首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
The rates of RNA synthesis in cultured human KB cells infected by adenovirus 2 were estimated by measuring the endogenous RNA polymerase activities in isolated nuclei. The fungal toxin α-amanitin was used to determine the relative and absolute levels of RNA synthesis by RNA polymerases I, II, and III in nuclei isolated during the course of infection. Whereas the level of endogenous RNA polymerase I activity in nuclei from infected cells remained constant relative to the level in nuclei from mock-infected cells, the endogenous RNA polymerase II and III activities each increased about 10-fold. These increases in endogenous RNA polymerase activities were accompanied by concomitant increases in the rates of synthesis in isolated nuclei of viral mRNA precursor, which was monitored by hybridization to viral DNA, and of viral 5.5S RNA, which was quantitated by electrophoretic analysis on polyacrylamide gels. The cellular RNA polymerase levels were measured with exogenous templates after solubilization and chromatographic resolution of the enzymes on DEAE-Sephadex, using procedures in which no losses of activity were apparent. In contrast to the endogenous RNA polymerase activities in isolated nuclei, the cellular levels of the solubilized class I, II, and III RNA polymerases remained constant throughout the course of the infection. Furthermore, no differences were detected in the chromatographic properties of the RNA polymerases obtained from infected or control mock-infected cells. These observations suggest that the increases in endogenous RNA polymerase activities in isolated nuclei are not due to variations in the cellular concentrations of the enzymes. Instead, it is likely that the increased endogenous enzyme activities result from either the large amounts of viral DNA template available as a consequence of viral replication or from functional modifications of the RNA polymerases or from a combination of these effects.  相似文献   

6.
The levels of the three major DNA-dependent RNA polymerases (enzymes I, II and III) present in the dimorphic fungus Mucor rouxii have been investigated during the transition from yeast-like cells to mycelial growth. Increases in the specific activity of crude extracts were observed at 2 h and at 6 h after induction of mycelium formation by aeration of yeast-like cells. These increases could be attributed to changes in the specific activities of enzymes I and II. Alterations were also found in the relative amounts of enzymes I and II: prior to aeration, 31% of the total polymerase activity of crude extracts was present as enzyme I; after 2 h of aeration, the specific activity of this enzyme doubled and the relative amount increased to 64% of the total activity. After 6 h of aeration, the relative amounts of enzymes I and II were 25 and 65%, respectively, and the specific activity of enzyme II had nearly doubled. The amounts and specific activities of enzyme III did not change significantly during the transition.  相似文献   

7.
Nuclei have been isolated from Xenopus laevis embryos and incubated under conditions allowing RNA synthesis to proceed for more than 3 h. The RNA molecules synthesized on the endogenous template are stable, heterogeneous in size and correspond to the activities of the three RNA polymerases.In these in vitro conditions we have determined the extent of activity of the three RNA polymerases during the embryonic development from blastula to swimming tadpole. Our results on isolated nuclei are in good agreement with the changes in RNA synthesis which take place during normal embryonic development.We have measured both the “template-bound” and the “free” activities of each of the three RNA polymerases during development. Amongst the total RNA polymerase activities engaged on the template, the proportion of polymerase I increases as development proceeds: at the blastula stage, there is practically no RNA polymerase I engaged on the template, whereas in swimming tadpoles, RNA polymerase I amounts to about 90% of the RNA polymerases bound to the DNA. Conversely, RNA polymerase I represents the major part of free RNA polymerases in blastula nuclei.Autoradiography of incubated nuclei shows that, at least in swimming tadpoles nuclei, both “free” and “template-bound” RNA polymerase I are localized in the nucleoli.The evolution of “template-bound” RNA polymerase II activity during development is quite different from that of RNA polymerase I: RNA polymerase II activity represents 75% of engaged polymerase activity in blastulae and only 47% at the swimming tadpoles stage.The results suggest that part of the “free” RNA polymerase I activity might progressively become “template-bound” during embryogenesis.  相似文献   

8.
The rates of RNA synthesis in cultured human KB cells infected by adenovirus 2 were estimated by measuring the endogenous RNA polymerase activities in isolated nuclei. The fungal toxin alpha-amanitin was used to determine the relative and absolute levels of RNA polymerases I, II, and III in nuclei isolated during the course of infection. Whereas the level of endogenous RNA polymerase I activity in nuclei from infected cells remained constant relative to the level in nuclei from mock-infected cells, the endogenous RNA polymerase II and III activities each increased about 10-fold. These increases in endogenous RNA polymerase activities were accompanied by concomitant increases in the rates of synthesis in isolated nuclei of viral mRNA precursor, which was quantitated by electrophoretic analysis on polyacrylamide gels. The cellular RNA polymerase levels were measured with exogenous templates after solubilization and chromatographic resolution of the enzymes on DEAE-Sephadex, using procedures in which no losses of activity were apparent. In contrast to the endogenous RNA polymerase activities in isolated nuclei, the cellular levels of the solubilized class I, II, and III RNA polymerases remained constant throughout the course of the infection. Furthermore, no differences were detected in the chromatographic properties of the RNA polymerases obtained from infected or control mock-infected cells. These observations suggest that the increases in endogenous RNA polymerase activities in isolated nuclei are not due to variations in the cellular concentrations of the enzymes. Instead, it is likely that the increased endogenous enzyme activities result from either the large amounts of viral DNA template available as a consequence of viral replication of from replication or from functional modifications of the RNA polymerases or from a combination of these effects.  相似文献   

9.
10.
The interaction between antibodies directed against RNA polymerase I purified from Morris hepatoma 3924A and homologous RNA polymerase II was investigated. The activity of partially purified polymerase II was inhibited by the antibodies. In contrast, the reaction catalyzed by the purified enzyme was not affected. Partially purified polymerase II preparations contained a protein kinase activity. Sucrose gradient centrifugation in the presence of 0.3 M KCl resulted in complete separation of RNA polymerase II from protein kinase as well as in complete loss of sensitivity to the anti-RNA polymerase I antibodies. The protein kinase possessed reaction characteristics similar to those of the NII protein kinase (Rose, K.M., Bell, L.E., Siefken, D.A. and Jacob, S.T. (1981) J. Biol. Chem. 256, 7468–7477) which is associated with hepatoma RNA polymerase I (Rose, K.M., Stetler, D.A. and Jacob, S.T. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 2833–2837). The activities of both kinases were inhibited to the same extent by anti-RNA polymerase I antibodies and polypeptides of Mr 42000 and 25000, present in both kinase preparations, formed immune complexes with the antisera. Readdition of protein kinase NII to purified polymerase II resulted in phosphorylation of the polymerase and a concomitant enhancement of RNA synthesis. After addition of the kinase, RNA polymerase II activity was again sensitive to anti-RNA polymerase I antibodies. Upon reacting with protein kinase NII, RNA polymerase II polypeptides could be detected in immune complexes with anti-RNA polymerase I antibodies. These data indicate that protein kinase NII is associated with RNA polymerase II during early stages of purification and is at least partially responsible for the immunological cross-reactivity of RNA polymerases I and II.  相似文献   

11.
RNA polymerase I and II activities were measured in tissues of the soybean (Glycina max, var. Wayne) hypocotyl where dramatic changes in the relative level of RNA synthesis are associated with normal and auxin-induced growth transitions. When assayed in isolated nuclei, the activity of RNA polymerase I changed much more than the activity of RNA polymerase II during these growth transitions. The activity of RNA polymerase I expressed in the nuclei generally showed a positive correlation with the relative level of RNA synthesis (i.e. accumulation) of that tissue. Following solubilization of the RNA polymerases from these isolated nuclei and fractionation of them on DEAE-cellulose, the activity of RNA polymerase I relative to that of RNA polymerase II showed smaller changes during these growth transitions than when assayed in the nuclei. Thus, these data indicate that the activity of RNA polymerase I is significantly modulated in the nucleus, up or down depending upon the growth state, during growth transitions in the soybean in addition to lesser changes which occur in the apparent level of the enzyme.  相似文献   

12.
Specific activities of Saccharomyces cerevisiae RNA polymerases I and II were measured in cells growing under different nutrient conditions and throughout the mitotic cell cycle. The specific activity of RNA polymerase I (possibly the ribosomal polymerase) does not vary during the yeast cell cycle. In contrast the specific activity of RNA polymerase II (messenger polymerase) increases during the first third of the cycle and thereafter declines. The independent regulation of synthesis of these two enzymes is further emphasised by observations on the response to different nutrient conditions. Shifting cells from minimal to rich medium led to enhanced RNA polymerase I activity but very little change in activity of RNA polymerase II. Furthermore the activity of RNA polymerase I varies directly with change in growth rate whereas the activity of RNA polymerase II is approximately constant over a range of growth rates. From this data it is suggested: (i) The synthesis of these two enzymes is independently regulated; (ii) RNA polymerase I is synthesised continuously throughout the cycle whereas RNA polymerase II is synthesised periodically early in the cell cycle.  相似文献   

13.
14.
15.
16.
DNA-Dependent RNA Polymerases from Artemia salina   总被引:1,自引:0,他引:1  
Embryos and larvae of the brine shrimp, Artemia salina , provide a useful biological system for biochemical studies of animal development. Dormant encysted embryos can be cultured readily in the laboratory to provide large quantities of free-swimming nauplius larvae. The rate of synthesis of all classes of RNA in swimming larvae declines markedly between 24 and 72 h after immersion of dormant embryos in sea water. Nuclei were isolated from 24–72 h larvae and RNA polymerase activity was measured under conditions in which the nuclei remained intact. Total RNA polymerase activity of isolated nuclei decreased in parallel with RNA synthesis in vivo. RNA polymerases were solubilized from nuclei and fractionated by chromatography on DEAE-cellulose. The levels of both RNA polymerases I and II also decreased in parallel with RNA synthesis in vivo. The specific activity of highly purified RNA polymerase II was determined by comparison of enzyme activity with the mass of RNA polymerase II subunits displayed on SDS gels. The specific activities of RNA polymerase II preparations from 24 and 72 h larvae were identical. The number of polymerase II molecules was estimated from the mass of the subunits. The number of molecules per nucleus declined from 20,000 at 24 h to 3500 at 72 h.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号