0.5 to 3.0 mM) rises the sensitivity of Na+, K+ -ATPase to NaF inhibition. But an increase of [ATP] from 0.3 to 1.5 mM has no effect on this process. Ca and Mg ions modify Na+, K+ -ATPase inhibition by fluoride differently. Ca2+free levels this process, and Mg2+free on the contrary increases it. In the presence of Ca ions and in the neutral-alkaline medium (pH 7.0-8.5) the recovery of activity of the transport ATPase inhibited by-NaF takes place. Sodium citrate also protects both ATP-hydrolizing and K-pNPPase activity of the Na+, K+ -ATPase from NaF inhibition. Under the modifing membranous effects (the treatment of plasma membranes by Ds-Na and digitonin) the partial loss of Na+, K+ -ATPase sensitivity to NaF inhibition is observed. It is concluded that Na+, K+ -ATPase inactivation by NaF depends on the influence of the physiological ligands and modifiers as well as on the integrity of membrane structure.  相似文献   

9.
A rat heart plasma membrane preparation isolated in a sucrose medium and some of its enzymatic properties have been investigated. It has been shown that a rat heart plasma membrane fraction contains high creatine phosphokinase activity which can not be diminished by repeated washing with sucrose solution. Creatine phosphokinase extracted from a plasma membrane fraction with potassium chloride and 0.01% deoxycholate solution is electrophoretically identical to MM isoenzyme of creatine phosphokinase. Under the conditions where (Na+,K+)-ATPase is activated by addition of Na+, K+ and MgATP, creatine phosphokinase of plasma membrane fraction is able to maintain a low ADP concentration in the medium if creatine phosphate is present. The rate of creatine release is dependent upon MgATP concentration in accordance with the kinetic parameters of the (Na+,K+)-ATPase and is significantly inhibited by ouabain (0.5 mM). The rate of creatine release is also dependent on creatine phosphate concentration in conformance with the kinetic parameters of MM isozyme of creatine phosphokinase. It is concluded that in intact heart cells the plasma membrane creatine phosphokinase may ensure effective utilization of creatine phosphate for immediate rephosphorylation of ADP produced in the (Na+,K+)-ATPase reaction.  相似文献   

10.
Ouabain inhibited 86RbCl uptake by 80% in rabbit gastric superficial epithelial cells (SEC), revealing the presence of a functional Na+,K+-ATPase [(Na+ + K+)-transporting ATPase] pump. Intact SEC were used to study the ouabain-sensitive Na+,K+-ATPase and K+-pNPPase (K+-stimulated p-nitrophenyl phosphatase) activities before and after lysis. Intact SEC showed no Na+,K+-ATPase and insignificant Mg2+-ATPase activity. However, appreciable K+-pNPPase activity sensitive to ouabain inhibition was demonstrated by localizing its activity to the cell-surface exterior. The lysed SEC, on the other hand, demonstrated both ouabain-sensitive Na+,K+-ATPase and K+-pNPPase activities. Thus the ATP-hydrolytic site of Na+,K+-ATPase faces exclusively the cytosol, whereas the associated K+-pNPPase is distributed equally across the plasma membrane. The study suggests that the cell-exterior-located K+-pNPPase can be used as a convenient and reliable 'in situ' marker for the functional Na+,K+-ATPase system of various isolated cells under noninvasive conditions.  相似文献   

11.
The comparative research of catalytic properties of two ATP-hydrolases of the sarcolemma of the smooth muscle of the uterus--ouabaine-sensitive Na+,K+-ATPase and ouabaine-resistent Mg2+-ATPase is carried out. The specific enzymatic activity of Na+,K+-ATPase and Mg2+-ATPase makes 10.2 +/- 0.7 and 18.1 +/- 1.2 mmol P/mg of protein for 1 hour, accordingly. The action of ouabaine on Na+,K+-ATPase is characterized by magnitude of quotient of inhibition I0.5=21.3 +/- 1.5 mkM. Processing of the sarcolemma fraction by digitonin in concentrations 0.001 +/- 0.1% promotes an activation of Na+,K+ATPase and Mg2+- ATPase, and in the first case much more efficiently than in the second. The kinetics of accumulation of the product of ATP-hydrolase reactions of phosphate satisfies the laws of the zero order reaction (incubation time--about 10 min). Na+,K+-ATPase is highly specific concerning the univalent cations--Na+, K+, however Li+ can partially substitute K+. Activity of Mg2+-ATPase is not specific concerning univalent cations. The dependence of Na+,K+-ATPase activity on pH in the range of 6.0-8.0 is characterized by the bell-shaped curve, at the same time the linear dependence on pH is peculiar to Mg2+-ATPase. The functioning of Na+,K+-ATPase is provided only by ATP, in the case of Mg2+-ATPase ATP can be successfully replaced with other nucleotidetriphosphates. It is supposed that the obtained experimental data can be beneficial in further research of membranous mechanisms underlying the cation exchange in the smooth muscles, in particular when studying the role of the plasma membrane in the maintenance of electromechanical coupling in them, and also in the regulation of ionic homeostasis in myocytes.  相似文献   

12.
Epileptic foci are associated with locally reduced taurine (2-aminoethanesulfonic acid) concentration and Na+,K+-ATPase (EC 3.6.1.3) specific activity. Topically applied and intraperitoneally administered taurine can prevent the development and/or spread of foci in many animal models. Taurine has been implicated as a possible cytosolic modulator of monovalent ion distribution, cytosolic "free" calcium activity, and neuronal excitability. Taurine may act in part by modulating Na+,K+-ATPase activity of neuronal and glial cells. We characterized the requirements for in vitro modulation of Na+,K+-ATPase by taurine. Normal whole brain homogenate Na+,K+-ATPase activity is 5.1 +/- 0.4 (4) mumol Pi X h-1 X mg-1 Lowry protein. Partial purification of the plasma membrane fraction to remove cytosolic proteins and extrinsic proteins and to uncouple cholinergic receptors yields a membrane-bound Na+,K+-ATPase activity of 204.6 +/- 5.8 (4) mol Pi X h-1 X mg-1 Lowry protein. Taurine activates the Na+,K+-ATPase at all levels of purification. The concentration dependence of activation follows normal saturation kinetics (K1/2 = 39 mM taurine, activation maximum = +87%). The activation exhibits chemical specificity among the taurine analogues and metabolites: taurine = isethionic acid greater than hypotaurine greater than no activation = beta-alanine = methionine = choline = leucine. Taurine can act as an endogenous activator/modulator of Na+,K+-ATPase. Its action is mediated by a membrane-bound protein.  相似文献   

13.
The time course of osmoregulatory adjustments and expressional changes of three key ion transporters in the gill were investigated in the striped bass during salinity acclimations. In three experiments, fish were transferred from fresh water (FW) to seawater (SW), from SW to FW, and from 15-ppt brackish water (BW) to either FW or SW, respectively. Each transfer induced minor deflections in serum [Na+] and muscle water content, both being corrected rapidly (24 hr). Transfer from FW to SW increased gill Na+,K+-ATPase activity and Na+,K+,2Cl- co-transporter expression after 3 days. Abundance of Na+,K+-ATPase alpha-subunit mRNA and protein was unchanged. Changes in Na+,K+,2Cl- co-transporter protein were preceded by increased mRNA expression after 24 hr. Expression of V-type H+-ATPase mRNA decreased after 3 days. Transfer from SW to FW induced no change in expression of gill Na+,K+-ATPase. However, Na+,K+,2Cl- co-transporter mRNA and protein levels decreased after 24 hr and 7 days, respectively. Expression of H+-ATPase mRNA increased in response to FW after 7 days. In BW fish transferred to FW and SW, gill Na+,K+-ATPase activity was stimulated by both challenges, suggesting both a hyper- and a hypo-osmoregulatory response of the enzyme. Acclimation of striped bass to SW occurs on a rapid time scale. This seems partly to rely on the relative high abundance of gill Na+,K+-ATPase and Na+,K+,2Cl- co-transporter in FW fish. In a separate study, we found a smaller response to SW in expression of these ion transport proteins in striped bass when compared with the less euryhaline brown trout. In both FW and SW, NEM-sensitive gill H+-ATPase activity was negligible in striped bass and approximately 10-fold higher in brown trout. This suggests that in striped bass Na+-uptake in FW may rely more on a relatively high abundance/activity of Na+,K+-ATPase compared to trout, where H+-ATPase is critical for establishing a thermodynamically favorable gradient for Na+-uptake.  相似文献   

14.
Effect of calix[4]arenes C-97, C-99, C-107, functionalized by fragments of alpha-hydroxy-phosphonic, alpha-aminophosphonic- and methylene-bisphosphonic acid on enzymatic activity of oubaine-sensitive Na+, K+-ATPase and oubaine-resistant basal Mg2+- ATPase (specific activity - 10.6 +/- 0.9 and 18.1 +/- 1.2 micromol Pi/h per 1 mg of protein, respectively; n = 7) was studied in experiments made on the suspension of myometrium cell plasma membranes treated by 0.1% solution of digitonin. It was found that calixarene-phosphonic acids in concentration of 100 microM inhibited enzymatic activity of Na+, K+-ATPase by 86-98% and did not practically affect activity of Mg2+-ATPase. These calixarenes were more efficient than oubaine in suppressing enzymatic activity of the sodium pump: in case of the effect of calixerenes the value of the appearence constant of inhibition I0.5 was < 0.1 microM. Calixarene-methylene-bisphosphonic acid (calixarene C-97; I0.5 =33 +/- 4 microM (n = 6) takes the most efficient inhibitory effect on Na+,K+-ATPase activity among the studied calixarenes. A phenomenon of negative cooperation: the Hill coefficient value etaH =0.1-0.5<1 is characteristic of both the inhibiting effect of calixarenes and oubaine. Reguliarities of calixarenes C-97 effect on enzymatic activity of Na+,K+-ATPase were studied. As it appeared its inhibiting effect cannot be caused by trivial factors - potentially possible binding of Mg ions by it and (or) this substance effect on Mg2+ interaction with ATP4- in the incubation medium. Calixerene C-97 does not also decrease the enzyme affinity for Mg ions or ATP. However this calixerenes decreases the affinity of Na+,K+-ATPase for Na ions (the value of activation constant K(Na+)) from 50 +/- 4 (control) to 76 +/- 6 microM in the control and under the effect of calixerene, respectively). A conclusion is made that calixerene C-97 is highly-efficient (with respect to oubaine) and selective (with respect to lack of its effect on basal Mg2+-ATPase) inhibitor of Na+,K+-ATPase of plasma membrane. In the practical aspect it may be used in concentration of 1-10 microM in biochemical membranology when testing and studying kinetic and catalytic properties of the sodium pump in case of such experimental model, as the plasma membrane fraction.  相似文献   

15.
In polarized Madin-Darby canine kidney (MDCK) epithelial cells, ankyrin, and the alpha- and beta-subunits of fodrin are components of the basolateral membrane-cytoskeleton and are colocalized with the Na+,K+-ATPase, a marker protein of the basolateral plasma membrane. Recently, we showed with purified proteins that the Na+,K+-ATPase is competent to bind ankyrin with high affinity and specificity (Nelson, W. J., and P. J. Veshnock. 1987. Nature (Lond.). 328:533-536). In the present study we have sought biochemical evidence for interactions between these proteins in MDCK cells. Proteins were solubilized from MDCK cells with an isotonic buffer containing Triton X-100 and fractionated rapidly in sucrose density gradients. Complexes of cosedimenting proteins were detected by analysis of sucrose gradient fractions in nondenaturing polyacrylamide gels. The results showed that ankyrin and fodrin cosedimented in sucrose gradient. Analysis of the proteins from the sucrose gradient in nondenaturing polyacrylamide gels revealed two distinct ankyrin:fodrin complexes that differed in their relative electrophoretic mobilities; both complexes had electrophoretic mobilities slower than that of purified spectrin heterotetramers. Parallel analysis of the distribution of solubilized Na+,K+-ATPase in sucrose gradients showed that there was a significant overlap with the distribution of ankyrin and fodrin. Analysis by nondenaturing polyacrylamide gel electrophoresis showed that the alpha- and beta-subunits of the Na+,K+-ATPase colocalized with the slower migrating of the two ankyrin:fodrin complexes. The faster migrating ankyrin:fodrin complex did not contain Na+,K+-ATPase. These results indicate strongly that the Na+,K+-ATPase, ankyrin, and fodrin are coextracted from whole MDCK cells as a protein complex. We suggest that the solubilized complex containing these proteins reflects the interaction of the Na+,K+-ATPase, ankyrin, and fodrin in the cell. This interaction may play an important role in the spatial organization of the Na+,K+-ATPase to the basolateral plasma membrane in polarized epithelial cells.  相似文献   

16.
The pumping activity of the plasma membrane-bound Na+,K+-ATPase shows considerable variation during the cell cycle of mouse neuroblastoma Neuro-2A cells. Addition of external ATP at millimolar concentrations, which selectively enhances the plasma membrane permeability of Neuro-2A cells for sodium ions, stimulates the Na+,K+-ATPase pumping activity at all phases of the cell cycle from a factor of 1.05 in mitosis up to 2.2 in G1 phase. Determination of the number of Na+,K+-ATPase copies per cell by direct 3H-ouabain binding studies in the presence of external ATP shows a gradual increase in the number of pump sites on passing from mitosis to the late S/G2-phase by approximately a factor of 2. From these data the pumping activity per copy of Na+,K+-ATPase, optimally stimulated with respect to its various substrate ions, has been determined during the various phases of the cell cycle. This optimally stimulated pumping activity per enzyme copy, which is a reflection of the physicochemical state of the plasma membrane, is high in mitosis, almost twofold lower in early G1 phase, and increases gradually again during the other phases of the cell cycle. This shows that the observed regulation of Na+,K+-ATPase activity during the cell cycle is caused by a combination of three independent factors--namely variation in intracellular substrate availability (Na+), changes in number of enzyme copies per cell, and modulation of the plasma membrane environment of the protein molecules. The modulation of the optimal pumping activity per enzyme copy shows a good correlation (rho = 0.96) with the known modulation of protein lateral mobility during the cell cycle, such that a high protein lateral mobility correlates with a low enzyme activity. It is concluded that changes in plasma membrane properties take place during the Neuro-2A cell cycle that result in changes in the rate of protein lateral diffusion and Na+,K+-ATPase activity in directly correlated way.  相似文献   

17.
We have examined the influence of different sterols and phospholipids on the activities of the cardiac sarcolemmal Na+-Ca2+ exchanger and Na+,K+-ATPase and the sarcoplasmic reticular Ca2+-ATPase in reconstituted proteoliposomes. When either the solubilized Na+-Ca2+ exchanger or the Na+,K+-ATPase is reconstituted into phosphatidylcholine (PC):phosphatidylserine (30:50 by weight) vesicles, high cholesterol levels (20% by weight) are required for activity to be expressed. This sterol requirement is highly specific for cholesterol. Several cholesterol analogues with minor structural changes are unable to support Na+-Ca2+ exchange or Na+,K+-ATPase activities. When solubilized sarcolemma is reconstituted into PC:cardiolipin vesicles, however, the requirement for cholesterol is lost. Substantial activity can be obtained in the complete absence of cholesterol or in the presence of several cholesterol analogues. Thus, sterol/protein interactions can be highly dependent on the phospholipid environment. In contrast, the skeletal muscle sarcoplasmic reticular Ca2+-ATPase functions equally well in the presence or absence of cholesterol after reconstitution into either PC:phosphatidylserine or PC:cardiolipin proteoliposomes. Phospholipid requirements of the transporters were also examined. The sarcolemmal Na+-Ca2+ exchanger, Na+,K+-ATPase, and the sarcoplasmic reticular Ca2+-ATPase all function optimally in the presence of phosphatidylserine or cardiolipin after reconstitution. Thus, the sarcolemmal cation transporters have similar sterol and phospholipid requirements and may have structural similarities in their hydrophobic regions. The sarcoplasmic reticular Ca2+ pump evolved in a low cholesterol membrane and has different lipid interactions. These findings may have general applicability to other plasma membrane and endoplasmic reticular enzymes.  相似文献   

18.
Stimulation by serum of cell proliferation in G1-arrested culture of Chinese hamster ovary cells CHO-K1 was accompanied by an early (during the first minutes) and delayed (2-10 h) activation of Na+,K+-ATPase and an increase in cell K+ content from 0.5-0.6 to 0.7-0.8 mmol per gram protein. Isoproterenol acted synergistically with serum in eliciting both early and delayed changes in K+ transport and in stimulating G1----S transition. Isoproterenol alone (without serum) induced a transient increase in K+ influx via Na+,K+-ATPase without changing the cell K+ content or having any mitogenic effect. Theophylline enhanced the serum-induced early activation of Na+,K+-ATPase but inhibited both the delayed increase in cell K+ and the G1----S transition. Early serum-induced increase in K+ transport was not affected by cycloheximide, whereas net accumulation of cell K+ was abolished by the drug. It is concluded that the early and the delayed activation of Na+,K+-ATPase induced by mitogens can be dissociated; the early ionic response is related to the primary transduction of membrane signal, whereas the delayed modulation of ion transport via Na+,K+-ATPase has another function and is associated with cell growth.  相似文献   

19.
Extracellular ATP rendered the plasma membrane of transformed mouse fibroblasts permeable to normally impermeant molecules. This permeability change was prevented by increasing the ionic strength of the isotonic medium with NaCl. Conversely, the cells exhibited increased sensitivity to ATP when the NaCl concentration was decreased below isotonicity, when the KCl concentration was increased above 5 mM while maintaining isotonicity, and when the pH of the medium was raised above 7.0. These conditions as well as the addition of ATP itself caused cell swelling. However, the effect of ATP was independent of cell volume and dependent upon the ionic strength and not the osmolarity of the medium since 1) addition of sucrose to isotonic medium did not prevent permeabilization although media made hypertonic with either sucrose or NaCl caused a decrease in cell volume; and 2) addition of sucrose or NaCl to hypotonic media caused a decrease in cell volume, but only NaCl addition decreased the response to ATP. Conditions that have been shown to inhibit plasma membrane proteins that play a reciprocal role in cell volume regulation had reciprocal effects on the permeabilization process, even though the effect of ATP was independent of cell volume. For example, inhibition of the Na+,K+-ATPase by ouabain increased sensitivity of cells to ATP while conditions which inhibit Na+,K+,Cl- -cotransporter activity, such as treatment of the cells with the diuretics furosemide or bumetanide or replacement of sodium chloride in the medium with sodium nitrate or thiocyanate, inhibited permeabilization. The furosemide concentration that inhibited permeabilization was greater than the concentration that inhibited Na+,K+,Cl- -cotransporter-mediated 86Rb+ (K+) uptake, suggesting that the effect of furosemide on the permeabilization process may not be specific for the Na+,K+,Cl- -cotransporter.  相似文献   

20.
M Crabos  I W Wainer  J F Cloix 《FEBS letters》1984,176(1):223-228
This study was undertaken to assess endogenous Na+,K+-ATPase inhibitors in both plasma and urine in the same subjects. Samples were chromatographed on reverse-phase HPLC using an acetonitrile gradient and the eluent screened using Na+,K+-ATPase inhibition and cross-reaction with anti-digoxin antibodies. The donors were divided into inhibiting and non-inhibiting subjects using a previously described method, plasma action on ouabain binding and on Na+,K+-ATPase activity. Three Na+,K+-ATPase inhibitors (1P, 2P and 3P) were detectable in plasma; the antibodies cross-reaction of the peaks 2P and 3P were larger than that of peak 1P. The peaks 2P and 3P were significantly higher in inhibiting subjects as compared to non-inhibiting subjects. The 24-h urine is resolved into two peaks inhibiting Na+,K+-ATPase activity (1U and 2U). Peak 2U cross-reacted with anti-digoxin antibodies to a greater extent than peak 1U and is significantly larger in inhibiting subjects in terms of Na+,K+-ATPase inhibition. These data support the heterogeneity of human Na+,K+-ATPase inhibitor in both plasma and urine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号