首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 720 毫秒
1.
Summary The responses of photosynthesis, transpiration and leaf conductance to changes in vapour pressure deficit were followed in well-watered plants of the herbaceous species, Helianthus annuus, Helianthus nuttallii, Pisum sativum and Vigna unguiculata, and in the woody species having either sclerophyllous leaves, Arbutus unedo, Nerium oleander and Pistacia vera, or mesomorphic leaves, Corylus avellana, Gossypium hirsutum and Prunus dulcis. When the vapour pressure deficit of the air around a single leaf in a cuvette was varied from 10 to 30 Pa kPa-1 in 5 Pa kPa-1 steps, while holding the remainder of the plant at a vapour presure deficit of 10 Pa kPa-1, the leaf conductance and net photosynthetic rate of the leaf decreased in all species. The rate of transpiration increased initially with increase in vapour pressure deficit in all species, but in several species a maximum transpiration rate was observed at 20 to 25 Pa kPa-1. Concurrent measurements of the leaf water potential by in situ psychrometry showed that an increase in the vapour pressure deficit decreased the leaf water potential in all species. The decrease was greatest in woody species, and least in herbaceous species. When the vapour pressure deficit around the remainder of the plant was increased while the leaf in the cuvette was exposed to a low and constant vapour pressure deficit, similar responses in both degree and magnitude in the rates of transpiration and leaf conductance were observed in the remainder of the plant as those occurring when the vapour pressure deficit around the single leaf was varied. Increasing the external vapour pressure deficit lowered the water potential of the leaf in the cuvette in the woody species and induced a decrease in leaf conductance in some, but not all, speies. The decrease in leaf conductance with decreasing water potential was greater in the woody species when the vapour pressure deficit was increased than when it remained low and constant, indicating that changing the leaf-to-air vapour pressure difference had a direct effect on the stomata in these species. The low hydraulic resistance and maintenance of a high leaf water potential precluded such an analysis in the herbaceous species. We conclude that at least in the woody species studied, an increase in the vapour pressure deficit around a leaf will decrease leaf gas exchange through a direct effect on the leaf epidermis and sometimes additionally through a lowering of the mesophyll water potential.  相似文献   

2.
Boyer JS 《Plant physiology》1970,46(2):233-235
Rates of photosynthesis, dark respiration, and leaf enlargement were studied in soil-grown corn (Zea mays), soybean (Glycine max), and sunflower (Helianthus annuus) plants at various leaf water potentials. As leaf water potentials decreased, leaf enlargement was inhibited earlier and more severely than photosynthesis or respiration. Except for low rates of enlargement, inhibition of leaf enlargement was similar in all three species, and was large when leaf water potentials dropped to about −4 bars.  相似文献   

3.
Influence of temperature gradients on leaf water potential   总被引:1,自引:1,他引:0       下载免费PDF全文
Water potential was monitored at nine locations along single maize (Zea mays L.) leaf blades with aluminum block in situ thermocouple hygrometers. Water potential showed a continuous decrease toward the tip, with a 2- to 4-bar difference between leaf base and tip under both moist and dry soil conditions. The water potential difference between the soil and the leaf base was about 4 bars. Water potentials decreased during the day and during a drying cycle, and increased at night and after irrigation. Heating a band of a leaf to 40 C or cooling it to 7 C had no influence on the water potential of the affected portion when this was corrected for hygrometer output over standard calibrating solutions at the respective temperatures. Heating or cooling a portion of a leaf had neither short nor long term effects on water potential of more distal leaf portions continuously monitored by hygrometers in dew point readout. Water potential fluctuated with an amplitude of about 1.5 bars and an irregular period of 10 to 30 minutes. Measurements with silver foil in situ psychrometers gave similar results.  相似文献   

4.
The effect of water deficits on the water relations and stomatal responses of Helianthus annuus and Helianthus petiolaris were compared in plants growing in the glasshouse under controlled conditions. Unirrigated plants of both genotypes were subjected to two different stress rates in which predawn leaf water potentials declined steadily at either 0.15 MPa day?1 or 0.50 MPa day?1. In both genotypes water stress induced a gradual and similar decrease in leaf conductance from 1.6 to 0.3 cm s?1 as water potential decreased from-0.5 to-2.0 MPa. The relationship between leaf conductance and leaf water potential was not affected by the rate of stress development. Development of predawn leaf water potentials of-1.3 MPa had no significant effect on the relative water content at zero turgor, the apoplastic water content or the volumetric elastic modulus of whole leaves in either species, but decreased the osmotic potential at full turgor and zero turgor by 0.22 MPa and decreased the turgid weight: dry weight ratio from 10.6 to 8.4 in H. annuus, but not in H. petiolaris. In H. annuus leaves expanded during stress development, changes in the osmotic potential at full turgor induced by water deficits did not disappear on rewatering.  相似文献   

5.
Summary Leaf diffusion resistances may lower the values of leaf water potentials found byin situ measurements with silver-foil psychrometers. With the instrumentation used, the bias ranges from zero to increasing negative deviations as leaf diffusion resistances become larger than 3.5 cm-1 sec.Water potentials determined with the dewpoint technique are unaffected by diffusion resistances.In situ measurements by this method may also be carried out with the silver-foil sensor.Hence, one and the same sensor may serve to trace both leaf water potentials and leaf diffusion resistance through dewpoint and psychrometric measurements. re]19760720  相似文献   

6.
The adsorption of water by thermocouple psychrometer assemblies is known to cause errors in the determination of water potential. Experiments were conducted to evaluate the effect of sample size and psychrometer chamber volume on measured water potentials of leaf discs, leaf segments, and sodium chloride solutions. Reasonable agreement was found between soybean (Glycine max L. Merr.) leaf water potentials measured on 5-millimeter radius leaf discs and large leaf segments. Results indicated that while errors due to adsorption may be significant when using small volumes of tissue, if sufficient tissue is used the errors are negligible. Because of the relationship between water potential and volume in plant tissue, the errors due to adsorption were larger with turgid tissue. Large psychrometers which were sealed into the sample chamber with latex tubing appeared to adsorb more water than those sealed with flexible plastic tubing. Estimates are provided of the amounts of water adsorbed by two different psychrometer assemblies and the amount of tissue sufficient for accurate measurements of leaf water potential with these assemblies. It is also demonstrated that water adsorption problems may have generated low water potential values which in prior studies have been attributed to large cut surface area to volume ratios.  相似文献   

7.
The responses of leaf conductance, leaf water potential and rates of transpiration and net photosynthesis at different vapour pressure deficits ranging from 10 to 30 Pa kPa-1 were followed in the sclerophyllous woody shrub Nerium oleander L. as the extractable soil water content decreased. When the vapour pressure deficit around a plant was kept constant at 25 Pa kPa-1 as the soil water content decreased, the leaf conductance and transpiration rate showed a marked closing response to leaf water potential at-1.1 to-1.2 MPa, whereas when the vapour pressure deficit around the plant was kept constant at 10 Pa kPa-1, leaf conductance decreased almost linearly from-0.4 to-1.1 MPa. Increasing the vapour pressure deficit from 10 to 30 Pa kPa-1 in 5 Pa kPa-1 steps, decreased leaf conductance at all exchangeable soil water contents. Changing the leaf water potential in a single leaf by exposing the remainder of the plant to a high rate of transpiration decreased the water potential of that leaf, but did not influence leaf conductance when the soil water content was high. As the soil water content was decreased, leaf conductances and photosynthetic rates were higher at equal levels of water potential when the decrease in potential was caused by short-term increases in transpiration than when the potential was decreased by soil drying.As the soil dried and the stomata closed, the rate of photosynthesis decreased with a decrease in the internal carbon dioxide partial pressure, but neither the net photosynthetic rate nor the internal CO2 partial pressure were affected by low water potentials resulting from short-term increases in the rate of transpiration. Leaf conductance, transpiration rate and net photosynthetic rate showed no unique relationship to leaf water potential, but in all experiments the leaf gas exchange decreased when about one half of the extractable soil water had been utilized. We conclude that soil water status rather than leaf water status controls leaf gas exchange in N. oleander.  相似文献   

8.
Thermocouple psychrometers are the only instruments which can measure the in situ water potential of intact leaves, and which can possibly be used to monitor leaf water potential. Unfortunately, their usefulness is limited by a number of difficulties, among them fluctuating temperatures and temperature gradients within the psychrometer, sealing of the psychrometer chamber to the leaf, shading of the leaf by the psychrometer, and resistance to water vapor diffusion by the cuticle when the stomates are closed. Using Citrus jambhiri, we have tested several psychrometer design and operational modifications and showed that in situ psychrometric measurements compared favorably with simultaneous Scholander pressure chamber measurements on neighboring leaves when the latter were corrected for the osmotic potential.  相似文献   

9.
The effect of decreases in turgor on chloroplast activity was studied by measuring the photochemical activity of intact sunflower (Helianthus annuus L. cv. Russian Mammoth) leaves having low water potentials. Leaf turgor, calculated from leaf water potential and osmotic potential, was found to be affected by the dilution of cell contents by water in the cell walls, when osmotic potentials were measured with a thermocouple psychrometer. After the correction of measurements of leaf osmotic potential, both the thermocouple psychrometer and a pressure chamber indicated that turgor became zero in sunflower leaves at leaf water potentials of −10 bars. Since most of the loss in photochemical activity occurred at water potentials below −10 bars, it was concluded that turgor had little effect on the photochemical activity of the leaves.  相似文献   

10.
The portable instrument described by Heathcote, Etherington,and Woodward (1979) for the non-destructive measurement of turgorpressure was evaluated in Helianthus annuus and Helianthus paradoxus.A good correlation was obtained between turgor pressure measuredwith the instrument and turgor pressure estimated by the pressure-volumetechnique for individual leaves allowed to dry after excision;however, variation in both the intercept and slope of the relationshipoccurred between leaves. Consequently, there was no correlationbetween the output of the instrument for individual leaves andthe turgor pressure of the same leaves estimated by conventionalmethods. Moreover, for a given leaf, the instrument had onlya limited ability to detect temporal variation in turgor pressurewhen compared with turgor pressure calculated from measuredvalues of leaf water potential and leaf osmotic potential. Theinstrument's output was influenced by its proximity to majorveins and by leaf thickness. We conclude that variability inleaf thickness and the presence of large veins limits its usefulnessfor measurement of turgor pressure in Helianthus. Key words: Leaf thickness, Turgormeter, Turgor pressure, Helianthus  相似文献   

11.
Errors in psychrometrically determined values of leaf water potential caused by tissue resistance to water vapor exchange and by lack of thermal equilibrium were evaluated using commercial in situ psychrometers (Wescor Inc., Logan, UT) on leaves of Tradescantia virginiana (L.). Theoretical errors in the dewpoint method of operation for these sensors were demonstrated. After correction for these errors, in situ measurements of leaf water potential indicated substantial errors caused by tissue resistance to water vapor exchange (4 to 6% reduction in apparent water potential per second of cooling time used) resulting from humidity depletions in the psychrometer chamber during the Peltier condensation process. These errors were avoided by use of a modified procedure for dewpoint measurement. Large changes in apparent water potential were caused by leaf and psychrometer exposure to moderate levels of irradiance. These changes were correlated with relatively small shifts in psychrometer zero offsets (−0.6 to −1.0 megapascals per microvolt), indicating substantial errors caused by nonisothermal conditions between the leaf and the psychrometer. Explicit correction for these errors is not possible with the current psychrometer design.  相似文献   

12.
Epidermal conductances for water vapour transfer(gep), water vapour efflux(E), and net photosynthetic CO2 uptake (P N ) through adaxial and abaxial leaf surfaces were estimated, simultaneously during the development of water stress in primary leaves ofPhaseolus vulgaris L. Hydration level was characterized by water saturation deficit (ΔW sat ), water potential (Τ w ), osmotic potential (Τ8) and pressure potential (Τp). The conductance of the abaxial epidermis was consistently greater than that of the adaxial epidermis, but the response of both surfaces to the increase in water stress corresponded: with increasing water stress epidermal conductances slightly increased, reached a plateau and then sharply decreased (at a rate of about 1.10x10-6 cm s-1 Pa-1 and 1.55x10-6 cm s-1 Pa-1 of Τw for adaxial and abaxial epidemics, respectively) to very low value. The curves expressing relationship between epidermal conductances and Δ Wsat, Τw, Τs, as well as Τp were of a similar character. E and PN through adaxial and abaxial surfaces were practically not affected until water stress reached the “critical” value (Τw from — 8.2 to — 9.2 x 105 Pa). With further increase in water deficit, however, they sharply decreased. The “critical” value of Τw was the same for both leaf surfaces.  相似文献   

13.
Water use patterns of four co-occurring chaparral shrubs   总被引:9,自引:0,他引:9  
Summary Mixed stands of chaparral in California usually contain several species of shrubs growing close to each other so that aerial branches and subterranean roots overlap. There is some evidence that roots are stratified relative to depth. It may be that root stratification promotes sharing of soil moisture resources. We examined this possibility by comparing seasonal water use patterns in a mixed stand of chaparral dominated by four species of shrubs: Quercus durata, Heteromeles arbutifolia, Adenostoma fasciculatum, and Rhamnus californica. We used a neutron probe and soil phychrometers to follow seasonal depletion and recharging of soil moisture and compared these patterns to seasonal patterns of predawn water potentials, diurnal leaf conductances, and diurnal leaf water potentials. Our results indicated that 1) Quercus was deeply rooted, having high water potentials and high leaf conductances throughout the summer drought period, 2) Heteromeles/Adenostoma were intermediate in rooting depth, water potentials, and leaf conductances, and 3) Rhamnus was shallow rooted, having the lowest water potentials and leaf conductances. During the peak of the drought, predawn water potentials for Quercus corresponded to soil water potentials at or below a depth of 2 m, predawn water potentials of Heteromeles/ Adenostoma corresponded to a depth of 0.75 m, and predawn water potentials of Rhamnus corresponded to a depth of 0.5 m. This study supports the concept that co-occurring shrubs of chaparral in California utilize a different base of soil moisture resources.  相似文献   

14.
The preference–performance hypothesis for insect herbivores predicts that adult females should preferentially choose hosts on which their offspring perform better. We tested this hypothesis for the sunflower moth, Homoeosoma electellum (Hulst) (Lepidoptera: Pyralidae), using 16 sunflower (pre‐breeding) lines, derived from a number of wild species of Helianthus, including Helianthus annuus L., Helianthus deserticola Heiser, Helianthus paradoxus Heiser, Helianthus praecox Engelm. & Gray ssp. hirtus (Heiser) Heiser, Helianthus praecox Engelm. & Gray ssp. runyonii (Heiser) Heiser, Helianthus petiolaris Nutt., Helianthus resinosus Small, and Helianthus tuberosus L. (Asteraceae), that are suitable for introducing wild sunflower germplasm into commercial cultivars. Female moths showed a range of ovipositional preference measures to the various lines. Combined data for three Helianthus species represented by multiple lines showed significant differences in female preference with respect to the parental species. Larval performance, determined by proportion of infested neonate larvae reaching the pupal stage, or mean pupal weight, varied across the lines and, as for the female preference data, also showed significant differences among the three parental Helianthus species represented by multiple lines. These data suggest that the characteristics in the pre‐breeding lines influencing female sunflower moth preference and larval performance likely originate from the parental species and may be consistently transferred to the derived pre‐breeding lines. Of particular note with regard to potential plant resistance mechanisms, lines derived from H. tuberosus showed consistent low preference–performance measures. Female preference and larval performance (for both measures) were strongly correlated, indicating that females preferred plants and lines on which larvae performed better, in support of the preference–performance hypothesis.  相似文献   

15.
Hydraulic lift (HL) is the process by which plants can passively transfer water from deep, moist soil layers to shallow, dry soil layers. Although it has attracted recent research interest, a mechanistic understanding and its implications for ecosystem functioning are still lacking. Here we describe HL seasonal patterns in a semi-arid shrub species and its influence on plant water dynamics. We measured soil water availability and plant water status over the course of 1 year. Soil water potential in the rhizosphere of Retama sphaerocarpa (L.) Boiss (Fabaceae) individuals and in adjacent land was recorded using soil psychrometers. Sap flow was recorded simultaneously using the stem heat balance method (SHBM). Our results show a seasonal HL trend linked to mean seasonal soil water potential with greatest HL amplitudes at moderately low water potentials (ca ?4 MPa). HL amplitude was negatively affected by nocturnal transpiration, and HL patterns were recorded in all seasons and at water potentials ranging from ?0.1 MPa to ?8.5 MPa which is consistent with R. sphaerocarpa deep rooting habit and its steady access to ground water.  相似文献   

16.
Easter  S. Joe  Sosebee  Ronald E. 《Plant and Soil》1974,40(3):707-712
Summary Use of Spanner thermocouple psychrometers to measure soil water potentials and internal water potentials of woody plants was studied using honey mesquite (Prosopis glandulosa var. glandulosa) growing under two soil water regimes. A high correlation (r=0.92 or greater) existed between the soil water potential (bars) measured with Spanner thermocouple psychrometers and soil water content (percent) obtained from gravimetric samples on a fine sandy loam soil. The influence of soil water potential and diurnal fluctuations were easily measured in honey mesquite growing under two soil water regimes. The results of this study indicated that thermocouple psychrometers can effectively be used in field studies involving soil-plant-water relationships. College of Agricultural Sciences Publication Number T-9-130. College of Agricultural Sciences Publication Number T-9-130.  相似文献   

17.
Relationship of water potential to growth of leaves   总被引:33,自引:9,他引:24       下载免费PDF全文
Boyer JS 《Plant physiology》1968,43(7):1056-1062
A thermocouple psychrometer that measures water potentials of intact leaves was used to study the water potentials at which leaves grow. Water potentials and water uptake during recovery from water deficits were measured simultaneously with leaves of sunflower (Helianthus annuus L.), tomato (Lycopersicon esculentum Mill.), papaya (Carica papaya L.), and Abutilon striatum Dickson. Recovery occurred in 2 phases. The first was associated with elimination of water deficits; the second with cell enlargement. The second phase was characterized by a steady rate of water uptake and a relatively constant leaf water potential. Enlargement was 70% irreversible and could be inhibited by puromycin and actinomycin D. During this time, leaves growing with their petioles in contact with pure water remained at a water potential of —1.5 to —2.5 bars regardless of the length of the experiment. It was not possible to obtain growing leaf tissue with a water potential of zero. It was concluded that leaves are not in equilibrium with the potential of the water which is absorbed during growth. The nonequilibrium is brought about by a resistance to water flow which requires a potential difference of 1.5 to 2.5 bars in order to supply water at the rate necessary for maximum growth.

Leaf growth occurred in sunflower only when leaf water potentials were above —3.5 bars. Sunflower leaves therefore require a minimum turgor for enlargement, in this instance equivalent to a turgor of about 6.5 bars. The high water potentials required for growth favored rapid leaf growth at night and reduced growth during the day.

  相似文献   

18.
Summary In the alpine zones of western North American mountains, topographic-moisture gradients are the results of winter winds blowing snow from the upper windward slopes and ridgetops into snowdrifts on the lee slopes. Wet meadows at the foot of the lee slope are the result of summer snowmelt. Such gradients are repeated many times in a single mountain range. They are useful units for studies of the effects of drought and water use on patterning of alpine vegetation.The research was done through an entire growing season along a topographic gradient at 3,300 m in the Medicine Bow Mountains, Wyoming. Plant water potentials were measured on 29 species (pre-dawn to sunset) at weekly intervals. Simultaneously, leaf conductances were measured on 16 species of these; the remainder had leaves too small for the porometer. Leaf water potentials were generally lowest on the ridgetop and highest in the wet meadow. Highest mean leaf conductances were in the wet meadow plants; the lowest occurred on plants on the upper windward slope. None of the plants on the ridgetop had leaves large enough for the porometer. Plants of most species at all sites but the wet meadow showed sharply reduced leaf conductance or leaf death at plant water potentials below-1.5 MPa. Deep-rooted species such as Trifolium parryi showed maximal conductance at water potentials as low as-1.7 MPa and little reduction in conductance even at lower water potentials. Plant water potentials and leaf conductances showed close relationships with rooting depth, length of dry periods, and position on the gradient.On the occasion of the publication of Volume 50 of OECOLOGIA, the authors respectfully dedicate this paper to Dr. Konrad F. Springer and Dr. M. Evenari for their years of encouragement to the science of physiological ecology. We appreciate their efforts  相似文献   

19.
 The tree species black alder [Alnus glutinosa (L.) Gaertn.] typically inhabits wet sites in central Europe but is also successful on well drained soils. To test the physiological adjustment of the species in situ, conductances, transpiration rates and water potentials (Scholander pressure chamber) of black alder leaves were investigated at two neighbouring sites with different water regimes: alder trees at an occasionally water logged alder forest and alder shrubs in a nearby, much drier hedgerow. Additional experiments with alder cuttings in nutrient culture showed that leaf conductances and gas exchange were both strongly influenced by the substrate water potential. In situ however, there was little spatial variability within the different parts of a crown and we found that physiological regulation at leaf level was hardly influenced by different site water regimes or different tree sizes. Diurnal courses of leaf water relations as well as their regulation at the leaf level (e.g. the hyperbolic relationship between conductances and ΔW) were strikingly similar at both sites. Leaf water potential in black alder was shown to be a consequence of immediate transpiration rates, which were high in comparison to other tree species (up to 4 mmol H2O m–2 s–1), rather than the water potentials being a factor that influenced conductance and, therefore, transpiration. The always high leaf conductances and consequent high transpiration rates are interpreted as a strategy to maximise productivity through low stomatal limitation at sites where water supply is usually not limited. However, at the same time this behaviour restricts black alder to sites where at least the deep-going roots can exploit water. Received: 10 September 1998 / Accepted: 12 January 1999  相似文献   

20.
Plants of two varieties of soybean (Glycine max (L.) Merr.) and two varieties of sunflower (Helianthus annuus L.) were grown in controlled environments and subjected to water stress at various stages of growth. Leaf resistances and leaf water potentials were measured as stress developed. In soybeans the upper leaf surface had a higher resistance than the lower surface at all leaf water potentials and growth stages. Resistance of the upper surface began to increase at a higher water potential and increased more than the resistance of the lower surface. Resistances returned to prestress values 4 days after rewatering. In sunflowers upper and lower leaf surfaces had similar resistances at all water potentials and growth stages. Leaf resistances were higher in sunflower plants stressed before flowering than in those stressed later. Sunflower plants stressed to −16 bars recovered their prestress leaf resistance and water potential a few days after rewatering, but leaves of sunflower plants stressed to −23 bars died. Leaves of soybean and sunflower plants stressed before flowering suffered less injury than those of older plants and sunflowers stressed after flowering suffered more injury than soybeans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号