首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
TGF-beta modulates growth and differentiation in many cell types. MC3T3E1 is a clonal non-transformed murine bone cell line which differentiates in culture. We tested the effect of porcine TGF-beta on the proliferation and differentiation of MC3T3E1 cells in monolayer cultures by following cell number, and alkaline phosphatase activity. TGF-beta treatment (2 ng/ml) altered the shape of MC3T3E1 cells from cuboidal to elongated/spindle-shape. TGF-beta inhibited the growth of MC3T3E1 by up to 40% (P less than 0.02) in a dose-dependent manner with half maximal inhibition at 1 ng/ml. Growth inhibition depended on serum concentration, maximal inhibition occurring at 2% serum. Expression of alkaline phosphatase, which peaks in vitro when the cells reach confluence, was strongly inhibited by TGF-beta, in a dose-dependent manner with half maximal inhibition at around 0.05 ng/ml and complete inhibition at 2 ng/ml. Alkaline phosphatase inhibition was irreversible after 24 hours exposure to TGF-beta.  相似文献   

2.
The effects of the transforming growth factor beta (TGF-beta) on the growth and glycosaminoglycan synthesis of rabbit growth plate-chondrocytes in culture were studied. In serum-free medium, TGF-beta caused dose-dependent inhibition of DNA synthesis by chondrocytes, measured as [3H]thymidine incorporation (ED50 = 0.1-0.3 ng/ml). The inhibitory effect was maximal at a dose of 1 ng/ml, and extended for a duration of 16-42 h. In contrast, TGF-beta potentiated the synthesis of DNA stimulated by fetal calf serum (FCS). Addition of TGF-beta (1 ng/ml) to cultures containing 10% FCS increased [3H]thymidine incorporation to 1.6-times that in cultures with 10% FCS alone. Consistent with this finding, TGF-beta potentiated DNA synthesis stimulated by the purified growth factors such as platelet-derived growth factor (PDGF), epidermal growth factor (EGF) and fibroblast growth factor (FGF). The maximal stimulation of DNA synthesis by FGF (0.4 ng/ml) was further potentiated dose dependently by TGF-beta (ED50 = 0.1 ng/ml, maximum at 1 ng/ml). When the cultures were treated with the optimal concentrations of TGF-beta (1 ng/ml) and FGF (0.4 ng/ml), [3H]thymidine incorporation was 3-times higher than that of cultures treated with FGF alone. This TGF-beta-induced potentiation of DNA synthesis was associated with replication of chondrocytes, as shown by a marked increase in the amount of DNA during treatment of sparse cultures of the cells with the growth factors for 5 days. In contrast, TGF-beta caused dose-dependent stimulation of glycosaminoglycan synthesis in confluent cultures of growth-plate chondrocytes (ED50 = 0.3 ng/ml, maximum at 1 ng/ml). This stimulatory effect of TGF-beta was greater than that of insulin-like growth factor I (IGF-I) or PDGF. Furthermore, TGF-beta stimulated glycosaminoglycan synthesis additively with IGF-I or PDGF. Recently, it has been suggested that bone and articular cartilage are rich sources of TGF-beta, whereas epiphyseal growth cartilage is not. Thus, the present data indicate that TGF-beta may be important in bone formation by modulating growth and phenotypic expression of chondrocytes in the growth plate, possibly via a paracrine mechanism.  相似文献   

3.
Prolactin (PRL) exerts both stimulatory and inhibitory effects upon testicular steroidogenesis in vivo. The direct effects of PRL on biosynthesis of testicular androgen were studied in primary cultures of testicular cells obtained from adult, hypophysectomized or neonatal, intact rats. In cells from adult animals, treatment with human chorionic gonadotropin (hCG) (10 ng/ml) significantly increased testosterone and progesterone production relative to their respective controls. In contrast, neither steroid was increased by treatment with rat PRL (rPRL) or ovine PRL (oPRL) alone. Upon addition of 0.1-3 ng/ml of either rPRL or oPRL to the hCG-treated cultures, testosterone production was progressively increased up to a maximum of 70% greater than with hCG alone. However, when PRL exceeded 3 ng/ml, the testosterone response began to decline and was 39 or 24% less than from cells treated with hCG alone at 300 ng/ml of rPRL or oPRL, respectively. A similar biphasic response pattern was observed in cells from neonatal animals. In contrast to the biphasic effect of PRL on production of androgen, PRL treatment enhanced hCG-stimulated production of progesterone in a dose-related manner without exerting an inhibitory effect. At 3 and 300 ng/ml, rPRL augmented hCG action by 2.5- and 8-fold, respectively. Similarly, in the presence of inhibitors of pregnenolone metabolism, rPRL also enhanced hCG-stimulated production of pregnenolone. Quantitation of steroid intermediates in the testosterone biosynthetic pathway revealed that the stimulatory effect of 3 ng/ml rPRL on testosterone production was associated with 1.3- and 2.8-fold increases in accumulation of androstenedione and 17 alpha-hydroxyprogesterone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The effects of transforming growth factor (TGF) on Leydig cell steroidogenesis in primary culture were investigated. Basal testosterone levels were 3.7 +/- 0.54 ng/ml (mean +/- SE, N = 7). In the presence of hCG (10 ng/ml), testosterone levels increased to 22.77 +/- 3.05 ng/ml. TGF-beta caused a dose dependent inhibition of hCG-stimulated testosterone formation but without effects on basal levels. TGF-beta also inhibited 8-bromo cyclic AMP-induced testosterone formation and hCG-stimulated cyclic AMP formation. In contrast, TGF-alpha had no effect on either basal or hCG-stimulated testosterone formation and did not modify the inhibitory effect of TGF-beta. Present study indicates that TGF-beta can modulate Leydig cell steroidogenesis.  相似文献   

5.
The relevance of immune-endocrine interactions to the regulation of testicular steroidogenesis in teleosts is virtually unexplored. The objectives of the present study were: 1) to investigate the effects of murine cytokines, tumor necrosis factor-alpha (TNFalpha) and interleukin-1beta (IL-1beta), and trout (Oncorhynchus mykiss) macrophage conditioned media (MCM) on testosterone (T) production by goldfish (Carassius auratus) testis pieces in vitro; and 2) to identify the site(s) of the inhibitory action of TNFalpha on hCG-stimulated T formation. TNFalpha (0-100 ng/ml) affected basal T production differentially depending on the gonadosomatic index (GSI) value of the fish. TNFalpha stimulated basal T of fish with a relatively low GSI (average 1.99), but inhibited T production by testis of fish with a higher GSI (average 5.14). The remaining studies used fish with only high GSI values. IL-1beta (0-10 ng/ml) inhibited basal T production, while MCM (0-25% v/v) had no effect. The cytokines significantly inhibited hCG-stimulated T production at all doses tested, whereas MCM was inhibitory only at the lower doses of 2.5-5% v/v. TNFalpha did not affect basal or hCG-stimulated cAMP levels, but did inhibit forskolin (0.5 microM; adenylate cyclase activator) and 8-bromo-cAMP (0.15 mM; cAMP analog) stimulated T levels. The inhibitory actions of TNFalpha on T production were greatly reduced by treatment of testis with 25-hydroxycholesterol (1 and 10 microg/ml), pregnenolone (50 and 100 ng/ml), and 17 alpha-hydroxypregesterone (50 ng/ml). TNFalpha caused a moderate decrease in pregnenolone (100 ng/ml)-stimulated T production. Together, these data demonstrate that regulatory actions of TNFalpha may occur at multiple sites within the steroid biosynthetic pathway, but the major effect appears to be related to cholesterol availability in the mitochondria. In conclusion, the results of this study implicate macrophage-derived factors in the regulation of teleost testicular androgen biosynthesis.  相似文献   

6.
The functional development of the inhibitory guanine nucleotide-binding regulatory protein (Gi) and anti-diuretic hormone (ADH) activity was investigated in rat testes. Adult (90-day-old), adolescent (40-day-old), prepubertal (23-day-old), and fetal (20.5 days of gestation) testis cells were cultured with 100 ng/ml pertussis toxin for 24 h. The cells were then cultured with human chorionic gonadotropin (hCG), the ADH agonist arginine vasotocin (AVT), or a combination of the two. Testis cells from rats 23, 40, and 90 days of age that were incubated with hCG increased testosterone production when compared with controls. Preincubation of the cells from postnatal rats with pertussis toxin significantly increased hCG-stimulated testosterone secretion when compared to cells preincubated in medium only at all three ages. AVT suppressed hCG-stimulated testosterone secretion, but this suppression was partially reversed in cells from all postnatal ages preincubated with pertussis toxin. Fetal testis cells showed no response to preincubation with pertussis toxin, even when levels were increased to 400 ng/ml or when pertussis toxin treatment was continued throughout the culture period. AVT also had no effect on fetal testis cells. These results indicate that the Gi protein and AVT are not functional in fetal testes but are active from prepubertal stages of development through maturity.  相似文献   

7.
Pretreatment of primary porcine Leydig cell cultures with human leukocyte interferon suppressed the subsequent hCG-stimulated testosterone production in a dose-dependent manner, with an ED50 at 13 IU/ml. The treatment had no effect on hCG-binding to its receptor, and the inhibition of testosterone production was not abolished by 8Br-cAMP addition. The results indicate that the site of interferon action on hCG-stimulated testosterone production in primary cultures of porcine Leydig cells is located distal to cAMP formation.  相似文献   

8.
We have previously shown that type IV collagen (alpha1 (IV) and alpha2 (IV) collagen chains) (Col-IV) inhibits testosterone (T) production by Leydig cells (LC). The aim of this study was to analyze mechanism/s by which Col-IV exerts this effect. No significant differences in the specific binding of hCG to LH/hCG receptors in LC cultured on uncoated or Col-IV coated plates were observed. An inhibition of cAMP production in hCG-stimulated LC cultured on Col-IV was detected. The inhibition exerted by Col-IV on T production in response to hCG was also observed when cells were stimulated with 8Bromo-cAMP. In addition, conversion of steroid precursors to T in LC cultured on uncoated and Col-IV coated plates was similar. On the other hand, we detected an increase of ERK1/2 phosphorylation in hCG-stimulated LC cultured on Col-IV. Genistein added to LC cultures reduced the ability of Col-IV to increase ERK1/2 phosphorylation and reverted the inhibitory effect of Col-IV on T production. An inhibitor of MEK, PD98059 added to LC cultures also reverted the inhibitory effect of Col-IV on T production. A decrease of steroidogenic acute regulatory protein (StAR) expression in hCG-stimulated LC cultured on Col-IV coated plates that could be reverted by addition of PD98059 to the cultures was also demonstrated. All together these results suggest that Col-IV inhibits T production in LC by binding to integrins, activating ERK1/2, decreasing cAMP production and decreasing StAR expression.  相似文献   

9.
In the present study, a possible role of a ceramide-dependent pathway in the regulation of Leydig cell function was investigated. Intracellular ceramide levels were increased by: (a) adding ceramide analogs; (b) inhibiting ceramidase activity; and (c) adding sphingomyelinase (SMase). The cell-permeable ceramide analogs N-acetyl-, N-hexanoyl- and N-octanoylsphingosine (C2, C6 and C8) were used. As inhibitor of ceramidase activity 1S,2R-D-erythro-2-(N-myristoylamino)-1-phenyl-1-propanol (MAPP) was used. Sphingomyelinase from S. aureus origin was utilized. Leydig cells were cultured for 3 or 24 h with or without the different drugs (10 microM) and SMase (0.3 U/ml) in the presence or absence of hCG (10 ng/ml). Basal testosterone production was not modified under any of the experimental conditions. A decrease in hCG-stimulated testosterone production was observed at 3 and 24 h in all cases. The inactive analog (N-hexanoyl dihydrosphingosine) did not produce inhibition in hCG-stimulated testosterone production. TNFalpha and IL1beta, two possible inducers of sphingomyelin hydrolysis, produced similar effects on hCG-stimulated testosterone production. In experiments performed in the presence of C6, inhibition in hCG-stimulated cAMP production was observed. The inhibitory effect of ceramide was also observed in dbcAMP-stimulated cultures indicating that this pathway inhibits post-cAMP formation events. To study possible loci for the action of ceramide on the steroidogenic pathway, cells were incubated with C6 and MAPP in the presence of different testosterone precursors. The drugs inhibited testosterone produced from 22(R)-hydroxycholesterol (22R-OHChol), pregnenolone and 17alpha-hydroxyprogesterone (17OHP4) but not from androstenedione (Delta4). These results suggest that a ceramide-dependent pathway regulates hCG-stimulated Leydig cell steroidogenesis at the level of cAMP production and at post-cAMP events.  相似文献   

10.
The effect of transforming growth factor beta on testicular steroidogenesis was studied by using a model of immature porcine Leydig cells cultured in a chemically defined medium. Leydig cells were cultured in the presence of human or porcine purified TGF beta and the following parameters were measured: cell proliferation, LH/hCG binding, and hCG-stimulated steroid hormone productions (DHEA, DHEAS and testosterone). Whereas TGF beta from the two sources had no effect on Leydig cell multiplication, it markedly inhibited LH/hCG-stimulated DHEA and DHEAS in a time- and dose-dependent manner. The maximal inhibitory effect of this peptide on LH/hCG binding (65% decrease), hCG-stimulated DHEA (77% decrease) and DHEAS (92% decrease) productions was observed with 2 ng/ml for 48 h of treatment. In contrast, TGF beta exerted a biphasic effect on hCG-stimulated testosterone production: stimulating (110% increase) until 2 ng/ml and inhibiting (35% decrease) for higher concentrations. [125I]TGF beta was cross-linked to Leydig cells using disuccinimidyl suberate; cells affinity labelled with [125I]TGF beta exhibit a major labelled band of approx 280 kDa, which has the properties expected from a TGF beta receptor. These data demonstrate that TGF beta is a direct potent regulator of Leydig cell steroidogenic function and its effects are probably mediated via a specific receptor.  相似文献   

11.
Nylon wool adherent, CD4+ T cells from the spleens of rats that have recovered from experimental autoimmune encephalomyelitis (EAE) inhibit the in vitro production of IFN-gamma, but not IL-2, by effector cells of EAE when cocultured in the presence of myelin basic protein Ag. When anti-transforming growth factor-beta (TGF-beta) antibodies are added to the co-cultures, IFN-gamma production is restored to normal levels. Irrelevant control antibodies have no effect. The same pattern of response was obtained with cells incubated in serum-free medium. In other experiments, purified TGF-beta was added to cultures of effector cells in the presence of antigen. TGF-beta inhibited the production of IFN-gamma by these cells in a dose-dependent manner, but had no apparent inhibitory effect on IL-2 production. Finally, supernatants from cultures containing effector cells and CD4+ suppressor cells plus Ag contained measurable amounts of TGF-beta, whereas supernatants from cultures of effector cells plus Ag contained no measurable amounts of TGF-beta. These results suggest that CD4+ Ts cells of EAE regulate effector cells of EAE through a mechanism that involves the secretion of TGF-beta and that the inhibitory function of this cytokine can be reversed with neutralizing antibodies directed against TGF-beta.  相似文献   

12.
Whereas TGF-beta exhibited no detectable effect on DNA synthesis, it was found to exert a striking inhibitory effect on the steroidogenic activities of bovine adrenocortical cells in culture. Basal, as well as ACTH- and angiotensin II- activated adrenocortical cortisol productions were inhibited in a time and dose-dependent manner following TGF-beta treatment. Half-maximum inhibition of ACTH- and AII-activated steroidogenesis was observed with TGF-beta concentrations of 0.40 and 0.12 ng/ml, respectively. This effect was half maximal after 6 hours of cell exposure to optimally effective TGF-beta concentrations (1 ng/ml) and reached a plateau after 12-15 hours, resulting in an average 60% inhibition in the steroidogenic response to ACTH and 90% in the case of AII. Supply of different exogenous steroid substrates to support steroidogenesis in adrenocortical cells pointed to a marked loss in steroid-17 alpha hydroxylase activity as a major alteration following TGF-beta treatment. TGF-beta thus appears as a potent modulator of differentiated adrenocortical cell functions in vitro; in this regard it may play a significant role in the development and the regulation of adrenal cortex in vivo.  相似文献   

13.
The effect of recombinant (r) interleukin-1 beta (rIL-1 beta) and transforming growth factor-beta (TGF-beta) on the production of interleukin-2 (IL-2) and interleukin-6 (IL-6) from an antigen-specific (LBRM-33-1A5) and an antigen-nonspecific (EL-4-NOB-1) T-cell line was investigated. rIL-1 beta induced the production of IL-2 and IL-6 from EL-4-NOB-1 cells in a dose-related manner. The LBRM-33-1A5 cells required phytohemagglutinin (PHA) in addition to rIL-1 beta in order to produce IL-2 and IL-6. IL-2 production was found to precede IL-6 production in both cell lines. No IL-2 or IL-6 production was observed by adding r murine tumor necrosis factor-alpha or r murine interferon gamma to the cells. The presence of 1 ng/ml TGF-beta reduced IL-2 and IL-6 production from both T-cell lines by more than 80%. The inhibition of IL-2 and IL-6 production was still evident by a concentration as low as 10 pg/ml of TGF-beta. rIL-1 beta and PHA also stimulated murine thymocytes to produce IL-6 which was inhibited up to 85% in the presence of 1 ng/ml TGF-beta. Taken together these results suggest that TGF-beta may suppress immune responses by inhibiting the endogenous production of IL-2 and IL-6.  相似文献   

14.
Skeletal muscle satellite cells were cultured from mature rats and were treated in vitro with transforming growth factor-beta (TGF-beta). Muscle-specific protein synthesis and satellite cell fusion were used as indicators of muscle differentiation; a dose-dependent inhibition of differentiation was observed in response to TGF-beta. In addition, TGF-beta depressed cell proliferation in a dose-dependent manner. Half-maximal inhibition of differentiation was seen with a TGF-beta concentration of approximately 0.1 ng/ml. Although proliferation was not inhibited, it was depressed and half-maximal suppression of proliferation occurred in response to 0.1-0.5 ng TGF-beta/ml. Neonatal rat myoblasts were also subjected to TGF-beta treatment, and similar results were observed. Neonatal cells, however, were more sensitive to TGF-beta than satellite cells, as indicated by the reduced concentrations of TGF-beta required to inhibit differentiation and reduce the rate of proliferation. Under identical culture conditions proliferation of muscle-derived fibroblasts were also depressed. The differentiation inhibiting effect of TGF-beta on satellite cells was reversible. It has been suggested that TGF-beta could be an important regulator of tissue repair, and its in vitro effects on satellite cells suggest a possible role in regulation of muscle regeneration.  相似文献   

15.
This report describes the effects of epidermal growth factor (EGF) and transforming growth factor-beta 1 (TGF-beta 1) on the anchorage-dependent and -independent growth of rat heart endothelial cells (RHE-1A). When RHE-1A cells were grown in monolayer culture with medium containing 10% fetal bovine serum (FBS) supplemented with epidermal growth factor (0.1-100 ng/ml), growth was stimulated fivefold when compared to that of cells grown in medium containing 10% FBS alone. The stimulatory effect of EGF on RHE-1A cell monolayer growth was dose-dependent and half-maximal at 5 ng/ml. The addition of TGF-beta 1 in the range 0.1-10 ng/ml had no effect on RHE-1A cell monolayer growth when added to medium containing 10% FBS alone or 10% FBS supplemented with EGF (50 ng/ml). RHE-1A cells failed to grow under anchorage-independent conditions in 0.3% agar medium containing 10% FBS. In the presence of EGF, however, colony formation increased dramatically. The stimulatory effect of EGF was dose-dependent in the range 0.1-100 ng/ml and was half-maximal at 5 ng/ml. In contrast to its effects under anchorage-dependent conditions, TGF-beta 1 (0.1-10 ng/ml) antagonized the stimulatory effects of EGF on RHE-1A cell anchorage-independent growth. The inhibitory effect of TGF-beta 1 was dose-dependent and half-maximal at 0.1 ng/ml. EGF-induced RHE-1A soft agar colonies were isolated and reinitiated in monolayer culture. They retained the cobblestone morphology and contact-inhibition characteristic of normal vascular endothelial cells. Each of the clones continued to express Factor VIII antigen. These findings suggest that TGF-beta may influence not only endothelial cell proliferation but also anchorage dependence. These effects may in turn be of relevance to endothelial cell growth and angiogenesis in vivo.  相似文献   

16.
Transforming growth factor-beta (TGF-beta) modulates growth and differentiation in many cell types and is abundant in bone matrix. We recently showed that human cord blood monocytes cultured in the presence of 1,25(OH)2D3 acquire some features of osteoclast precursors. Since TGF-beta has been shown to influence bone resorption in organ culture, we have studied the effect of TGF-beta (1-1,000 pg/ml) on cord blood monocyte cultures. These cells were cultured on plastic substrate during 3 weeks in the presence of 20% horse serum and 10(-9) M 1,25(OH)2D3. TGF-beta, from a concentration of 10 pg/ml in the culture medium, decreased in a dose dependent manner the formation of multinucleated cells. At a concentration of TGF-beta of 1 ng/ml, the multinucleated cells were reduced to 2.1% +/- 0.3%, compared to 19.3% +/- 1.5% in control cultures. TGF-beta inhibited in a dose-dependent manner the proliferation of cord blood monocytes as assessed by 3H-thymidine incorporation at 7 and 14 days of culture. The fusion index was also decreased by 3 weeks of treatment with TGF-beta. Indomethacin did not reverse the inhibitory effects of TGF-beta. The expression of the osteoclastic phenotype was assessed using two different antibodies: 23C6, a monoclonal antibody directed against the vitronectin receptor, which is highly expressed by osteoclasts but not by adult monocytes, and an antibody to HLA-DR, which is not present on osteoclast. TGF-beta decreased the expression of HLA-DR and increased in a dose-dependent manner the proportion of 23C6-labeled cells; these results suggest that TGF-beta could modulate a differentiation effect to the osteoclastic phenotype. However, when cord blood monocytes were cultured on devitalized rat calvariae prelabeled with 45Ca, TGF-beta did not induce any 45Ca release from bone cultured with monocytes, suggesting that full osteoclastic differentiation was not achieved. These results emphasize the complex role of TGF-beta in the local regulation of bone cell differentiation and in bone remodeling.  相似文献   

17.
We previously observed using cultured tibiotarsal long-bone rudiments from which the perichondrium (PC) and periosteum (PO) was removed that the PC regulates cartilage growth by the secretion of soluble negative regulatory factors. This regulation is "precise" in that it compensates exactly for removal of the endogenous PC and is mediated through at least three independent mechanisms, one of which involves a response to TGF-beta. PC cell cultures treated with 2 ng/ml TGF-beta1 produced a conditioned medium which when added to PC/PO-free organ cultures effected precise regulation of cartilage growth. In the present study, we have investigated the possibility that TGF-beta itself might be the negative regulator which is produced by the PC cells in response to their treatment with TGF-beta1. Using a TGF-beta responsive reporter assay, we determined that PC cell cultures, when treated with 2 ng/ml or greater exogenous TGF-beta1, produce 300 pg/ml of active TGF-beta. Then we observed that this concentration (300 pg/ml) of active TGF-beta1, when added to PC/PO-free tibiotarsal organ cultures, effected precise regulation of cartilage growth, whereas concentrations of TGF-beta1 either greater or less than 300 pg/ml produced abnormally small cartilages. These results suggest that one mechanism by which the PC effects normal cartilage growth is through the production of a precisely regulated amount of TGF-beta which the PC produces in response to treatment with exogenous TGF-beta itself.  相似文献   

18.
Transforming growth factor-beta down-regulates apolipoprotein M in HepG2 cells   总被引:13,自引:0,他引:13  
Apolipoprotein M (apoM) is a novel apolipoprotein presented mostly in high-density lipoprotein (HDL) in human plasma, and is exclusively expressed in liver and in kidney. The pathophysiological function of apoM has not yet been elucidated. Apolipoprotein B (apoB), the characteristic apolipoprotein of low-density lipoprotein (LDL), is like apoM, a very hydrophobic protein, and thereafter they both must co-circulate with lipoprotein particles in plasma. The cytokine, transforming growth factor-beta (TGF-beta), has been shown to decreased apoB secretion in HepG2 cells, and we hypothesized that TGF-beta may have the same effects on apoM expression in HepG2 cells. In the present study, we used real-time RT-PCR to analyze apoM and apoB mRNA levels during administration of TGF-beta, as well as TGF-alpha, epidermal growth factor (EGF) and hepatic growth factor (HGF). TGF-beta significantly inhibited both apoM and apoB mRNA expression in HepG2 cells. The inhibitory effects of TGF-beta were dose-dependent, i.e. 1 ng/ml of TGF-beta decreased apoM mRNA levels by 30%, and 10 or 100 ng/ml of TGF-beta decreased apoM mRNA levels more than 65%. The effect of TGF-beta on apoB mRNA expression was slightly weaker than that of apoM, with a maximum effect at 10 or 100 ng/ml TGF-beta where apoB mRNA levels decreased about 55%. The inhibitory effects of TGF-beta on apoM and apoB mRNA levels also increased with increasing incubation time, where the maximum effect was obtained at 24 h. Moreover TGF-alpha, EGF and HGF all decreased both apoM and apoB mRNA levels, but to a less extent than TGF-beta. Further, all four cytokines had more pronounced effects on apoM mRNA expression than apoB mRNA expression. The present study suggested that apoM, like apoB, may be involved in the hepatic lipoprotein assembly in vivo.  相似文献   

19.
The effect of eosinophil cationic protein (ECP) on immunoglobulin (Ig) production by and proliferation of human plasma cells was studied. ECP inhibited Ig production by and proliferation of the human plasma cell lines, IM-9 and AF-10, in a dose-dependent fashion. As little as 0.05 ng/ml ECP was found to be inhibitory, and the maximal inhibition was achieved at doses of 0.1-0.5 ng/ml ECP. This inhibition was not due to cytotoxicity, since viability was always greater than 98%. Kinetic experiments demonstrated that inhibition was observable after 24 hr of culture with ECP and that the inhibitory effect of ECP was reversible. The inhibitory effect of ECP could be blocked by anti-ECP serum, but not by control serum. Of the various cytokines tested, including interleukin (IL)-1 beta, IL-2, IL-3, IL-4, IL-5, IL-6, interferon (IFN)-alpha, IFN-gamma, granulocyte-macrophage colony-stimulating factor (GM-CSF) and erythropoietin (Epo), IL-6 reversed the inhibition, while other cytokines failed to do so. ECP also inhibited Ig (IgG1, IgG2, IgG3, IgG4, IgM, and IgA) production by and proliferation of PCA-1+ plasma cells generated in vitro with a similar dose-response pattern. This inhibition also was blocked by anti-ECP serum but not by control serum, and was restored by IL-6. These results suggest that ECP may interact with IL-6 in controlling plasma cell responses.  相似文献   

20.
Transforming growth factor-beta 1 (TGF-beta 1) induces a decrease in plasminogen activator (PA) expression in confluent cultures of bovine aortic endothelial (BAE) cells. We describe an assay using the suppression of PA expression in confluent BAE cells by TGF-beta 1 which detects concentrations of the growth factor ranging from 5 to 200 pg/ml and has an ED50 of 15-20 pg/ml. The assay can be performed in 96-well plates and requires a minimum of 35 ul of solution per sample, thereby limiting the amount of reagents required and allowing many samples to be tested in a single assay. Here we demonstrate that the effect of TGF-beta 1 on PA expression in BAE cells depends on the length of time the cells are exposed to the growth factor and the density at which the cells are plated. In cells plated at a high density (3.5 x 10(5) cells/cm2), both 4 h and 24 h exposures to TGF-beta 1 suppress PA expression. However, with cells plated sparsely (3.5 x 10(4) cells/cm2), a 4 h exposure to TGF-beta 1 increases PA expression 2-fold, whereas a 24 h exposure results in an 85% inhibition of basal PA expression. The paradoxical stimulation of PA expression in cells at a sparse density upon 4 h exposure to TGF-beta 1 occurs in a dose-dependent manner with an ED50 of 15-20 pg/ml. This bifunctional response of PA production in cells exposed to TGF-beta 1 may have implications with regard to the role of TGF-beta 1 in angiogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号