首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
《The Journal of cell biology》1987,105(6):2847-2854
Taxol is a plant alkaloid that binds to and strongly stabilizes microtubules. Taxol-treated microtubules resist depolymerization under a variety of conditions that readily disassemble untreated microtubules. We report here that taxol-treated microtubules can be induced to disassemble by a combination of depolymerizating conditions. Reversible cycles of disassembly and reassembly were carried out using taxol-containing microtubules from calf brain and sea urchin eggs by shifting temperature in the presence of millimolar levels of Ca2+. Microtubules depolymerized completely, yielding dimers and ring-shaped oligomers as revealed by negative stain electron microscopy and Bio-Gel A-15m chromatography, and reassembled into well-formed microtubule polymer structures. Microtubule-associated proteins (MAPs), including species previously identified only by taxol-based purification such as MAP 1B and kinesin, were found to copurify with tubulin through reversible assembly cycles. To determine whether taxol remained bound to tubulin subunits, we subjected depolymerized taxol-treated microtubule protein to Sephadex G-25 chromatography, and the fractions were assayed for taxol content by reverse-phase HPLC. Taxol was found to be dissociated from the depolymerized microtubules. Protein treated in this way was found to be competent to reassemble, but now required conditions comparable with those for protein that had never been exposed to taxol. Thus, the binding of taxol to tubulin can be reversed. This has implications for the mechanism of taxol action and for the purification of microtubules from a wide variety of sources for use in self-assembly experiments.  相似文献   

2.
Taxol binds to polymerized tubulin in vitro   总被引:20,自引:8,他引:12       下载免费PDF全文
Taxol, a natural plant product that enhances the rate and extent of microtubule assembly in vitro and stabilizes microtubules in vitro and in cells, was labeled with tritium by catalytic exchange with (3)H(2)O. The binding of [(3)H]taxol to microtubule protein was studied by a sedimentation assay. Microtubules assembled in the presence of [(3)H]taxol bind drug specifically with an apparent binding constant, K(app), of 8.7 x 19(-7) M and binding saturates with a calculated maximal binding ration, B(max), of 0.6 mol taxol bound/mol tubulin dimer. [(3)H]Taxol also binds and assembles phosphocellulose-purified tubulin, and we suggest that taxol stabilizes interactions between dimers that lead to microtubule polymer formation. With both microtubule protein and phosphocellulose- purified tubulin, binding saturation occurs at approximate stoichiometry with the tubulin dimmer concentration. Under assembly conditions, podophyllotoxin and vinblastine inhibit the binding of [(3)H]taxol to microtubule protein in a complex manner which we believe reflects a competition between these drugs, not for a single binding site, but for different forms (dimer and polymer) of tubulin. Steady-state microtubules assembled with GTP or with 5’-guanylyl-α,β-methylene diphosphonate (GPCPP), a GTP analog reported to inhibit microtubule treadmilling (I.V. Sandoval and K. Weber. 1980. J. Biol. Chem. 255:6966-6974), bind [(3)H]taxol with approximately the same stoichiometry as microtubules assembled in the presence of [(3)H]taxol. Such data indicate that a taxol binding site exists on the intact microtubule. Unlabeled taxol competitively displaces [(3)H]taxol from microtubules, while podophyllotoxin, vinblastine, and CaCl(2) do not. Podophyllotoxin and vinblastine, however, reduce the mass of sedimented taxol-stabilized microtubules, but the specific activity of bound [(3)H]taxol in the pellet remains constant. We conclude that taxol binds specifically and reversibly to a polymerized form of tubulin with a stoichiometry approaching unity.  相似文献   

3.
A sensitive and reproducible method to measure relative levels of polymerized and soluble tubulin in cells has been developed. This method involves metabolically labeling cells with radioactive amino acids followed by lysis in a microtubule-stabilizing buffer, centrifugation to separate soluble from polymerized tubulin, resolution of the proteins in each fraction by two-dimensional gel electrophoresis, and quantitation of the tubulin by liquid scintillation counting of spots excised from the gel. Several buffers were evaluated for their reproducibility and efficacy in preserving the state of in vivo microtubule assembly at the time of cell lysis, and the ability of the technique to measure drug-induced changes in tubulin polymerization was determined. Results using this method indicate that Chinese hamster ovary cells maintain approximately 40% of the cellular tubulin in an assembled form. Dose-dependent decreases in tubulin polymerization could be measured in Colcemid-treated cells, while dose-dependent increases in assembly were measured in taxol-treated cells. The results with taxol indicate that, following the increase in microtubule polymerization, there is a time-dependent bundling of microtubules that occurs without further increases in the extent of tubulin assembly. Examination of drug-resistant Chinese hamster ovary cells reveals that Colcemid-resistant mutants maintain more tubulin in the polymerized state (approximately 50%), while taxol-resistant mutants maintain less assembled tubulin (about 28%). Similar changes occur regardless of whether the mutant cells have an alteration in alpha- or in beta-tubulin. A model to explain these results is discussed.  相似文献   

4.
Taxol-induced bundling of brain-derived microtubules   总被引:5,自引:4,他引:1       下载免费PDF全文
Taxol has two obvious effects in cells. It stabilizes microtubules and it induces microtubule bundling. We have duplicated the microtubule- bundling effect of taxol in vitro and report preliminary characterization of this bundling using electron microscopy, sedimentation, and electrophoretic analyses. Taxol-bundled microtubules from rat brain crude extracts were seen as massive bundles by electron microscopy. Bundled microtubules sedimented through sucrose five times faster than control microtubules. Electrophoretic analysis of control and taxol-bundled microtubules pelleted through sucrose revealed no striking differences between the two samples except for a protein doublet of approximately 100,000 daltons. Taxol-induced microtubule bundling was not produced by using pure tubulin or recycled microtubule protein; this suggested that taxol-induced microtubule bundling was mediated by a factor present in rat brain crude extracts. Taxol cross- linked rat brain crude extract microtubules were entirely labile to ATP in the millimolar range. This ATP-dependent relaxation was also demonstrated in a more purified system, using taxol-bundled microtubules pelleted through sucrose and gently resuspended. Although the bundling factor did not recycle with microtubule protein, it was apparently retained on isolated taxol-stabilized microtubules. The bundling factor was salt extracted from taxol-stabilized microtubules and its retained activity was demonstrated in an add-back experiment with assembled phosphocellulose-purified tubulin.  相似文献   

5.
Changes in the hydrodynamic properties of microtubules induced by taxol   总被引:1,自引:0,他引:1  
Microtubule assembly was followed and monitored by (1) the turbidity at 350 nm, (2) the weight of the pelleted microtubules, (3) linear dichroism, LD tau, of the turbidity upon flow orientation, (4) the specific viscosity, eta spec, and (5) electron microscopy. These five methods showed the same features for normal microtubule assembly, but were different in the presence of taxol, a drug which binds to tubulin. The The apparent steady state of microtubule assembly in the presence of taxol as found by turbidity or the weight of pelleted polymer did not represent a stable state, as both LD tau and eta spec continued to change for a much longer time. Microtubules assembled in the presence of taxol from microtubule proteins as well as from purified tubulin were difficult to orient, as high flow gradients were needed and the maximal LD tau value represented only 20% of the LD tau for normal microtubules. In contrast to the slow relaxation of normal microtubules, rapid relaxation to random orientation was found in the presence of taxol. Low orientability was also indicated by electron micrographs, in which pelleted microtubules were seen to be randomly oriented in the presence of taxol. Taxol induced a very high eta spec, 4-times the steady-state value in the initial phase of assembly, which slowly declined again to a steady state, an effect which was also found for assembly of purified tubulin assembled in the absence of the microtubule-associated proteins. The presence of taxol did not change the relative amount and composition of the microtubule-associated proteins in the assembled microtubules. The results therefore suggest that taxol alters the hydrodynamic properties of the microtubules due to its interaction with tubulin and that this alteration is not an effect of the microtubule-associated proteins.  相似文献   

6.
Microtubules have been assembled from a mixture of chick-brain microtubule protein and total soluble protein of cultured human fibroblasts. In this system microtubules were assembled which did not have any high molecular weight (HMW) microtubule-associated protein (MAP). Since the fibroblasts were human in origin, the hybrid microtubules were compared to microtubules assembled from human brain, which do include HMW-MAPs. To determine whether HMW-MAP is unique to brain, microtubules were assembled from mixtures of soluble proteins from non-neural mouse organs and chick brain microtubules. These hybrid microtubules contain similar HMW-MAPs to those of the chick brain alone. The absence of HMW-MAPs from the hybrid microtubules does not appear to be due to proteolysis. SDS-gel electrophoresis of all fractions prepared during the process of assembly of the hybrid microtubules reveals that the HMW-MAPs of the mixture are sedimented away from disassembled microtubules during the first centrifugation. The exclusion of the HMW-MAPs from the hybrid microtubules suggests that the assembly process in these mixtures, and in fibroblasts, may be qualitatively different from that found in extracts from brain and other organs.  相似文献   

7.
Microtubule architecture can vary with eukaryotic species, with different cell types, and with the presence of stabilizing agents. For in vitro assembled microtubules, the average number of protofilaments is reduced by the presence of sarcodictyin A, epothilone B, and eleutherobin (similarly to taxol) but increased by taxotere. Assembly with a slowly hydrolyzable GTP analogue GMPCPP is known to give 96% 14 protofilament microtubules. We have used electron cryomicroscopy and helical reconstruction techniques to obtain three-dimensional maps of taxotere and GMPCPP microtubules incorporating data to 14 A resolution. The dimer packing within the microtubule wall is examined by docking the tubulin crystal structure into these improved microtubule maps. The docked tubulin and simulated images calculated from "atomic resolution" microtubule models show tubulin heterodimers are aligned head to tail along the protofilaments with the beta subunit capping the microtubule plus end. The relative positions of tubulin dimers in neighboring protofilaments are the same for both types of microtubule, confirming that conserved lateral interactions between tubulin subunits are responsible for the surface lattice accommodation observed for different microtubule architectures. Microtubules with unconventional protofilament numbers that exist in vivo are likely to have the same surface lattice organizations found in vitro. A curved "GDP" tubulin conformation induced by stathmin-like proteins appears to weaken lateral contacts between tubulin subunits and could block microtubule assembly or favor disassembly. We conclude that lateral contacts between tubulin subunits in neighboring protofilaments have a decisive role for microtubule stability, rigidity, and architecture.  相似文献   

8.
Promotion of MAP/MAP interaction by taxol   总被引:3,自引:0,他引:3  
The effects of taxol on microtubule-associated proteins of high molecular weight (MAPs) were studied in vitro. After negative staining, microtubules reconstituted in the presence of taxol from preparations of partially purified tubulin and MAPs, besides being bundled, displayed prominent elongated or globular extensions without apparent regularity. These extensions, but not the tubulin polymer, were heavily decorated after immuno-gold-labeling using antibodies to MAP-1 and MAP-2. Microtubules reconsituted in the absence of taxol showed a much more regular, and apparently helical, arrangement of MAPs along their surfaces. The formation of polymeric structures was also observed when preparation of MAPs free of tubulin were incubated with taxol. In this case in addition to large network-type aggregates with little apparent substructure, more regular structures seemingly consisting of approximately 5-nm-thick filaments arrayed in parallel were observed. Taxol-induced MAP aggregation occurred rapidly and was directly proportional to the concentration of protein, as revealed by optical density measurements. It is concluded that taxol, aside from promoting the assembly of tubulin and stabilizing microtubules, promotes MAP/MAP interaction.  相似文献   

9.
Mechanical properties of brain tubulin and microtubules   总被引:7,自引:0,他引:7       下载免费PDF全文
We measured the elasticity and viscosity of brain tubulin solutions under various conditions with a cone and plate rheometer using both oscillatory and steady shearing modes. Microtubules composed of purified tubulin, purified tubulin with taxol and 3x cycled microtubule protein from pig, cow, and chicken behaved as mechanically indistinguishable viscoelastic materials. Microtubules composed of pure tubulin and heat stable microtubule-associated proteins were also similar but did not recover their mechanical properties after shearing like other samples, even after 60 min. All of the other microtubule samples were more rigid after flow orientation, suggesting that the mechanical properties of anisotropic arrays of microtubules may be substantially greater than those of randomly arranged microtubules. These experiments confirm that MAPs do not cross link microtubules. Surprisingly, under conditions where microtubule assembly is strongly inhibited (either 5 degrees or at 37 degrees C with colchicine or Ca++) tubulin was mechanically indistinguishable from microtubules at 10-20 microM concentration. By electron microscopy and ultracentrifugation these samples were devoid of microtubules or other obvious structures. However, these mechanical data are strong evidence that tubulin will spontaneously assemble into alternate structures (aggregates) in nonpolymerizing conditions. Because unpolymerized tubulin is found in significant quantities in the cytoplasm, it may contribute significantly to the viscoelastic properties of cytoplasm, especially at low deformation rates.  相似文献   

10.
In this study, taxol was used as a tool to study the correlation of microtubule assembly with chromosomes, gamma-tubulin and phosphorylated mitogen-activated protein (MAP) kinase in pig oocytes at different maturational stages. Taxol treatment did not affect meiotic resumption and chromosome condensation but inhibited/disrupted chromosome alignment at the metaphase plate and bipolar spindle formation and thus meiotic progression. Microtubules were co-localized with chromosomes and were found to emanate from the chromosomes in taxol-treated oocytes, suggesting that chromosomes may serve as a source of microtubule organization. In addition, the concentric emanation of microtubules within the chromosome-surrounded area in taxol-treated oocytes suggests that microtubule emanation from the chromosomes may be directed by other microtubule-organizing material. The formation of one large spindle or >/=2 spindles in oocytes after taxol removal shows that minus end microtubule-organizing material can be normally located on both sides of chromosomes only when the chromosomes are aligned on the metaphase plate. The co-localization of gamma-tubulin and phosphorylated MAP kinase with microtubule assembly in both control and taxol-treated oocytes suggests that these two proteins are associated microtubule-nucleating material in pig oocytes. However, Western blot analysis showed that neither cytoplasmic microtubule aster formation nor extensive microtubule assembly in the chromosome region induced by taxol was caused by super-activation of MAP kinase. Taxol also induced microtubule assembly depending on chromosome distribution in the first polar body. The results suggest that chromosomes are always co-localized with microtubules and that emanation of microtubules from the chromosomes may be regulated/directed by microtubule-organizing material including gamma-tubulin and phosphorylated MAP kinase in pig oocytes.  相似文献   

11.
萱草花粉微管蛋白的体外聚合及电镜观察   总被引:1,自引:1,他引:0  
微管(microtubule)作为细胞骨架的主要成分,在植物体内,微管除决定细胞的形状外,还参与很多重要的细胞功能。但有关微管蛋白生物化学的研究绝大多数来自动物脑组织材料,对植物微管蛋白的研究除培养细胞外所知甚少,我们纯化了毫克数量的萱草(Hemer-ocallis fulvaL.)花粉微管蛋白,利用紫杉醇作为促进剂,在Mg2 、GTP等存在下体外聚合成功,并观察了其电镜下的形态。  相似文献   

12.
Inhibition of neurite initiation and growth by taxol   总被引:18,自引:10,他引:8       下载免费PDF全文
We cultured sensory neurons from chick embryos in media containing the alkaloid taxol at concentrations from 7 X 10(-9) to 3.5 X 10(-6) M. When plated at taxol concentrations above 7 X 10(-8) M for 24 h, neurons have short broad extensions that do not elongate on the culture substratum. When actively growing neurites are exposed to these levels of taxol, neurite growth stops immediately and does not recommence. The broad processes of neurons cultured 24 h with taxol contain densely packed arrays of microtubules that loop back at the ends of the process. Neurofilaments are segregated from microtubules into bundles and tangled masses in these taxol-treated neurons. At the ends of neurites treated for 5 min with taxol, microtubules also turn and loop back abnormally toward the perikaryon. In the presence of 7 X 10(-9) M taxol neurites do grow, although they are broader and less branched than normally. The neurites of these cells appear to have normal structure except for a large number of microtubules. Taxol probably stimulates microtubule polymerization in these cultured neurons. At high levels of the drug, this action inhibits neurite initiation and outgrowth by removing free tubulin from the cytoplasm and destroying the normal control of microtubule assembly in growing neurites. The rapid inhibition suggests that microtubule assembly may occur at neurite tips. At lower concentrations, taxol may slightly enhance the mechanisms of microtubule assembly in neurons, and this alteration of normal processes changes the morphogenetic properties of the growing neurites.  相似文献   

13.
The inhibition of microtubule assembly by Ruthenium red (Deinum, J., Wallin, M., Kanje, M. and Lagercrantz, C. (1981) Biochim. Biophys. Acta 675, 209-213) could be counteracted by either taxol or dimethyl sulfoxide. Ruthenium red remained bound to the assembled microtubules. Microtubules assembled in the presence of Ruthenium red and taxol showed the typical taxol-dependent stability. The dimethyl sulfoxide-induced microtubules showed normal assembly characteristics, e.g., were GTP dependent, could be disassembled by cold, colchicine and Ca2+ and had no alterations in ultrastructure. The absolute disassembly induced by Ca2+ in the presence of dimethyl sulfoxide and Ruthenium red was dependent on the microtubule protein concentration, but independent in the absence of Ruthenium red. Ruthenium red was strongly bound to purified tubulin also in the presence of 8% (v/v) dimethyl sulfoxide. The dimethyl sulfoxide-induced assembly of purified tubulin in the presence of Ruthenium red was slightly stimulated, although the critical protein concentration was the same. It was found by resonance Raman spectroscopy with a flow technique that Ruthenium red did not bind to a specific calcium binding site on tubulin, although binding to a GTP binding site cannot be excluded. The wavenumbers of the lines in the region 375-500 cm-1 differ from those found for Ruthenium red bound to typical calcium-binding proteins such as calmodulin. Although Ruthenium red binds to serum albumin as well, the spectrum with albumin resembled that of the free dye.  相似文献   

14.
The effect of the antimitotic drug taxol on the association of MAPs (microtubule-associated proteins) with microtubules was investigated. Extensive microtubule assembly occurred in the presence of Taxol at 37 degrees C. at 0 degrees C, and at 37 degrees C in the presence of 0.35 M NaCl, overcoming the inhibition of assembly normally observed under the latter two conditions. At 37 degrees C and at 0 degrees C, complete assembly of both tubulin and the MAPs was observed in the presence of Taxol. However, at elevated ionic strength, only tubulin assembled, forming microtubules devoid of MAPs. The MAPs could also be released from the surface of preformed microtubules by exposure to elevated ionic strength. These properties provided the basis for a rapid new procedure for isolating microtubules and MAPs of high purity from small amounts of biological material. The MAPs could be recovered by exposure of the microtubules to elevated ionic strength and subjected to further analysis. Microtubules and MAPs were prepared from bovine cerebral cortex (gray matter) and from HeLa cells. MAP 1, MAP2, and the tau MAPs, as well as species of Mr = 28,000 and 30,000 (LMW, or low molecular weight, MAPs) and a species of Mr = 70,000 were isolated from gray matter. Species identified as the 210,000 and 125,000 mol wt HeLa MAPs were isolated from HeLa cells. Microtubules were also prepared for the first time from white matter. All of the MAPs identified in gray matter preparations were identified in white matter, but the amounts of individual MAP species differed. The most striking difference in the two preparations was a fivefold lower level of MAP 2 relative to tubulin in white matter than in gray. The high molecular weigh MAP, MAP1, was present in equal ratio to tubulin in white and gray matter. These results indicate that MAP 1 and MAP2, as well as other MAP species, may have a different cellular or subcellular distribution.  相似文献   

15.
The tau family of microtubule-associated proteins has a microtubule-binding domain which includes three or four conserved sequence repeats. Pelleting assays show that when tubulin and tau are co- assembled into microtubules, the presence of taxol reduces the amount of tau incorporated. In the absence of taxol, strong binding sites for tau are filled by one repeat motif per tubulin dimer; additional tau molecules bind more weakly. We have labelled a repeat motif with nanogold and used three-dimensional electron cryomicroscopy to compare images of microtubules assembled with labelled or unlabelled tau. With kinesin motor domains bound to the microtubule outer surface to distinguish between alpha- and beta-tubulin, we show that the gold label lies on the inner surface close to the taxol binding site on beta-tubulin. Loops within the repeat motifs of tau have sequence similarity to an extended loop which occupies a site in alpha-tubulin equivalent to the taxol-binding pocket in beta-tubulin. We propose that loops in bound tau stabilize microtubules in a similar way to taxol, although with lower affinity so that assembly is reversible.  相似文献   

16.
Lopus M  Panda D 《The FEBS journal》2006,273(10):2139-2150
Sanguinarine has been shown to inhibit proliferation of several types of human cancer cell including multidrug-resistant cells, whereas it has minimal cytotoxicity against normal cells such as neutrophils and keratinocytes. By analyzing the antiproliferative activity of sanguinarine in relation to its effects on mitosis and microtubule assembly, we found that it inhibits cancer cell proliferation by a novel mechanism. It inhibited HeLa cell proliferation with a half-maximal inhibitory concentration of 1.6 +/- 0.1 microM. In its lower effective inhibitory concentration range, sanguinarine depolymerized microtubules of both interphase and mitotic cells and perturbed chromosome organization in mitotic HeLa cells. At concentrations of 2 microM, it induced bundling of interphase microtubules and formation of granular tubulin aggregates. A brief exposure of HeLa cells to sanguinarine caused irreversible depolymerization of the microtubules, inhibited cell proliferation, and induced cell death. However, in contrast with several other microtubule-depolymerizing agents, sanguinarine did not arrest cell cycle progression at mitosis. In vitro, low concentrations of sanguinarine inhibited microtubule assembly. At higher concentrations (> 40 microM), it altered polymer morphology. Further, it induced aggregation of tubulin in the presence of microtubule-associated proteins. The binding of sanguinarine to tubulin induces conformational changes in tubulin. Together, the results suggest that sanguinarine inhibits cell proliferation at least in part by perturbing microtubule assembly dynamics.  相似文献   

17.
Ultraviolet (UV) irradiation of cultured human skin fibroblasts causes the disassembly of their microtubules. Using indirect immunofluorescence microscopy, we have now investigated whether damage to the microtubule precursor pool may contribute to the disruption of microtubules. Exposure to polychromatic UV radiation inhibits the reassembly of microtubules during cellular recovery from cold treatment. In addition, the ability of taxol to promote microtubule polymerization and bundling is inhibited in UV-irradiated cells. However, UV irradiation of taxol-pretreated cells or in situ detergent-extracted microtubules fails to disrupt the microtubule network. These data suggest that damage to dimeric tubulin, or another soluble factor(s) required for polymerization, contributes to the disassembly of microtubules in UV-irradiated human skin fibroblasts.  相似文献   

18.
F Solomon  M Magendantz  A Salzman 《Cell》1979,18(2):431-438
In this paper we describe a procedure for detecting proteins associated with cytoplasmic microtubules in vivo. Detergent-extracted cytoskeletons of NIL8 hamster cells are prepared under conditions which preserve the microtubules. The cytoskeletons are then extracted in the presence of calcium, which depolymerizes the microtubules and quantitatively extracted cytoskeletons are prepared from cells that have been incubated with colchicine. The cytoskeletons from these cells contain no microtubules or tubulin. Electrophoretic analysis of the calcium extracts of the colchicine-treated and untreated cells reveals several radioactively labeled polypeptides. There is, however, no apparent quantitative or qualitative difference between the two extracts other than the tubulin polypeptides. Each of the extracts is mixed with an excess of unlabeled calf brain microtubule protein and carried through cycles of temperature-dependent microtubule assembly. Distinct species from each extract co-assemble at a constant ratio, but only one polypeptide is uniquely derived from cells containing intact microtubules. The molecular weight of this polypeptide is similar to that proposed for the tau species detected in brain microtubule preparations.  相似文献   

19.
Dawson PJ  Lloyd CW 《The EMBO journal》1985,4(10):2451-2455
Tubulin has been purified from carrot suspension cells by ion-exchange chromatography and assembled into microtubules in the presence of 20 microM taxol. One-dimensional SDS-PAGE suggested that the alpha band migrated faster than the beta band (as has been established for some lower eukaryotic tubulins) and this heterology with brain tubulins was confirmed by peptide mapping. When subjected to two-dimensional gel electrophoresis, the plant tubulins could be separated into multiple alpha and beta isotypes. Immunoblotting, using monoclonal anti-tubulins, confirmed that the tubulin isotypes identified in taxol microtubules represent all of the tubulins present in homogenates of unsynchronised log-phase carrot suspension cells. All identified tubulins are therefore assembly-competent under these conditions. Plant cells can contain four different microtubule arrays, but cells arrested in G0/G1 contain only cortical microtubule arrays; such cells, however, exhibit the same tubulin profile as non-synchronised cells, thereby showing no restriction in the number of subunits during this phase of the cell cycle.  相似文献   

20.
How microtubules get fluorescent speckles.   总被引:4,自引:0,他引:4       下载免费PDF全文
The dynamics of microtubules in living cells can be seen by fluorescence microscopy when fluorescently labeled tubulin is microinjected into cells, mixing with the cellular tubulin pool and incorporating into microtubules. The subsequent fluorescence distribution along microtubules can appear "speckled" in high-resolution images obtained with a cooled CCD camera (Waterman-Storer and Salmon, 1997. J. Cell Biol. 139:417-434). In this paper we investigate the origins of these fluorescent speckles. In vivo microtubules exhibited a random pattern of speckles for different microtubules and different regions of an individual microtubule. The speckle pattern changed only after microtubule shortening and regrowth. Microtubules assembled from mixtures of labeled and unlabeled pure tubulin in vitro also exhibited fluorescent speckles, demonstrating that cellular factors or organelles do not contribute to the speckle pattern. Speckle contrast (measured as the standard deviation of fluorescence intensity along the microtubule divided by the mean fluorescence intensity) decreased as the fraction of labeled tubulin increased, and it was not altered by the binding of purified brain microtubule-associated proteins. Computer simulation of microtubule assembly with labeled and unlabeled tubulin showed that the speckle patterns can be explained solely by the stochastic nature of tubulin dimer association with a growing end. Speckle patterns can provide fiduciary marks in the microtubule lattice for motility studies or can be used to determine the fraction of labeled tubulin microinjected into living cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号