首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
In most animals, the origins of mating preferences are not clear. The "sensory-bias" hypothesis proposes that biases in female sensory or neural systems are important in triggering sexual selection and in determining which male traits will become elaborated into sexual ornaments. Subsequently, other mechanisms can evolve for discriminating between high- and low-quality mates. Female guppies (Poecilia reticulata) generally show a preference for males with larger, more chromatic orange spots. It has been proposed that this preference originated because it enabled females to obtain high-quality mates. We present evidence for an alternative hypothesis, that the origin of the preference is a pleiotropic effect of a sensory bias for the colour orange, which might have arisen in the context of food detection. In field and laboratory experiments, adult guppies of both sexes were more responsive to orange-coloured objects than to objects of other colours, even outside a mating context. Across populations, variation in attraction to orange objects explained 94% of the inter-population variation in female mate preference for orange coloration on males. This is one of the first studies to show both an association between a potential trigger of a mate-choice preference and a sexually selected trait, and also that an innate attraction to a coloured inanimate object explains almost all of the observed variation in female mate choice. These results support the "sensory-bias" hypothesis for the evolution of mating preferences.  相似文献   

2.
Rarely are the evolutionary origins of mate preferences known, but, recently, the preference of female guppies (Poecilia reticulata) for males with carotenoid-based sexual coloration has been linked to a sensory bias that may have originally evolved for detecting carotenoid-rich fruits. If carotenoids enhance the immune systems of these fishes, as has been suggested for other species, this could explain the origin of the attraction to orange fruits as well as the maintenance of the female preference for orange males. We used the classic immunological technique of tissue grafting to assay a component of the immune response of guppies raised on two different dietary levels of carotenoids. Individual scales were transplanted between pairs of unrelated fishes, creating reciprocal allografts. Transplanted scales were scored on a six-point rejection scale every day for 10 days. Five days later, the same pairs of fishes received a second set of allografts and were scored again. Compared with low-carotenoid-diet males, high-carotenoid-diet males mounted a significantly stronger rejection response to the second allograft but not to the first allograft. High-carotenoid-diet females, however, showed no improvement in graft rejection compared with low-carotenoid-diet females. To our knowledge, this is the first experimental evidence for sex-specific effects of carotenoid consumption on the immune system of a species with carotenoid-based sexual coloration. These results are consistent with the hypothesis that the mate preference for carotenoid coloration is maintained by the benefits to females of choosing healthy mates, but they cast doubt on the idea that the benefits of carotenoid consumption, per se, could account for the origin of the preference. The sex-specificity of carotenoid effects on allograft rejection in guppies provides indirect support for the general hypothesis that males pay an immunological cost for sexual ornamentation.  相似文献   

3.
Under sexual selection, mate preferences can evolve for traits advertising fitness benefits. Observed mating patterns (mate choice) are often assumed to represent preference, even though they result from the interaction between preference, sampling strategy and environmental factors. Correlating fitness with mate choice instead of preference will therefore lead to confounded conclusions about the role of preference in sexual selection. Here we show that direct fitness benefits underlie mate preferences for genetic characteristics in a unique experiment on wild great tits. In repeated mate preference tests, both sexes preferred mates that had similar heterozygosity levels to themselves, and not those with which they would optimise offspring heterozygosity. In a subsequent field experiment where we cross fostered offspring, foster parents with more similar heterozygosity levels had higher reproductive success, despite the absence of assortative mating patterns. These results support the idea that selection for preference persists despite constraints on mate choice.  相似文献   

4.
Perceptual biases explain the origin and evolution of female preference in many species. Some responses that mediate mate choice, however, may have never been used in nonmating contexts. In the fiddler crab, Uca mjoebergi, mate‐searching females prefer faster wave rates and leading wave; however, it remains unclear whether such responses evolved in a mating context (i.e., the preference has effect on the fitness of the female and her offspring that arise from mating with a particular male) or a nonmating contexts (i.e., a female obtains direct benefits through selecting the male with a more detectable trait). Here, we compared the preferences of mate‐searching with those of ovigerous females that are searching for a burrow and do not concern about male “quality.” Results showed that as both mate‐searching and ovigerous females preferentially approached robotic males with faster wave rates. This suggests that wave rate increases detectability/locatability of males, but the mating preference for this trait is unlikely to evolve in the mating context (although it may currently function in mate choice), as it does not provide fitness‐related benefit to females or her offspring. Wave leadership, in contract, was attractive to mate‐searching females, but not ovigerous females, suggesting that female preference for leadership evolves because wave leadership conveys information about male quality. We provide not only an empirical evidence of sensory biases (in terms of the preference for faster wave), but the first experimental evidence that mating context can be the only selection force that mediates the evolution of male sexual traits and female preference (in terms of the preference for leading wave).  相似文献   

5.
Under the indicator models of mate choice, female preferences evolve to exploit the condition-dependence or "indicator value" of male traits, which in turn may cause these traits to evolve to elaborate extremes. If the indicator value of a male trait changes, the payoff function of the female preference for that trait should change and the preference should evolve to a new optimum. I tested this prediction in the guppy, Poecilia reticulata, a species in which the indicator value of a sexually selected male trait, carotenoid coloration, varies geographically. Carotenoid coloration is thought to be an indicator of foraging ability and health because animals must obtain carotenoid pigments from their diet. The primary dietary source of carotenoids for guppies is unicellular algae, the abundance of which varies among natural streams because of variation in forest canopy cover. Carotenoid availability limits male coloration to a greater extent in streams with greater forest canopy cover. Thus, the indicator value of male coloration covaries positively with canopy cover. To test the indicator model prediction, I measured genetic divergence in the strength of female preferences for carotenoid coloration between high- and low-carotenoid availability streams in each of three river drainages. Second-generation laboratory-born females were given a choice between full-sib males raised on three different dietary levels of carotenoids. For all six populations, male attractiveness (as determined from the responses of females to male courtship displays) increased with dietary carotenoid levels. However, the strength of female preferences differed between populations in the predicted direction in only one of three river drainages. These results fail to support a crucial prediction of the indicator model. More studies taking an interpopulation approach to studying mate preference evolution are needed before the explanatory value of the indicator models can be rigorously assessed.  相似文献   

6.
The sensory bias model for the evolution of mating preferences states that mating preferences evolve as correlated responses to selection on nonmating behaviors sharing a common sensory system. The critical assumption is that pleiotropy creates genetic correlations that affect the response to selection. I simulated selection on populations of neural networks to test this. First, I selected for various combinations of foraging and mating preferences. Sensory bias predicts that populations with preferences for like-colored objects (red food and red mates) should evolve more readily than preferences for differently colored objects (red food and blue mates). Here, I found no evidence for sensory bias. The responses to selection on foraging and mating preferences were independent of one another. Second, I selected on foraging preferences alone and asked whether there were correlated responses for increased mating preferences for like-colored mates. Here, I found modest evidence for sensory bias. Selection for a particular foraging preference resulted in increased mating preference for similarly colored mates. However, the correlated responses were small and inconsistent. Selection on foraging preferences alone may affect initial levels of mating preferences, but these correlations did not constrain the joint evolution of foraging and mating preferences in these simulations.  相似文献   

7.
Receiver biases towards specific sensory signals have been demonstrated in insects, birds and fish, both in the context of foraging and mate choice. In some cases, signals important in sexual selection appear to have evolved by exploiting a pre-existing bias in the sensory system. For instance, female preferences for male nuptial colouration may have arisen from selection on foraging practices. Using the zebrafish ( Danio rerio ), a species in which red is not a factor in mate choice, we tested for a foraging bias towards the colour red. We further investigated the plasticity of foraging biases by raising groups of fish on diets consisting solely of red, blue, green or white food. When we subsequently tested their colour preferences in a foraging context, each group responded most strongly to red, irrespective of the colour of food with which they had been conditioned. We also detected a significant effect of conditioning on colour preferences; fish responded more strongly to the colour that matched diet colour than to other colours. The observed receiver bias towards red may have evolved as an adaptive preference for carotenoid compounds in their diet. While the bias to red appears to be innate, our results indicate that learning is also important in shaping foraging biases.  相似文献   

8.
The sensory bias model of sexual selection posits that female mating preferences are by-products of natural selection on sensory systems. Although sensory bias was proposed 20 years ago, its critical assumptions remain untested. This paradox arises because sensory bias has been used to explain two different phenomena. First, it has been used as a hypothesis about signal design, that is, that males evolve traits that stimulate female sensory systems. Second, sensory bias has been used as a hypothesis for the evolution of female preference itself, that is, to explain why females exhibit particular preferences. We focus on this second facet. First, we clarify the unique features of sensory bias relative to the alternative models by considering each in the same quantitative genetic framework. The key assumptions of sensory bias are that natural selection is the predominant evolutionary mechanism that affects preference and that sexual selection on preferences is quantitatively negligible. We describe four studies that would test these assumptions and review what we can and cannot infer about sensory bias from existing studies. We suggest that the importance of sensory bias as an explanation for the evolution of female preferences remains to be determined.  相似文献   

9.
Darwin proposed an explicitly aesthetic theory of sexual selection in which he described mate preferences as a 'taste for the beautiful', an 'aesthetic capacity', etc. These statements were not merely colourful Victorian mannerisms, but explicit expressions of Darwin's hypothesis that mate preferences can evolve for arbitrarily attractive traits that do not provide any additional benefits to mate choice. In his critique of Darwin, A. R. Wallace proposed an entirely modern mechanism of mate preference evolution through the correlation of display traits with male vigour or viability, but he called this mechanism natural selection. Wallace's honest advertisement proposal was stridently anti-Darwinian and anti-aesthetic. Most modern sexual selection research relies on essentially the same Neo-Wallacean theory renamed as sexual selection. I define the process of aesthetic evolution as the evolution of a communication signal through sensory/cognitive evaluation, which is most elaborated through coevolution of the signal and its evaluation. Sensory evaluation includes the possibility that display traits do not encode information that is being assessed, but are merely preferred. A genuinely Darwinian, aesthetic theory of sexual selection requires the incorporation of the Lande-Kirkpatrick null model into sexual selection research, but also encompasses the possibility of sensory bias, good genes and direct benefits mechanisms.  相似文献   

10.
Sexual conflict occurs when the evolutionary interests of the sexes differ and it broadly applies to decisions over mating, fertilization and parental investment. Recently, a narrower view of sexual conflict has emerged in which direct selection on females to avoid male-imposed costs during mating is considered the distinguishing feature of conflict, while indirect selection is considered negligible. In this view, intersexual selection via sensory bias is seen as the most relevant mechanism by which male traits that harm females evolve, with antagonistic coevolution between female preferences and male manipulation following. Under this narrower framework, female preference and resistance have been synonymized because both result in a mating bias, and similarly male display and coercion are not distinguished. Our recent work on genital evolution in waterfowl has highlighted problems with this approach. In waterfowl, preference and resistance are distinct components of female phenotype, and display and coercion are independent male strategies. Female preference for male displays result in mate choice, while forced copulations by unpreferred males result in resistance to prevent these males from achieving matings and fertilizations. Genital elaborations in female waterfowl appear to function in reinforcing female preference to maintain the indirect benefits of choice rather than to reduce the direct costs of coercive mating. We propose a return to a broader view of conflict where indirect selection and intrasexual selection are considered important in the evolution of conflict.  相似文献   

11.
Female choices of males, and how these choices are influenced by ecological and social factors, have been studied extensively. However, little is known about the effects of age and breeding experience on female mating decisions. We used video techniques to examine female mate choice in guppies based on the area of carotenoid (orange) pigmentation on the body. Females were presented with paired images of males, one ornamented and the other plain. Visual preference for each male was measured. Age-related changes in the criteria of choice were examined by comparing the responses of the same mature but sexually inexperienced 6-mo-old and 12-mo-old females. Effects of breeding experience on female choice were examined by comparing mate preferences of 12-mo-old female virgins with their preferences after they had mated and produced a brood. Female preferences for ornamented males with large areas of carotenoid pigment changed with age but not with mating experience. Six-month-old virgin females preferred ornamented males, whereas 12-mo-old virgin and postpartum females did not differentiate between males based on orange coloration. The results are discussed in light of life-history theory and have important implications for studies of sexual selection as well as for the design of mate-choice studies.  相似文献   

12.
Sexual conflict over the indirect benefits of mate choice may arise when traits in one sex limit the ability of the other sex to freely choose mates but when these coercive traits are not necessarily directly harmful (i.e. forced fertilization per se). Although we might hypothesize that females can evolve resistance in order to retain the indirect, genetic benefits (reflected in offspring attractiveness) of mating with attractive males, up to now it has been difficult to evaluate potential underlying mechanisms. Traditional theoretical approaches do not usually conceptually distinguish between female preference for male mating display and female resistance to forced fertilization, yet sexual conflict over indirect benefits implies the simultaneous action of all of these traits. Here, we present an integrative theoretical framework that draws together concepts from both sexual selection and sexual conflict traditions, allowing for the simultaneous coevolution of displays and preferences, and of coercion and resistance. We demonstrate that it is possible for resistance to coercion to evolve in the absence of direct costs of mating to preserve the indirect benefits of mate choice. We find that resistance traits that improve the efficacy of female mating preference can evolve as long as females are able to attain some indirect benefits of mating with attractive males, even when both attractive and unattractive males can coerce. These results reveal new evolutionary outcomes that were not predicted by prior theories of indirect benefits or sexual conflict.  相似文献   

13.
Ornamental secondary sexual traits are hypothesized to evolve in response to directional mating preferences for more ornamented mates. Such mating preferences may themselves evolve partly because ornamentation indicates an individual's additive genetic quality (good genes). While mate choice can also confer non-additive genetic benefits (compatible genes), the identity of the most 'compatible' mate is assumed to depend on the choosy individual's own genotype. It is therefore unclear how choice for non-additive genetic benefits could contribute to directional mating preferences and consequently the evolution of ornamentation. In free-living song sparrows (Melospiza melodia), individual males varied in their kinship with the female population. Furthermore, a male's song repertoire size, a secondary sexual trait, was negatively correlated with kinship such that males with larger repertoires were less closely related to the female population. After excluding close relatives as potential mates, individual females were on average less closely related to males with larger repertoires. Therefore, female song sparrows expressing directional preferences for males with larger repertoires would on average acquire relatively unrelated mates and produce relatively outbred offspring. Such non-additive genetic fitness benefits of directional mating preferences, which may reflect genetic dominance variance expressed in structured populations, should be incorporated into genetic models of sexual selection.  相似文献   

14.
Frequency-dependent mating behaviour has the potential to maintain genetic variation in characteristics of organisms. The colour patterns of guppies ( Poecilia reticulata ) provide an example of one of the most extreme genetically based polymorphisms known in nature, for which frequency-dependent mate choice could be a mechanism. Numerous studies have shown that female guppies base mating preferences on male colour patterns and there is evidence that females prefer to mate with males displaying novel or unfamiliar colour patterns. This preference could lead to frequency-dependent mating success in males. Nevertheless, the possibility that female sexual responsiveness itself may depend on the frequency of male types has not been tested systematically in guppies or any other species. This study examined the sexual responses of female guppies in experimental groups consisting of two males with similar (redundant) and two males with different (unique) colour patterns. We found that female guppies were much more likely to respond sexually to the displays of unique males than to those of redundant males. Further, there was no effect of orange colouration on female responsiveness as has been documented for this population in several previous studies, thus, discrimination against redundant male types appears to have overridden directional selection based on colour pattern characteristics. This discrimination against redundant male types could in turn lead to frequency-dependent mating success in males and maintenance of colour pattern polymorphism.  相似文献   

15.
Although females in numerous species generally prefer males with larger, brighter and more elaborate sexual traits, there is nonetheless considerable intra‐ and interpopulation variation in mating preferences amongst females that requires explanation. Such variation exists in the Trinidadian guppy, Poecilia reticulata, an important model organism for the study of sexual selection and mate choice. While female guppies tend to prefer more ornamented males as mates, particularly those with greater amounts of orange coloration, there remains variation both in male traits and female mating preferences within and between populations. Male body size is another trait that is sexually selected through female mate choice in some species, but has not been examined as extensively as body coloration in the guppy despite known intra‐ and interpopulation variation in this trait among adult males and its importance for survivorship in this species. In this study, we used a dichotomous‐choice test to quantify the mating preferences of female guppies, originating from a low‐predation population in Trinidad, for two male traits, body length and area of the body covered with orange and black pigmentation, independently of each other. We expected strong female mating preferences for both male body length and coloration in this population, given relaxation from predation and presumably relatively low cost of choice. Females indeed exhibited a strong preference for larger males as expected, but surprisingly a weaker (but nonetheless significant) preference for orange and black coloration. Interestingly, larger females demonstrated stronger preferences for larger males than did smaller females, which could potentially lead to size‐assortative mating in nature.  相似文献   

16.
A broad range of animals use visual signals to assess potential mates, and the theory of sensory exploitation suggests variation in visual systems drives mate preference variation due to sensory bias. Trinidadian guppies (Poecilia reticulata), a classic system for studies of the evolution of female mate choice, provide a unique opportunity to test this theory by looking for covariation in visual tuning, light environment and mate preferences. Female preference co‐evolves with male coloration, such that guppy females from ‘low‐predation’ environments have stronger preferences for males with more orange/red coloration than do females from ‘high‐predation’ environments. Here, we show that colour vision also varies across populations, with ‘low’‐predation guppies investing more of their colour vision to detect red/orange coloration. In independently colonized watersheds, guppies expressed higher levels of both LWS‐1 and LWS‐3 (the most abundant LWS opsins) in ‘low‐predation’ populations than ‘high‐predation’ populations at a time that corresponds to differences in cone cell abundance. We also observed that the frequency of a coding polymorphism differed between high‐ and low‐predation populations. Together, this shows that the variation underlying preference could be explained by simple changes in expression and coding of opsins, providing important candidate genes to investigate the genetic basis of female preference variation in this model system.  相似文献   

17.
Evidence suggests that female preferences may sometimes arise through sensory bias, and that males may subsequently evolve traits that increase their conspicuousness to females. Here, we ask whether indirect selection, arising through genetic associations (linkage disequilibrium) during the sexual selection that sensory bias imposes, can itself influence the evolution of preference strength. Specifically, we use population genetic models to consider whether or not modifiers of preference strength can spread under different ecological conditions when female mate choice is driven by sensory bias. We focus on male traits that make a male more conspicuous in certain habitats-and thus both more visible to predators and more attractive to females-and examine modifiers of the strength of preference for conspicuous males. We first solve for the rate of spread of a modifier that strengthens preference within an environmentally uniform population; we illustrate that this spread will be extremely slow. Second, we used a series of simulations to consider the role of habitat structure and movement on the evolution of a modifier of preference strength, using male color polymorphisms as a case study. We find that in most cases, indirect selection does not allow the evolution of stronger or weaker preferences for sensory bias. Only in a "two-island" model, where there is restricted migration between different patches that favor different male phenotypes, did we find that preference strength could evolve. The role of indirect selection in the evolution of sensory bias is of particular interest because of ongoing speculation regarding the role of sensory bias in the evolution of reproductive isolation.  相似文献   

18.
Mate preferences are costly and are thought to evolve due to the direct and/or indirect benefits they provide. Such costs and benefits may vary in response to intrinsic and extrinsic factors with important evolutionary consequences. Limited attention has been given to quantifying such variation and understanding its causes, most notably with respect to the direction and strength of preferences for multivariate sexual displays. In Drosophila serrata, female preferences target a pheromone blend of long‐chain cuticular hydrocarbons (CHCs). We used a factorial design to test whether female age and mating status generated variation in the strength and direction of sexual selection on male CHCs. Replicate choice mating trials were conducted using young and old females (4 or 10 days post‐emergence) that were either virgin or previously mated. The outcome of such trials is known to capture variation in female mate preferences, although male–male interactions may also contribute. Directional sexual selection on male CHCs was highly significant within each treatment, but there was little evidence of any variation among treatments. The absence of treatment effects implies that the multivariate combination of male CHCs preferred by females was constant with respect to female age and mating status. To the extent that male–male interactions may also contribute, our results similarly imply that these did not vary among treatments groups. With respect to D. serrata mate preferences, our results suggest that either plasticity with respect to age and mating status is not beneficial to females, or preference expression is somehow constrained.  相似文献   

19.
Jirotkul M 《Animal behaviour》1999,58(6):1169-1175
This study tested the general prediction that population density affects male-male competition, female mate choice and the opportunity for sexual selection. By manipulating the density of guppies, Poecilia reticulata, while keeping the sex ratio constant, I found that male mating tactics were phenotypically plastic with respect to density. As density increased, males decreased their courtship displays. Male-male competition and mate searching were highest at intermediate densities. Population density had no significant effect on the total number of copulations, copulatory tactics or the percentage of postcopulatory guarding. Female preference for males with a higher percentage of orange coloration was similar at all density levels. The 'opportunity for sexual selection', which estimates the upper limit to which a selected trait can shift if directional selection is operating and was calculated as the variance in number of copulations per male divided by the square of the mean number of copulations, was negatively associated with population density. This may be due to the decrease in male-male competition at high density rather than female preference which was similar across density treatments. Copyright 1999 The Association for the Study of Animal Behaviour.  相似文献   

20.
The extent to which indirect genetic benefits can drive the evolution of directional mating preferences for more ornamented mates, and the mechanisms that maintain such preferences without depleting genetic variance, remain key questions in evolutionary ecology. We used an individual-based genetic model to examine whether a directional preference for mates with higher genome-wide heterozygosity ( H ), and consequently greater ornamentation, could evolve and be maintained in the absence of direct fitness benefits of mate choice. We specifically considered finite populations of varying size and spatial genetic structure, in which parent–offspring resemblance in heterozygosity could provide an indirect benefit of mate choice. A directional preference for heterozygous mates evolved under broad conditions, even given a substantial direct cost of mate choice, low mutation rate, and stochastic variation in the link between individual heterozygosity and ornamentation. Furthermore, genetic variance was retained under directional sexual selection. Preference evolution was strongest in smaller populations, but weaker in populations with greater internal genetic structure in which restricted dispersal increased local inbreeding among offspring of neighboring females that all preferentially mated with the same male. These results suggest that directional preferences for heterozygous or outbred mates could evolve and be maintained in finite populations in the absence of direct fitness benefits, suggesting a novel resolution to the lek paradox.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号