首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Methylmalonic aciduria (MMA) is a disorder of organic acid metabolism resulting from a functional defect of methylmalonyl-CoA mutase (MCM). MMA is associated with significant morbidity and mortality, thus therapies are necessary to help improve quality of life and prevent renal and neurological complications. Transgenic mice carrying an intact human MCM locus have been produced. Four separate transgenic lines were established and characterised as carrying two, four, five or six copies of the transgene in a single integration site. Transgenic mice from the 2-copy line were crossed with heterozygous knockout MCM mice to generate mice hemizygous for the human transgene on a homozygous knockout background. Partial rescue of the uniform neonatal lethality seen in homozygous knockout mice was observed. These rescued mice were significantly smaller than control littermates (mice with mouse MCM gene). Biochemically, these partial rescue mice exhibited elevated methylmalonic acid levels in urine, plasma, kidney, liver and brain tissue. Acylcarnitine analysis of blood spots revealed elevated propionylcarnitine levels. Analysis of mRNA expression confirms the human transgene is expressed at higher levels than observed for the wild type, with highest expression in the kidney followed closely by brain and liver. Partial rescue mouse fibroblast cultures had only 20% of the wild type MCM enzyme activity. It is anticipated that this humanised partial rescue mouse model of MMA will enable evaluation of long-term pathophysiological effects of elevated methylmalonic acid levels and be a valuable model for the investigation of therapeutic strategies, such as cell transplantation.  相似文献   

2.
Methylmalonic aciduria is a human autosomal recessive disorder of organic acid metabolism resulting from a functional defect in the activity of the enzyme methylmalonyl-CoA mutase. Based upon the homology of the human mutase locus with the mouse locus, we have chosen to disrupt the mouse mutase locus within the critical CoA binding domain using gene-targeting techniques to create a mouse model of methylmalonic aciduria. The phenotype of homozygous knock-out mice (mut-/-) is one of early neonatal lethality. Mice appear phenotypically normal at birth and are indistinguishable from littermates. By 15 h of age, they develop reduced movement and suckle less. This is followed by the development of abnormal breathing, and all of the mice with a null phenotype die by 24 h of age. Urinary levels of methylmalonic and methylcitric acids are grossly increased. Measurement of acylcarnitines in blood shows elevation of propionylcarnitine with no change in the levels of acetylcarnitine and free carnitine. Incorporation of [14C]propionate in primary fibroblast cultures from mut-/- mice is reduced to approximately 6% of normal level, whereas there is no detectable synthesis of mut mRNA in the liver. This is the first mouse model that recapitulates the key phenotypic features of mut0 methylmalonic aciduria.  相似文献   

3.
Isolated methylmalonic aciduria (MMAuria) is primarily caused by deficiency of methylmalonyl-CoA mutase (MMUT or MUT). Biochemically, MUT deficiency results in the accumulation of methylmalonic acid (MMA), propionyl-carnitine (C3) and other metabolites. Patients often exhibit lethargy, failure to thrive and metabolic decompensation leading to coma or even death, with kidney and neurological impairment frequently identified in the long-term. Here, we report a hemizygous mouse model which combines a knock-in (ki) missense allele of Mut with a knock-out (ko) allele (Mut-ko/ki mice) that was fed a 51%-protein diet from day 12 of life, constituting a bespoke model of MMAuria. Under this diet, mutant mice developed a pronounced metabolic phenotype characterized by drastically increased blood levels of MMA and C3 compared to their littermate controls (Mut-ki/wt). With this bespoke mouse model, we performed a standardized phenotypic screen to assess the whole-body impairments associated with this strong metabolic condition. We found that Mut-ko/ki mice show common clinical manifestations of MMAuria, including pronounced failure to thrive, indications of mild neurological and kidney dysfunction, and degenerative morphological changes in the liver, along with less well described symptoms such as cardiovascular and hematological abnormalities. The analyses also reveal so far unknown disease characteristics, including low bone mineral density, anxiety-related behaviour and ovarian atrophy. This first phenotypic screening of a MMAuria mouse model confirms its relevance to human disease, reveals new alterations associated with MUT deficiency, and suggests a series of quantifiable readouts that can be used to evaluate potential treatment strategies.  相似文献   

4.
Point mutations in the human gene encoding coenzyme B12 (adenosylcobalamin)-dependent methylmalonyl-CoA mutase give rise to an inherited disorder of propionic acid metabolism termed mut methylmalonic aciduria. Almost all such mutations alter amino acids in the homodimeric human enzyme that are identical to residues in the catalytic alpha-subunit of the heterodimeric methylmalonyl-CoA mutase from the bacterium Propionibacterium shermanii, to which the mature human enzyme shows an overall 65% sequence identity. To explore how specific mutations might cause the observed clinical phenotype, 12 known mutations were mapped onto a three-dimensional homology model of the subunit of the human enzyme, generated using the program MODELLER on the basis of the recently published 2.0 A X-ray crystal structure of the P. shermanii methylmalonyl-CoA mutase. Eight mutations are found in the C-terminal B12-binding domain, of which 4 (G623R, G626C, G630E, G703R) are in direct contact with the corrin and are clustered around the histidine ligand (H627) provided by the protein to coordinate the cobalt atom of the B12 cofactor. Introduction of a side chain, particularly one that is charged, at any of these positions is expected to disrupt the flavodoxin-like fold and severely impair its binding of B12. Mutation at either of two other highly conserved glycine residues in this domain (G648D, G717V) also disrupts critical elements in the fold as would the introduction of an additional positive charge in the mutation H678R. Mutation of an arginine in a solvent-exposed loop to a hydrophobic residue (R694W) is also pathogenic. The remaining mutations have been mapped to the N-terminal region of the mutase, two of which introduce a buried, uncompensated charge, either near the subunit interface (A377E), or near the narrow channel through which acyl-CoA esters gain access to the active site (W105R). The extreme N-terminus of methylmalonyl-CoA mutase is predicted to make extensive contacts with the other subunit, and a mutant in this region (R93H) may prevent the correct assembly of the dimer.  相似文献   

5.
Structure of the human methylmalonyl-CoA mutase (MUT) locus   总被引:6,自引:0,他引:6  
  相似文献   

6.
Adenosylcobalamin-dependent methylmalonyl-CoA mutase catalyzes the interconversion of methylmalonyl-CoA and succinyl-CoA. In humans, deficiencies in the mutase lead to methylmalonic aciduria, a rare disease that is fatal in the first year of life. Such inherited deficiencies can result from mutations in the mutase structural gene or from mutations that impair the acquisition of cobalamins. Recently, a human gene of unknown function, MMAA, has been implicated in methylmalonic aciduria (Dobson, C. M., Wai, T., Leclerc, D., Wilson, A., Wu, X., Dore, C., Hudson, T., Rosenblatt, D. S., and Gravel, R. A. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 15554-15559). MMAA orthologs are widespread in bacteria, archaea, and eukaryotes. In Methylobacterium extorquens AM1, a mutant defective in the MMAA homolog meaB was unable to grow on C(1) and C(2) compounds because of the inability to convert methylmalonyl-CoA to succinyl-CoA (Korotkova N., Chistoserdova, L., Kuksa, V., and Lidstrom, M. E. (2002) J. Bacteriol. 184, 1750-1758). Here we demonstrate that this defect is not due to the absence of adenosylcobalamin but due to an inactive form of methylmalonyl-CoA mutase. The presence of active mutase in double mutants defective in MeaB and in the synthesis of either R-methylmalonyl-CoA or adenosylcobalamin indicates that MeaB is necessary for protection of mutase from inactivation during catalysis. MeaB and methylmalonyl-CoA mutase from M. extorquens were cloned and purified in their active forms. We demonstrated that MeaB forms a complex with methylmalonyl-CoA mutase and stimulates in vitro mutase activity. These results support the hypothesis that MeaB functions to protect methylmalonyl-CoA mutase from irreversible inactivation.  相似文献   

7.
The polymerase chain reaction was used to clone a full-length human methylmalonyl-CoA mutase cDNA from a human liver library by priming with sequences from the 5' end of a partial cDNA and sequences in the phage vector. The amino acid sequence predicted from the cDNA corresponds to the authentic amino acid sequences of peptide fragment from purified methylmalonyl-CoA mutase. The open reading frame of the cDNA encodes 742 amino acids (82,283 Da) comprising a 32 amino acid mitochondrial leader sequence and a mature protein of 710 amino acids (78,489 Da). The use of the polymerase chain reaction to "screen" the cDNA library represents a novel application of this technique. The full length will enable analysis of mutations underlying inherited methylmalonic acidemias caused by deficiency of the methylmalonyl-CoA mutase apoenzyme.  相似文献   

8.
Hemoglobin E (HbE) is caused by a G-->A mutation at codon 26 of the beta-globin gene, which substitutes Glu-->Lys. This mutation gives rise to functional but unstable hemoglobin and activates a cryptic splice site causing mild anemia. HbE reaches a carrier frequency of 60-80% in some Southeast Asian populations. HbE causes serious disease when co-inherited with a beta-thalassemia mutation. In this study, we report the creation and evaluation of humanized transgenic mice containing the beta(E) mutation in the context of the human beta-globin locus. Developmental expression of the human beta(E) locus transgene partially complements the hematological abnormalities in heterozygous knockout mice ((mu)beta(th-3/+)) and rescues the embryonic lethality of homozygous knockout mice ((mu)beta(th-3/th-3)). The phenotype of rescued mice was dependent on the transgene copy number. This mouse model displays hematological abnormalities similar to HbE/beta-thalassemia patients and represent an ideal in vivo model system for pathophysiological studies and evaluation of novel therapies.  相似文献   

9.
Three independent transgenic mouse lines were generated with the human Friedreich ataxia gene, FRDA, in an 188-kb bacterial artificial chromosome (BAC) genomic sequence. Three copies of the transgene per diploid mouse genome were integrated in a single site in each mouse line. Transgenic mice were mated with mice heterozygous for a knockout mutation of the murine Frda gene, to generate mice homozygous for the Frda knockout mutation and hemizygous or homozygous for the human transgene. Rescue of the embryonic lethality that is associated with homozygosity for the Frda knockout mutation was observed in all three lines. Rescued mice displayed normal behavioral and biochemical parameters. RT-PCR analysis demonstrated that human FRDA mRNA is expressed in all the lines. The relative expression of the human FRDA and mouse Frda genes showed a similar pattern in different tissues in all three lines, indicating position-independent control of expression of the human FRDA transgene. However, large differences in the human:mouse mRNA ratio were observed between different tissues in all three lines. The human transgene is expressed at much higher levels in the brain, liver, and skeletal muscle than the endogenous gene, while expression of the human transgene in blood is only 25–30% of the mouse gene. These studies will facilitate the development of humanized mouse models of Friedreich ataxia through introduction of a GAA trinucleotide expansion or specific known point mutations in the normal human FRDA locus and the study of the regulation of gene expression from the FRDA locus.  相似文献   

10.
The 643 transgenic mouse line carries an autosomal dominant insertional mutation that results in hemifacial microsomia (HFM), including microtia and/or abnormal biting. In this paper, we characterize the transgene integration site in transgenic mice and preintegration site of wildtype mice. The locus, designated Hfm (hemifacial microsomia-associated locus), was mapped to chromosome 10, B1-3, by chromosome in situ hybridization. We cloned the transgene insertion site from the transgenic DNA library. By using the 5′ and 3′ flanking sequences, the preintegration region was isolated. The analysis of these regions showed that a deletion of at least 23 kb DNA occurred in association with the transgene integration. Evolutionarily conserved regions were detected within and beside the deleted region. The result of mating between hemizygotes suggests that the phenotype of the homozygote is lethality in the prenatal period. These results suggest that the Hfm locus is necessary for prenatal development and that this strain is a useful animal model for investigating the genetic predisposition to HFM in humans.  相似文献   

11.
We report the generation and characterisation of the first transgenic mice exclusively expressing normal human beta-globin ((hu)beta-globin) from a 183 kb genomic fragment. Four independent lines were generated, each containing 2-6 copies of the (hu)beta-globin locus at a single integration site. Steady state levels of (hu)beta-globin protein were dependent on transgene copy number, but independent of the site of integration. Hemizygosity for the transgene on a heterozygous knockout background ((hu)beta(+/0), (mu)beta(th-3/+)) complemented fully the hematological abnormalities associated with the heterozygous knockout mutation in all four lines. Importantly, the rescue of the embryonic lethal phenotype that is characteristic of homozygosity for the knockout mutation was also demonstrated in two transgenic lines that were homozygous for two copies of the (hu)beta-globin locus, and in one transgenic line, which was hemizygous for six copies of the (hu)beta-globin locus. Our results illustrate the importance of transgene copy number determination and of the hemizygosity/homozygosity status in phenotypic complementation studies of transgenic mice containing large heterologous transgenes. Transgenic mouse colonies with 100% (hu)beta-globin production from the intact (hu)beta-globin locus have been established and will be invaluable in comparative and gene therapy studies with mouse models containing specific beta-thalassemia mutations in the (hu)beta-globin locus.  相似文献   

12.
13.
Molecular organization, copy number and chromosomal localization of human TNF/LT locus fragment were determined in genomes of two transgenic mouse lines. Genome of the first one contains two copies, organized in head-to-tail manner and determined on eighth chromosome by karyotyping; single transgene copy of the second line is observed on the fifth chromosome. These mice could serve as valuable model for studying both human tumor necrosis factor and lymphotoxin physiological functions.  相似文献   

14.
alpha-thalassaemia is an inherited blood disorder caused by a decrease in the synthesis of alpha-globin due to mutations in one or both of the alpha-globin genes located on human chromosome 16. A 191 kb transgene derived from a sequenced bacterial artificial chromosome (BAC) clone carrying the human alpha-globin gene cluster, together with about 100 kb of sequence upstream of DNase1 hypersensitive site HS-40 and 30 kb downstream of the alpha1-globin gene, was introduced into fertilised mouse oocytes by pronuclear microinjection. Three transgenic founder mice were obtained. Analysis of one transmitting line by fluorescent in situ hybridisation and quantitative PCR demonstrated a single copy integration of the human alpha-globin transgene on chromosome 1. Analysis of haemoglobins from the peripheral blood by cellulose acetate electrophoresis and high performance liquid chromatography (HPLC) demonstrated synthesis of human alpha-globin to about 36% of the level of each mouse alpha-globin locus. Breeding of transgenic mice with mice heterozygous for a knockout (KO) deletion of both murine alpha-globin genes showed that the human alpha-globin locus restored haemoglobin levels and red cell distribution width to normal in double heterozygous mice and significantly normalised other haematological parameters. Interestingly the human transgene also induced a significant increase in red cell production and haematocrit above wild type values. This is the first report demonstrating complementation of a murine alpha-globin KO mutation by human alpha-globin gene expression from an intact human alpha-globin locus. The transgenic mouse model described in this report should be very useful for the study of human alpha-globin gene regulation and for the development of strategies to down regulate alpha-globin production as a means of ameliorating the severity of beta-thalassaemia.  相似文献   

15.
Methylmalonyl CoA mutase (MCM) catalyzes an essential step in the degradation of several branch-chain amino acids and odd-chain fatty acids. Deficiency of this apoenzyme causes the mut form of methylmalonic acidemia, an often fatal disorder of organic acid metabolism. An MCM cDNA has recently been obtained from human liver cDNA libraries. This clone has been used as a probe to determine the chromosomal location of the MCM gene and MUT locus. Southern blot analysis of DNA from human-hamster somatic-cell hybrid cell lines assigned the locus to region q12-p23 of chromosome 6. In situ hybridization further localized the locus to the region 6p12-21.2. A highly informative RFLP was identified at the MCM gene locus which will be useful for genetic diagnostic and linkage studies.  相似文献   

16.
Double muscling is a trait previously described in several mammalian species including cattle and sheep and is caused by mutations in the myostatin (MSTN) gene (previously referred to as GDF8). Here we describe a new mutation in MSTN found in the whippet dog breed that results in a double-muscled phenotype known as the “bully” whippet. Individuals with this phenotype carry two copies of a two-base-pair deletion in the third exon of MSTN leading to a premature stop codon at amino acid 313. Individuals carrying only one copy of the mutation are, on average, more muscular than wild-type individuals (p = 7.43 × 10−6; Kruskal-Wallis Test) and are significantly faster than individuals carrying the wild-type genotype in competitive racing events (Kendall's nonparametric measure, τ = 0.3619; p ≈ 0.00028). These results highlight the utility of performance-enhancing polymorphisms, marking the first time a mutation in MSTN has been quantitatively linked to increased athletic performance.  相似文献   

17.
18.
19.
A dominant mutation was generated in transgenic mice as a consequence of insertional mutation. Heterozygous mice from transgenic line 9257 (Tg(9257)) are hyperactive with bidirectional circling behavior and have a distinctive facial appearance due to hypoplasia of the nasal bone. Morphological analysis of the inner ear revealed asymmetric abnormalities of the horizontal canal and flattening or invagination of the crista ampullaris, which can account for the circling behavior. The sensory epithelium appeared to be normal. The transgene insertion site was localized by in situ hybridization to the B1 band of mouse chromosome 18. Genetic mapping in an interspecific backcross demonstrated the gene order centromere--Tg(9257)--8.8 +/- 3.4--Grl-1, Egr-1, Fgf-1, Apc--14.7 +/- 4.3--Pdgfr. The phenotype and the mapping data suggest that the transgene may be inserted at the Twirler locus. Homozygosity for the transgene results in prenatal lethality, but compound heterozygotes carrying the Tw allele and the transgene are viable. The function of the closely linked ataxia locus is not disrupted by the transgene insertion. This insertional mutant will provide molecular access to genes located in the Twirler region of mouse chromosome 18.  相似文献   

20.
Mevalonate kinase (MVK) catalyses an early step in cholesterol biosynthesis converting mevalonate to phosphomevalonate. Cob(I)alamin adenosyltransferase (MMAB) converts cob(I)alamin to adenosylcobalamin, functionally required for mitochondrial methylmalonyl-CoA mutase activity and succinyl-CoA formation. These two synthenic genes are found in a head-to-head formation on chromosome 12 in man and chromosome 5 in mouse. The 330bp intergenic region showed several conserved NF-Y sites indicative of potential bidirectional regulatory SREBP synergism. Both MVK and MMAB appear to be regulated in a similar manner, to a large extent by SREBP-2, since their tissue expression pattern was similar and both genes were suppressed by an excess of cholesterol as well as SREBP-2 knockdown. Statin treatment in mice upregulated both Mvk and Mmab mRNA levels indicating that this treatment may be useful in inborn errors of cblB complementation associated with methylmalonic aciduria as well as hyper IgD and periodic fever syndrome (HIDS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号