首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
In this paper we describe the isolation and characterization of a genomic clone (Bp4) from Brassica napus which contains three members of a pollen-specific multigene family. This family is composed of 10 to 15 closely related genes which are expressed in early stages of microspore development. The complete nucleotide sequence of the clone Bp4 and of three homologous cDNA clones is reported. One of the genes (Bp4B) contained in the genomic clone is believed to be non-functional because of sequence rearrangements in its 5 region and intron splicing sites. The remaining genes (Bp4A and Bp4C), as well as the cDNA clones, appear to code for small proteins of unique structure. Three different types of proteins can be predicted as a result of the deletion of carboxy or amino terminal portions of a conserved core protein. These proteins all share a common alternation of hydrophobic and hydrophilic domains. A fragment of the genomic clone containing the gene Bp4A, as well as the non-functional gene Bp4B, was introduced into tobacco plants via Agrobacterium-mediated transformation. The functional gene Bp4A is expressed in transgenic tobacco plants and shows spatial and temporal regulation consistent with the expression patterns seen in Brassica napus.  相似文献   

2.
Differential screening of a Brassica napus genomic library led to the isolation of the clone named Bp 19 containing a gene which is highly expressed during microspore development. The accumulation of Bp 19 mRNA starts in uninucleate microspores, increases during development reaching a peak in the late stages but declines considerably in mature pollen. The nucleotide sequence of the entire coding region and of extended portions of the 5 and 3 flanking regions was determined. Several homologous cDNA clones were also isolated and sequenced. The Bp 19 gene contains a single intron of 137 bp and gives origin to a mRNA of ca. 1.9 kb which codes for a polypeptide of 584 amino acids. Bp 19 protein has an estimated molecular weight of 63 kilodaltons and has a highly hydrophobic amino terminal region which shows features of a signal peptide. The carboxy half of the Bp 19 protein, starting at amino acid 269, has striking sequence similarity to the pectin esterases of tomato and of the plant pathogen Erwinia chrysanthemi. Four short domains are extremely well conserved in all the three proteins and therefore could represent catalytic sites responsible for enzyme activity. Comparison of the 5 flanking region of the Bp 19 gene with the sequence of other pollen-specific promoters revealed the presence of several conserved regions. These short promoter sequences could correspond to regulatory elements responsible for pollen-specific gene expression.  相似文献   

3.
4.
5.
A cDNA clone (Zm58.1) was isolated by differential screening from a cDNA library made to mature Zea mays pollen, and shown to be pollen-specific by RNA blot analysis. When this partial-length clone was used to probe a genomic library, a similar but distinct pollen-specific genomic clone (68% sequence identity) was isolated (Zm58.2). The putative proteins coded for by these two clones show sequence homology to several flower-expressed gene products from various plant species, including known pollen allergens from short ragweed (Ambrosia artemisiifolia), and to pectate lyases from the plant pathogenic bacteria Erwinia spp. The two genes map to different chromosomes.  相似文献   

6.
The promoter of a pollen-specific gene TaPSG719 was isolated from wheat (Triticum aestivum L.) by inverse-PCR (IPCR). Sequence analysis revealed that the promoter contains two cis-acting elements (AGAAA and GTGA) known to confer anther/pollen-specific gene expression which suggests that the promoter of TaPSG719 gene is a pollen-specific one. To ascertain the regulatory function of TaPSG719 promoter, two deleted fragments (?1,776 to ?1 bp and ?1,019 to ?1 bp) were fused to the β-glucuronidase (GUS) gene and transformed into tobacco plants. Similar GUS expression patterns were observed in all transformed plants and its activity was detected exclusively in pollen. No GUS activity in any other floral or vegetative tissue was observed. The results confirm that TaPSG719 promoter is pollen-specific and active during the middle stages of pollen development till anther matured, and it can drive pollen-specific gene expression across the species.  相似文献   

7.
Bra r 1 encodes a Ca2+-binding protein specifically expressed in anthers of Brassica rapa. In this study, we isolated a genomic clone of Bra r 1 and found sequences similar to Pollen Box core motifs and LAT56/59 box, pollen-specific cis-acting element, in the 5' upstream region of Bra r 1. Reporter gene fusion revealed that the Bra r 1 promoter directs male gametophytic expression in Nicotiana tabacum, Arabidopsis thaliana and B. napus, showing strong expression in mature pollen grains similar to that of endogenous Bra r 1. Genomic DNA of Bra r 1 was introduced into tobacco plants and the highest accumulation of Bra r 1 protein was observed in mature pollen in the same manner as reporter gene expression. Using in vitro-germinated pollen tubes of transgenic tobacco, we firstly demonstrated the subcellular localization of Bra r 1 in pollen tubes. Bra r 1 protein was distributed throughout the pollen tube of transgenic tobacco and slightly intense signals of Bra r 1 were observed in the tip region. In long-germinated pollen tubes, Bra r 1 was detected only in the cytoplasmic compartments while no signals were observed in the empty part of the pollen tube, indicating that cytoplasmic movement toward the tube tip is accompanied by Bra r 1. Hence, we suggest that Bra r 1 is involved in pollen germination and pollen tube growth.  相似文献   

8.
Bnm1, a Brassica pollen-specific gene   总被引:1,自引:0,他引:1  
cDNA and genomic clones of a new pollen-specific gene, Bnm1, have been isolated from Brassica napus cv. Topas. The gene contains an open reading frame of 546 bp and a single intron of 362 bp. A comparison of the deduced amino acid sequence with sequences in data banks did not show similarity with known proteins. Northern blot analysis of developing pollen showed that Bnm1 mRNA was first detected in bicellular pollen and accumulated to higher levels in tricellular pollen. Bnm1 mRNA was not detected in leaves, stems, roots, pistils, seeds or pollen-derived embryos. RNA in situ hybridization of whole flower buds confirmed that Bnm1 was pollen-specific and expressed late in development. A promoter fragment of the Bnm1 gene fused to the gusA reporter gene yielded similar patterns of tissue specificity and developmental regulation in transgenic B. napus cv. Westar plants; however, the promoter was also active during the early stages of pollen development. The Bnm1 gene, cloned in this study, was derived from the A genome of the allotetraploid species B. napus (AACC). Southern blot analysis indicated that sequences similar to the Bnm1 gene were found in both A and C Brassica genomes. Related sequences were found in all 10 members of the Brassiceae tribe examined, but were not present in all tribes of the Brassicaceae family.  相似文献   

9.
To investigate the regulation of gene expression during male gametophyte development, we analyzed the promoter activity of two different genes (LAT52 and LAT59) from tomato, isolated on the basis of their anther-specific expression. In transgenic tomato, tobacco and Arabidopsis plants containing the LAT52 promoter region fused to the beta-glucuronidase (GUS) gene, GUS activity was restricted to pollen. Transgenic tomato, tobacco and Arabidopsis plants containing the LAT59 promoter region fused to GUS also showed very high levels of GUS activity in pollen. However, low levels of expression of the LAT59 promoter construct were also detected in seeds and roots. With both constructs, the appearance of GUS activity in developing anthers was correlated with the onset of microspore mitosis and increased progressively until anthesis (pollen shed). Our results demonstrate co-ordinate regulation of the LAT52 and LAT59 promoters in developing microspores and suggest that the mechanisms that regulate pollen-specific gene expression are evolutionarily conserved.  相似文献   

10.
11.
PSG076 is a pollen-specific gene isolated from wheat. The 1.4-kb promoter upstream of the ATG start codon was isolated by inverse-PCR (IPCR). To determine its activity, the PSG076 promoter was fused with the ??-glucuronidase (GUS) reporter gene and introduced into tobacco. Histochemical analysis in transgenic tobacco showed that GUS activity was detected in late bicellular pollen grains and increased rapidly in mature pollen. GUS activity was also detected in pollen tubes of transgenic tobacco. No GUS activity was found in other floral and vegetable tissues. These results indicate that the PSG076 promoter directs pollen-specific activity at late stages of pollen development and pollen tube growth. Deletion analysis showed that a 0.4?kb fragment of the promoter was enough to confer pollen-specific expression.  相似文献   

12.
Gupta V  Khurana R  Tyagi AK 《Plant cell reports》2007,26(11):1919-1931
Differential screening of a stage-specific cDNA library of Indica rice has been used to identify two genes expressed in pre-pollination stage panicles, namely OSIPA and OSIPK coding for proteins similar to expansins/pollen allergens and calcium-dependent protein kinases (CDPK), respectively. Northern analysis and in situ hybridizations indicate that OSIPA expresses exclusively in pollen while OSIPK expresses in pollen as well as anther wall. Promoters of these two anther-specific genes show the presence of various cis-acting elements (GTGA and AGAAA) known to confer anther/pollen-specific gene expression. Organ/tissue-specific activity and strength of their regulatory regions have been determined in transgenic systems, i.e., tobacco and Arabidopsis. A unique temporal activity of these two promoters was observed during various developmental stages of anther/pollen. Promoter of OSIPA is active during the late stages of pollen development and remains active till the anthesis, whereas, OSIPK promoter is active to a low level in developing anther till the pollen matures. OSIPK promoter activity diminishes before anthesis. Both promoters show a potential to target expression of the gene of interest in developmental stage-specific manner and can help engineer pollen-specific traits like male-sterility in plants. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Accessions: OSIPA cDNA, AF220610; OSIPK cDNA, AF312920; OSIPA partial gene and upstream promoter region, AY166659; OSIPK gene-specific and upstream sequence, AY168440.  相似文献   

13.
14.
Pectin methylesterases (PMEs) are a family of enzymes involved in plant reproductive processes such as pollen development and pollen tube growth. We have isolated and characterized PsPMEP, a pea (Pisum sativum L.) pollen-specific gene that encodes a protein with homology to PMEs. Sequence analysis showed that PsPMEP belongs to group 2 PMEs, which are characterized by the presence of a processable amino-terminal PME inhibitor domain followed by the catalytic PME domain. Moreover, PsPMEP contains several motifs highly conserved among PMEs with the essential amino acid residues involved in enzyme substrate binding and catalysis. Northern blot and in situ hybridization analyses showed that PsPMEP is expressed in pollen grains from 4 days before anthesis till anther dehiscence and in pollinated carpels. In the PsPMEP promoter region, we have identified several conserved cis-regulatory elements that have been associated with gene pollen-specific expression. Expression analysis of PsPMEP promoter fused to the uidA reporter gene in Arabidopsis thaliana plants showed a similar expression pattern when compared with pea, indicating that this promoter is also functional in a non-leguminous plant. GUS expression was detected in mature pollen grains, during pollen germination, during pollen tube elongation along the transmitting tract, and when the pollen tube reaches the embryo sac in the ovule.  相似文献   

15.
A novel 407 bp nucleotide sequence NTPp13 was isolated from tobacco (Nicotiana tabacum L.) by PCR, its structure and function were characterized. The NTPp13 sequence was highly homologous with the pollen-specific expression promoter Zm13 from maize (Zea mays L.) and contained some key motifs which controlled pollen-specific expression. The NTPp13 was fused to the β-glucuronidase (GUS) reporter gene and transferred into tobacco. Analysis of the transgenic plants revealed that this putative promoter fragment was sufficient to direct GUS expression specifically in the anther, exactly in the pollen and pollen tube, and that GUS activity reached the maximum at the stage of pollen grain began to separate. Further study showed that the expression of NTPp13 sequence at pollen was stable at the range of temperature measured. These data suggested that the NTPp13 sequence was likely the essential element of promoter region of an unknown pollen-specific gene from tobacco.  相似文献   

16.
A potential problem in the field release of transgenic plants is the spread of foreign gene products via pollen. Therefore, the use of the tomato pollen-specific lat52 gene promoter was investigated as a means of targeting antisense RNA to pollen without affecting transgene expression elsewhere in the plant. A transgenic tobacco line T115, which showed GUS expression in pollen, leaves and roots were retransformed with a construct containing the pollen-specific lat52 promoter driving the GUS encoding uid A gene in antisense orientation. From 24 independent transformants obtained, 19 showed a significant reduction in pollen GUS activity. Of these lines, four showed a reproducible antisense effect in pollen in the next generation, while it was shown in one line that GUS activity in leaves and roots was also unaffected. To ascertain the effectiveness of the antisense strategy to downregulate very high levels of pollen expression, a lat52-gus antisense construct was introduced into tobacco lines containing lat52-gus, which had pollen GUS activity of up to 250 times greater than in line T115. Results showed that 30 out of 34 independent lines exhibited a significant antisense effect in pollen, confirming the effectiveness of pollen-targeted antisense strategy to reduce undesirable expression in pollen independent of expression level in pollen.  相似文献   

17.
The LAT52 gene of tomato is expressed in a pollen-specific manner. It is shown that LAT52 encodes a heat-stable, glycosylated protein that traverses the secretory pathway when expressed in a baculovirus expression system. The LAT52 protein shows some similarity with Kunitz trypsin inhibitors and with pollen proteins from maize, rice and olive, but the biological function of these pollen proteins is unknown. To test whether the LAT52 protein plays an important role during pollen development, tomato plants were transformed with an antisense LAT52 gene driven by the LAT52 promoter. Because the LAT52 gene is expressed gametophytically, only 50% of the pollen of the primary transformants would be expected to express the antisense construct. Self-progeny of 19 of the primary transformants showed the predicted 3:1 segregation for a single locus insertion of the linked kanamycin-resistance gene. However, the self-progeny of the other 32 primary transformants showed a 1:1 segregation pattern and could not transmit the linked kanamycin-resistance gene through the male. A subset of these 1:1 segre. gation class plants was examined in detail. The pollen showed lower levels of LAT52 mRNA and LAT52 protein when compared with wild-type. In vitro , approximately 50% of the pollen grains appear to hydrate abnormally; this anomaly is not present when the same pollen grains are Incubated in a medium with higher water potential. In vivo pollination experiments showed that the growth of around 50% of the pollen tubes is arrested in the style. The 3:1 segregation class plants showed no significant differences from untransformed control plants. Taken together, the results show a direct correlation between the reduced expression of LAT52 protein and abnormal pollen function, and suggest that the LAT52 protein plays a role in pollen hydration and/or pollen germination.  相似文献   

18.
SBgLR (Solanum tuberosum genomic lysine-rich) is a pollen-specific gene cloned from potato (Solanum tuberosum L.). The region from −269 to −9 (The A of translation start site “ATG” as +1) of the SBgLR promoter was identified as critical for gene specific expression in pollen grains. Sequence analysis indicates a palindromic sequence “TTTCTATTATAATAGAAA” in the −227 to −209 region, in which two pollen-specific motifs TTTCT and AGAAA surround a unique putative TATA box. Moreover, nine putative pollen-specific motifs are located in the region between the TATA box and ATG. We placed the −227 to −9 region (reserving the palindrome) and the −222 to −9 region (breaking the palindrome) downstream of the CaMV35S enhancer, respectively, to construct two fusion promoters. Histochemical assays in transgenic plants demonstrated that the region from −222 to −9 is necessary and sufficient for pollen-specific expression of the uidA gene. However, the region of −227 to −9 is incapable of driving GUS expression in pollen grains and parts of vegetative tissues. A series of 5′ deletions from −269 to −9 of SBgLR promoter were constructed. A transient expression assay indicated that the region from the −227 to −9 suppressed gfp gene expression in pollen, and a positive regulatory element was present in the region of −253 to −227. The function of the palindromic sequence as a repressor inhibiting gene expression in pollen was further confirmed by the mutated promoter, breaking the palindrome by substituting its 3′-flanking five base pairs, which resumes the reporter gene expression in mature pollen.  相似文献   

19.
20.
Wakeley  P.R.  Rogers  H.J.  Rozycka  M.  Greenland  A. J.  Hussey  P. J. 《Plant molecular biology》1998,37(1):187-192
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号