首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The amino-terminal domains (ATDs) of N-methyl-d-aspartate (NMDA) receptors contain binding sites for modulators and may serve as potential drug targets in neurological diseases. Here, three fusion tags (6xHis-, GST-, and MBP-) were fused to the ATD of NMDA receptor NR2B subunit (ATD2B) and expressed in Escherichia coli. Each tag's ability to confer enhanced solubility to ATD2B was assessed. Soluble ATD2B was successfully obtained as a MBP fusion protein. Dynamic light scattering revealed the protein (1mg/ml) exists as monodispersed species at 25 degrees C. Functional studies using circular dichroism showed that the soluble MBP-ATD2B bound ifenprodil in a dose-dependent manner. The dissociation constants obtained for ifenprodil were similar in the absence (64nM) and presence (116nM) of saturating concentration of maltose. Moreover, the yield of soluble MBP-ATD2B is 18 times higher than the refolded 6xHis-ATD2B. We have reported a systematic comparison of three different affinity tagging strategies and identified a rapid and efficient method to obtain large amount of ATD2B recombinant protein for biochemical and structural studies.  相似文献   

2.
N‐methyl‐D ‐aspartate (NMDA) receptors belong to the family of ionotropic glutamate receptors (iGluRs) that mediate the majority of fast excitatory synaptic transmission in the mammalian brain. One of the hallmarks for the function of NMDA receptors is that their ion channel activity is allosterically regulated by binding of modulator compounds to the extracellular amino‐terminal domain (ATD) distinct from the L ‐glutamate‐binding domain. The molecular basis for the ATD‐mediated allosteric regulation has been enigmatic because of a complete lack of structural information on NMDA receptor ATDs. Here, we report the crystal structures of ATD from the NR2B NMDA receptor subunit in the zinc‐free and zinc‐bound states. The structures reveal the overall clamshell‐like architecture distinct from the non‐NMDA receptor ATDs and molecular determinants for the zinc‐binding site, ion‐binding sites, and the architecture of the putative phenylethanolamine‐binding site.  相似文献   

3.
Lee CH  Gouaux E 《PloS one》2011,6(4):e19180
The N-methyl-D-aspartate (NMDA) receptor, an obligate heterotetrameric assembly organized as a dimer of dimers, is typically composed of two glycine-binding GluN1 subunits and two glutamate-binding GluN2 subunits. Despite the crucial role that the NMDA receptor plays in the nervous system, the specific arrangement of subunits within the dimer-of-dimer assemblage is not conclusively known. Here we studied the organization of the amino terminal domain (ATD) of the rat GluN1/GluN2A and GluN1/GluN2B NMDA receptors by cysteine-directed, disulfide bond-mediated cross-linking. We found that GluN1 ATDs and GluN2 ATDs spontaneously formed disulfide bond-mediated dimers after introducing cysteines into the L1 interface of GluN2A or GluN2B ATD. The formation of dimer could be prevented by knocking out endogenous cysteines located near the L1 interface of GluN1. These results indicate that GluN1 and GluN2 ATDs form local heterodimers through the interactions in the L1-L1 interface and further demonstrate a dimer-of-heterodimer arrangement in GluN1/GluN2A and GluN1/GluN2B NMDA receptors.  相似文献   

4.
Kumar J  Schuck P  Mayer ML 《Neuron》2011,71(2):319-331
Native glutamate receptor ion channels are tetrameric assemblies containing two or more different subunits. NMDA receptors are obligate heteromers formed by coassembly of two or three divergent gene families. While some AMPA and kainate receptors can form functional homomeric ion channels, the KA1 and KA2 subunits are obligate heteromers which?function only in combination with GluR5-7. The mechanisms controlling glutamate receptor assembly involve an initial step in which the amino terminal domains (ATD) assemble as dimers. Here, we establish by sedimentation velocity that the ATDs of GluR6 and KA2 coassemble as a heterodimer of K(d) 11?nM, 32,000-fold lower than the K(d) for homodimer formation by KA2; we solve crystal structures for the GluR6/KA2 ATD heterodimer and heterotetramer assemblies. Using these structures as a guide, we perform a mutant cycle analysis to probe the energetics of assembly and show that high-affinity ATD interactions are required for biosynthesis of functional heteromeric receptors.  相似文献   

5.
N-methyl-d-aspartate (NMDA) receptors, one of the three main types of ionotropic glutamate receptors (iGluRs), are involved in excitatory synaptic transmission, and their dysfunction is implicated in various neurological disorders. NMDA receptors, heterotetramers typically composed of GluN1 and GluN2 subunits, are the only members of the iGluR family that bind allosteric modulators at their amino-terminal domains (ATDs). We used luminescence resonance energy transfer to characterize the conformational changes the receptor undergoes upon binding ifenprodil, a synthetic compound that specifically inhibits activation of NMDA receptors containing GluN2B. We found that ifenprodil induced an overall closure of the GluN2B ATD without affecting conformation of the GluN1 ATD or the upper lobes of the ATDs, the same mechanism whereby zinc inhibits GluN2A. These data demonstrate that the conformational changes induced by zinc and ifenprodil represent a conserved mechanism of NMDA receptor inhibition. Additionally, we compared the structural mechanism of zinc inhibition of GluN1–GluN2A receptors to that of ifenprodil inhibition of GluN1–GluN2B. The similarities in the conformational changes induced by inhibitor binding suggest a conserved structural mechanism of inhibition independent of the binding site of the modulator.  相似文献   

6.
N-Methyl-d-aspartate (NMDA) receptors mediate excitatory neurotransmission in the mammalian central nervous system. An important feature of these receptors is their capacity for allosteric regulation by small molecules, such as zinc, which bind to their amino-terminal domain (ATD). Zinc inhibition through high affinity binding to the ATD has been examined through functional studies; however, there is no direct measurement of associated conformational changes. We used luminescence resonance energy transfer to show that the ATDs undergo a cleft closure-like conformational change upon binding zinc, but no changes are observed in intersubunit distances. Furthermore, we find that the ATDs are more closely packed than the related AMPA receptors. These results suggest that the stability of the upper lobe contacts between ATDs allow for the efficient propagation of the cleft closure conformational change toward the ligand-binding domain and transmembrane segments, ultimately inhibiting the channel.  相似文献   

7.
Ionotropic glutamate receptors (iGluRs) mediate the majority of fast excitatory synaptic neurotransmission in the central nervous system. The selective assembly of iGluRs into AMPA, kainate, and N-methyl-d-aspartic acid (NMDA) receptor subtypes is regulated by their extracellular amino-terminal domains (ATDs). Kainate receptors are further classified into low-affinity receptor families (GluK1-GluK3) and high-affinity receptor families (GluK4-GluK5) based on their affinity for the neurotoxin kainic acid. These two families share a 42% sequence identity for the intact receptor but only a 27% sequence identity at the level of ATD. We have determined for the first time the high-resolution crystal structures of GluK3 and GluK5 ATDs, both of which crystallize as dimers but with a strikingly different dimer assembly at the R1 interface. By contrast, for both GluK3 and GluK5, the R2 domain dimer assembly is similar to those reported previously for other non-NMDA iGluRs. This observation is consistent with the reports that GluK4-GluK5 cannot form functional homomeric ion channels and require obligate coassembly with GluK1-GluK3. Our analysis also reveals that the relative orientation of domains R1 and R2 in individual non-NMDA receptor ATDs varies by up to 10°, in contrast to the 50° difference reported for the NMDA receptor GluN2B subunit. This restricted domain movement in non-NMDA receptor ATDs seems to result both from extensive intramolecular contacts between domain R1 and domain R2 and from their assembly as dimers, which interact at both R1 and R2 domains. Our results provide the first insights into the structure and function of GluK4-GluK5, the least understood family of iGluRs.  相似文献   

8.
N-Methyl-d-aspartate (NMDA) receptors play critical roles in complex brain functions as well as pathogenesis of neurodegenerative diseases. There are many NMDA isoforms and subunit types that, together with subtype-specific assembly, give rise to significant functional heterogeneity of NMDA receptors. Conventional NMDA receptors are obligatory heterotetramers composed of two glycine-binding NR1 subunits and two glutamate-binding NR2 subunits. When individually expressed in heterogeneous cells, most of the NR1 splice variants and the NR2 subunits remain in the endoplasmic reticulum (ER) and do not form homomeric channels. The mechanisms underlying NMDA receptor trafficking and functional expression remain uncertain. Using truncated and chimeric NMDA receptor subunits expressed in heterogeneous cells and hippocampal neurons, together with immunostaining, biochemical, and functional analyses, we found that the NR2A amino-terminal domain (ATD) contains an ER retention signal, which can be specifically masked by the NR1a ATD. Interestingly, no such signal was found in the ATD of the NR2B subunit. We further identified the A2 segment of the NR2A ATD to be the primary determinant of ER retention. These findings indicate that NR2A-containing NMDA receptors may undergo a different ER quality control process from NR2B-containing NMDA receptors.Ionotropic glutamate receptors (iGluRs)2 mediate most of the excitatory neurotransmission in the central nervous system. They play key roles in complex brain functions as well as in the pathogenesis of neurodegenerative diseases. Based on pharmacological properties and sequence similarities, iGluRs can be grouped into three major subtypes: GluR1 to -4 subunits form α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors, GluR5 to -7 and KA1 and -2 subunits make up kainate receptors, and NR1 together with NR2A to -D subunits comprise the NMDA receptors (1). All iGluR subunits share a unique membrane topology with a large extracellular NH2-terminal domain, three transmembrane segments (TM1 (transmembrane domain 1), TM3, and TM4), a P-loop region, and a cytoplasmic COOH terminus (2, 3). Based on the sequence homology to bacterial periplasmic binding proteins, the NH2-terminal domain of iGluRs can be divided into two domains in tandem: the amino-terminal domain (ATD), which includes the first 400 or so amino acids (4), and the following S1 domain preceding TM1, which forms the ligand-binding domain together with the extracellular loop between TM3 and TM4 (S2 domain) (5, 6).Among iGluRs, NMDA receptors are special in that conventional NMDA receptors are obligatory tetrameric membrane proteins composed of two glycine-binding NR1 and two glutamate-binding NR2 subunits. The NR1 subunit is essential for the formation of functional NMDA receptor channel, whereas the NR2 subunit modifies channel properties, such as current kinetics and channel conductance (1). The major NR1 splice variant and the NR2 subunits are retained in the ER when expressed alone in heterogeneous cells. Only when expressed together do they form functional receptors on the cell surface (79). In the last decade, enormous progress has been made in understanding the phenomenology and mechanisms of functional plasticity of NMDA receptors. However, much less is known about the mechanisms underlying the ER retention of NMDA receptor subunits. Previous studies focused on the COOH terminus have shown that the NR1a subunit contains an ER retention signal, RRR, in the C1 cassette, whereas a motif, HLFY, found in the NR2B subunit immediately following the TM4 (10) or, at least, the presence of any two amino acid residues after NR2 TM4 (11) is required for the export of NR1-NR2 complexes from the ER. Recently, novel ER retention signals were identified in the TM3 of both NR1 and NR2B subunits. In addition, TM3 of both NR1 and NR2B and TM4 of NR1 are necessary for masking ER retention signals found in TM3 (12).In the present study, we focused on the functional role of the ATD in the surface expression of NMDA receptors. Interestingly, we found an ER retention signal located in the ATD of the NR2A subunit but not in the corresponding domain of the NR2B. It is suggested that NR2A-containing NMDA receptors may undergo an ER quality control process different from that of NR2B-containing NMDA receptors.  相似文献   

9.
Fast excitatory neurotransmission is mediated largely by ionotropic glutamate receptors (iGluRs), tetrameric, ligand‐gated ion channel proteins comprised of three subfamilies, AMPA, kainate and NMDA receptors, with each subfamily sharing a common, modular‐domain architecture. For all receptor subfamilies, active channels are exclusively formed by assemblages of subunits within the same subfamily, a molecular process principally encoded by the amino‐terminal domain (ATD). However, the molecular basis by which the ATD guides subfamily‐specific receptor assembly is not known. Here we show that AMPA receptor GluR1‐ and GluR2‐ATDs form tightly associated dimers and, by the analysis of crystal structures of the GluR2‐ATD, propose mechanisms by which the ATD guides subfamily‐specific receptor assembly.  相似文献   

10.
An ecdysone-inducible mammalian expression system was used to study expression of recombinant N-methyl-D-aspartate (NMDA) receptors. Human embryonic kidney (HEK) 293 cells expressing the regulatory vector pVgRXR (EcR 293 cells) were transfected with rat NR1a and NR2B cDNAs using the inducible vector pIND (Invitrogen). Inducible expression of the NR2B subunit in cell clone designated EcR/rNR1a2B was investigated using quantitative RT-PCR and flow cytometry based immunocytochemical methods. The mRNA level of the NR2B subunits in EcR/rNRa2B cells was dependent on the concentration of the ecdysone analogue inducing agent, muristerone A (MuA). Similarly, NR2B subunit protein expression was higher in cells pre-treated with the inducing agent. Functionally active NMDA receptors were also detected in EcR/rNR1a2B cells after MuA induction. In presence of the inducing factor, NMDA-evoked ion currents as well as increase in cytoplasmic calcium-concentrations were measured using whole-cell patch clamp and fluorometric calcium measuring techniques. The pharmacological profile of the expressed NMDA receptors was characterised by comparing the inhibitory activity of several NR2B subunit selective NMDA antagonists in EcR/rNR1a2B cells with that observed in primary cultures of rat cortical neurones. Whereas the efficacies of the NR2B subunit selective NMDA antagonists were similar in EcR/rNR1a2B cells and in neurones, their maximal inhibitory effects were significantly higher in cells expressing NR1a/NR2B recombinant receptors. This study demonstrates that recombinant NMDA receptors can be expressed in an inducible way in non-neuronal cell lines using the ecdysone-inducible mammalian expression system. Such cell lines can be suitable tools in high throughput functional screening for potential subtype selective modulators of the NMDA receptor.  相似文献   

11.
We studied [3H]N-[1-(2-thienyl)cyclohexyl]-3,4-piperidine [( 3H]TCP) binding to human frontal cortex obtained at autopsy from 10 histologically normal controls and eight histopathologically verified cases with Alzheimer-type dementia (ATD). Extensively washed membrane preparations were used to minimize the effects of endogenous substances. In ATD frontal cortex, the total concentration (Bmax) of [3H]TCP binding sites was significantly reduced by 40-50%. The apparent dissociation constant (KD) values showed no significant change. The reduction in binding capacity was also apparent in Triton X-100-treated membrane preparations, and there was a linear correlation between the number of [3H]TCP binding sites and that of N-methyl-D-aspartate (NMDA)-sensitive [3H]glutamate binding sites. [3H]TCP binding sites spared in ATD brains retained the affinity for the ligand and the reactivity to NMDA, L-glutamate, and glycine. These results suggest that the primary change in NMDA receptor-ion channel complex in ATD brains is the reduction of its number, possibly reflecting the loss of neurons bearing these receptor complexes, and that the functional linkage within the receptor complexes spared in ATD brains remains normal.  相似文献   

12.
The endogenous neurosteroids, pregnenolone sulfate (PS) and 3α-hydroxy-5β-pregnan-20-one sulfate (PREGAS), have been shown to differentially regulate the ionotropic glutamate receptor (iGluR) family of ligand-gated ion channels. Upon binding to these receptors, PREGAS decreases current flow through the channels. Upon binding to non-NMDA or NMDA receptors containing an GluN2C or GluN2D subunit, PS also decreases current flow through the channels, however, upon binding to NMDA receptors containing an GluN2A or GluN2B subunit, flow through the channels increases. To begin to understand this differential regulation, we have cloned the S1S2 and amino terminal domains (ATD) of the NMDA GluN2B and GluN2D and AMPA GluA2 subunits. Here we present results that show that PS and PREGAS bind to different sites in the ATD of the GluA2 subunit, which when combined with previous results from our lab, now identifies two binding domains for each neurosteroid. We also show both neurosteroids bind only to the ATD of the GluN2D subunit, suggesting that this binding is distinct from that of the AMPA GluA2 subunit, with both leading to iGluR inhibition. Finally, we provide evidence that both PS and PREGAS bind to the S1S2 domain of the NMDA GluN2B subunit. Neurosteroid binding to the S1S2 domain of NMDA subunits responsible for potentiation of iGluRs and to the ATD of NMDA subunits responsible for inhibition of iGluRs, provides an interesting option for therapeutic design.  相似文献   

13.
In this study, we have established a non-neuronal cell line stably and inducibly expressing recombinant NMDA receptors (NRs) composed of rat NR1a/NR2A subunits. EcR-293 cells were transfected with rat NR1a and NR2A cDNAs using the inducible mammalian expression vector pIND. Cell colonies resistant for the selecting agents were picked and tested for NR2A mRNA as well as protein expression using quantitative RT-PCR and flow cytometry based immunocytochemistry. Clonal cells expressing functional NMDA receptors were identified by measuring NMDA-evoked ion currents, and NMDA-induced increase in cytosolic free calcium concentration in whole-cell patch-clamp and fluorimetric calcium measurements, respectively. One clone named D5/H3, which exhibited the highest response to NMDA, was chosen to examine inducibility of the expression and for pharmacological profiling of recombinant NR1a/NR2A NMDA receptors. To check inducibility, NR2A subunit expression in D5/H3 cells treated with the inducing agent muristerone A (MuA) was compared with that in non-induced cells. Both NR2A mRNA and protein expression was several folds higher in cells treated with the inducing agent. As part of the pharmacological characterization, we examined the activation of the expressed NR1a/NR2A receptors as a function of increasing concentration of NMDA. NMDA-evoked concentration-dependent increases in cytosolic [Ca2+] with an EC50 value of 41 +/- 1 microM. In addition, whereas the NMDA response was concentration-dependently inhibited by the channel blocker MK-801 (IC50 = 58 +/- 6 nM), NR2B subunit selective NMDA receptor antagonists were ineffective. Thus, this cell line, which stably and inducibly expresses recombinant NR1a/NR2A NMDA receptors, can be a useful tool for testing NMDA receptor antagonists and studying their subunit selectivity.  相似文献   

14.
Ionotropic glutamate receptors are functionally diverse but have a common architecture, including the 400-residue amino-terminal domain (ATD). We report a 1.8-Å resolution crystal structure of human GluR2-ATD. This dimeric structure provides a mechanism for how the ATDs can drive receptor assembly and subtype-restricted composition. Lattice contacts in a 4.1-Å resolution crystal form reveal a tetrameric (dimer-dimer) arrangement consistent with previous cellular and cryo-electron microscopic data for full-length AMPA receptors.  相似文献   

15.
We have performed [(3)H]ifenprodil binding experiments under NMDA receptor-specific assay conditions to provide the first detailed characterisation of the pharmacology of the ifenprodil site on NMDA NR1/NR2B receptors, using recombinant human NR1a/NR2B receptors stably expressed in L(tk-) cells, in comparison with rat cortex/hippocampus membranes. [(3)H]Ifenprodil bound to a single, saturable site on both human recombinant NR1a/NR2B receptors and native rat receptors with B:(max) values of 1.83 and 2.45 pmol/mg of protein, respectively, and K:(D) values of 33.5 and 24.8 nM:, respectively. The affinity of various ifenprodil site ligands-eliprodil, (R:(*), R:(*))-4-hydroxy-alpha-(4-hydroxyphenyl)-beta-methyl-4-pehnyl-1-pi per idineethanol [(+/-)-CP-101,606], cis-3-[4-(4-fluorophenyl)-4-hydroxy-1-piperidinyl]-3, 4-dihydro-2H:-1-benzopyran-4,7-diol [(+/-)-CP-283,097], and (R:(*), S:(*))-alpha-(4-hydroxyphenyl)-beta-methyl-4-(phenylmethyl)-1-piperid inepropanol [(+/-)-Ro 25-6981] was very similar for inhibition of [(3)H]ifenprodil binding to recombinant human NR1a/NR2B and native rat receptors, whereas allosteric inhibition of [(3)H]ifenprodil binding by polyamine site ligands (spermine, spermidine, and arcaine) showed approximately twofold lower affinity for recombinant receptors compared with native receptors. Glutamate site ligands were less effective at modulating [(3)H]ifenprodil binding to recombinant NR1a/NR2B receptors compared with native rat receptors. The NMDA receptor-specific [(3)H]ifenprodil binding conditions described were also applied to ex vivo experiments to determine the receptor occupancy of ifenprodil site ligands [ifenprodil, (+/-)-CP-101,606, (+/-)-CP-283,097, and (+/-)-Ro 25-6981] given systemically.  相似文献   

16.
Thrombolysis using tissue plasminogen activator (tPA) has been the key treatment for patients with acute ischemic stroke for the past decade. Recent studies, however, suggest that this clot-busting protease also plays various roles in brain physiological and pathophysiological glutamatergic-dependent processes, such as synaptic plasticity and neurodegeneration. In addition, increasing evidence implicates tPA as an important neuromodulator of the N-methyl-d-aspartate (NMDA) receptors. Here, we demonstrate that recombinant human tPA cleaves the NR2B subunit of NMDA receptor. Analysis of NR2B in rat brain lysates and cortical neurons treated with tPA revealed concentration- and time-dependent degradation of NR2B proteins. Peptide sequencing studies performed on the cleaved-off products obtained from the tPA treatment on a recombinant fusion protein of the amino-terminal domain of NR2B revealed that tPA-mediated cleavage occurred at arginine 67 (Arg(67)). This cleavage is tPA-specific, plasmin-independent, and removes a predicted ~4-kDa fragment (Arg(27)-Arg(67)) from the amino-terminal domain of the NR2B protein. Site-directed mutagenesis of putative cleavage site Arg(67) to Ala(67) impeded tPA-mediated degradation of recombinant protein. This analysis revealed that NR2B is a novel substrate of tPA and suggested that an Arg(27)-Arg(67)-truncated NR2B-containing NMDA receptor could be formed. Heterologous expression of NR2B with Gln(29)-Arg(67) deleted is functional but exhibits reduced ifenprodil inhibition and increased glycine EC(50) with no change in glutamate EC(50). Our results confirmed NR2B as a novel proteolytic substrate of tPA, where tPA may directly interact with NR2B subunits leading to a change in pharmacological properties of NR2B-containing NMDA receptors.  相似文献   

17.
The metabotropic glutamate receptors (mGluRs) belong to family C of the G-protein-coupled receptor (GPCR) superfamily. The receptors are characterized by having unusually long amino-terminal domains (ATDs), to which agonist binding has been shown to take place. Previously, we have constructed a molecular model of the ATD of mGluR1 based on a weak amino acid sequence similarity with a bacterial periplasmic binding protein. The ATD consists of two globular lobes, which are speculated to contract from an "open" to a "closed" conformation following agonist binding. In the present study, we have created a Zn(2+) binding site in mGluR1b by mutating the residue Lys(260) to a histidine. Zinc acts as a noncompetitive antagonist of agonist-induced IP accumulation on the K260H mutant with an IC(50) value of 2 microm. Alanine mutations of three potential "zinc coligands" in proximity to the introduced histidine in K260H knock out the ability of Zn(2+) to antagonize the agonist-induced response. Zn(2+) binding to K260H does not appear to affect the dimerization of the receptor. Instead, we propose that binding of zinc has introduced a structural constraint in the ATD lobe, preventing the formation of a "closed" conformation, and thus stabilizing a more or less inactive "open" form of the ATD. This study presents the first metal ion site constructed in a family C GPCR. Furthermore, it is the first time a metal ion site has been created in a region outside of the seven transmembrane regions of a GPCR and the loops connecting these. The findings offer valuable insight into the mechanism of ATD closure and family C receptor activation. Furthermore, the findings demonstrate that ATD regions other than those participating in agonist binding could be potential targets for new generations of ligands for this family of receptors.  相似文献   

18.
N-methyl-d-aspartate (NMDA) receptors play major roles in synaptic transmission and plasticity, as well as excitotoxicity. NMDA receptors are thought to be tetrameric complexes mainly composed of NMDA receptor (NR)1 and NR2 subunits. The NR1 subunits are required for the formation of functional NMDA receptor channels, whereas the NR2 subunits modify channel properties. Biochemical and functional studies indicate that subunits making up NMDA receptors are organized into a dimer of dimers, and the N termini of the subunits are major determinants for receptor assembling. Here we used a biophysical approach, fluorescence resonance energy transfer, to analyze the assembly of intact, functional NMDA receptors in living cells. The results showed that NR1, NR2A, and NR2B subunits could form homodimers when they were expressed alone in HEK293 cells. Subunit homodimers were also found existing in heteromeric NMDA receptors formed between NR1 and NR2 subunits. These findings are consistent with functional NMDA receptors being arranged as a dimer of dimers. In addition, our data indicated that the conformation of NR1 subunit homodimers was affected by the partner NR2 subunits during the formation of heteromeric receptor complexes, which might underlie the mechanism by which NR2 subunits modify NMDA receptor function.  相似文献   

19.
Metabotropic glutamate receptors (mGluRs) belong to the family 3 of G-protein-coupled receptors. On these proteins, agonist binding on the extracellular domain leads to conformational changes in the 7-transmembrane domains required for G-protein activation. To elucidate the structural features that might be responsible for such an activation mechanism, we have generated models of the amino terminal domain (ATD) of type 4 mGluR (mGlu4R). The fold recognition search allowed the identification of three hits with a low sequence identity, but with high secondary structure conservation: leucine isoleucine valine-binding protein (LIVBP) and leucine-binding protein (LBP) as already known, and acetamide-binding protein (AmiC). These proteins are characterized by a bilobate structure in an open state for LIVBP/LBP and a closed state for AmiC, with ligand binding in the cleft. Models for both open and closed forms of mGlu4R ATD have been generated. ACPT-I (1-aminocyclopentane 1,3,4-tricarboxylic acid), a selective agonist, has been docked in the two models. In the open form, ACPT-I is only bound to lobe I through interactions with Lys74, Arg78, Ser159, and Thr182. In the closed form, ACPT-I is trapped between both lobes with additional binding to Tyr230, Asp312, Ser313, and Lys317 from lobe II. These results support the hypothesis that mGluR agonists bind a closed form of the ATDs, suggesting that such a conformation of the binding domain corresponds to the active conformation.  相似文献   

20.
Human midbrain‐derived neural progenitor cells (NPCs) may serve as a continuous source of dopaminergic neurons for the development of novel regenerative therapies in Parkinson’s disease. However, the molecular and functional characteristics of glutamate receptors in human NPCs are largely unknown. Here, we show that differentiated human mesencepahlic NPCs display a distinct pattern of glutamate receptors. In whole‐cell patch‐clamp recordings, l ‐glutamate and NMDA elicited currents in 93% of NPCs after 3 weeks of differentiation in vitro. The concentration‐response plots of differentiated NPCs yielded an EC50 of 2.2 μM for glutamate and an EC50 of 36 μM for NMDA. Glutamate‐induced currents were markedly inhibited by memantine in contrast to 6‐cyano‐7‐nitroquinoxaline‐2,3‐dione (CNQX) suggesting a higher density of functional NMDA than alpha‐amino‐3‐hydroxy‐5‐methylisoxazole‐4‐propionate (AMPA)/kainate receptors. NMDA‐evoked currents and calcium signals were blocked by the NR2B‐subunit specific antagonist ifenprodil indicating functional expression of NMDA receptors containing subunits NR1 and NR2B. In calcium imaging experiments, the blockade of voltage‐gated calcium channels by verapamil abolished AMPA‐induced calcium responses but only partially reduced NMDA‐evoked transients suggesting the expression of calcium‐impermeable, GluR2‐containing AMPA receptors. Quantitative real‐time PCR showed a predominant expression of subunits NR2A and NR2B (NMDA), GluR2 (AMPA), GluR7 (kainate), and mGluR3 (metabotropic glutamate receptor). Treatment of NPCs with 100 μM NMDA in vitro during proliferation (2 weeks) and differentiation (1 week) increased the amount of tyrosine hydroxylase‐immunopositive cells significantly, which was reversed by addition of memantine. These data suggest that NMDA receptors in differentiating human mesencephalic NPCs are important regulators of dopaminergic neurogenesis in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号