首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Influenza viruses elude immune responses and antiviral chemotherapeutics through genetic drift and reassortment. As a result, the development of new strategies that attack a highly conserved viral function to prevent and/or treat influenza infection is being pursued. Such novel broadly acting antiviral therapies would be less susceptible to virus escape and provide a long lasting solution to the evolving virus challenge. Here we report the in vitro and in vivo activity of a human monoclonal antibody (A06) against two isolates of the 2009 H1N1 pandemic influenza virus. This antibody, which was obtained from a combinatorial library derived from a survivor of highly pathogenic H5N1 infection, neutralizes H5N1, seasonal H1N1 and 2009 “Swine” H1N1 pandemic influenza in vitro with similar potency and is capable of preventing and treating 2009 H1N1 influenza infection in murine models of disease. These results demonstrate broad activity of the A06 antibody and its utility as an anti-influenza treatment option, even against newly evolved influenza strains to which there is limited immunity in the general population.  相似文献   

2.
The initial wave of swine-origin influenza A virus (pandemic H1N1/09) in the United States during the spring and summer of 2009 also resulted in an increased vigilance and sampling of seasonal influenza viruses (H1N1 and H3N2), even though they are normally characterized by very low incidence outside of the winter months. To explore the nature of virus evolution during this influenza “off-season,” we conducted a phylogenetic analysis of H1N1 and H3N2 sequences sampled during April to June 2009 in New York State. Our analysis revealed that multiple lineages of both viruses were introduced and cocirculated during this time, as is typical of influenza virus during the winter. Strikingly, however, we also found strong evidence for the presence of a large transmission chain of H3N2 viruses centered on the south-east of New York State and which continued until at least 1 June 2009. These results suggest that the unseasonal transmission of influenza A viruses may be more widespread than is usually supposed.The recent emergence of swine-origin H1N1 influenza A virus (pandemic H1N1/09) in humans has heightened awareness of how the burden of morbidity and mortality due to influenza is associated with the appearance of new genetic variants (5) and of the genetic and epidemiological determinants of viral transmission (8). The emergence of pandemic H1N1/09 is also unprecedented in recorded history as it means that three antigenically distinct lineages of influenza A virus—pandemic H1N1/09 and the seasonal H1N1 and H3N2 viruses— currently cocirculate within human populations.Although the presence of multiple subtypes of influenza A virus may place an additional burden on public health resources, it also provides a unique opportunity to compare the patterns and dynamics of evolution in these viruses on a similar time scale. Indeed, one of the most interesting secondary effects of the current H1N1/09 pandemic has been an increased vigilance for cases of influenza-like illness and hence an intensified sampling of seasonal H1N1 and H3N2 viruses during the typical influenza “off-season” (i.e., spring-summer) in the northern hemisphere. Because the influenza season in the northern hemisphere generally runs from November through March, with a usual peak in January or February, influenza viruses sampled outside of this period are of special interest.The current model for the global spatiotemporal dynamics of influenza A virus is that the northern and southern hemispheres represent ecological “sinks” for this virus, with little ongoing viral transmission during the summer months (9). In contrast, more continual viral transmission occurs within the tropical “source” population (13) that is most likely centered on an intense transmission network in east and southeast Asia (10). However, the precise epidemiological and evolutionary reasons for this major geographic division, and for the seasonality of influenza A virus in general, remain uncertain (1, 4). Evidence for this “sink-source” ecological model is that viruses sampled from successive seasons in localities such as New York State do not usually form linked clusters on phylogenetic trees, indicating that they are not connected by direct transmission through the summer months (7). Similar conclusions can be drawn for the United States as a whole and point to multiple introductions of phylogenetically distinct lineages during the winter (6), followed by complex patterns of spatial diffusion (14). However, despite the growing epidemiological and phylogenetic data supporting this model, it is also evident that there is relatively little sequence data from seasonal influenza viruses that are sampled from April to October in the northern hemisphere. Hence, it is uncertain whether extended chains of transmission can occur during this time period, even though this may have an important bearing on our understanding of influenza seasonality.To address these issues, we examined the evolutionary behavior of seasonal H1N1 and H3N2 viruses as they cocirculated during a single time period—(late) April to June 2009—within a single locality (New York State). Not only are levels of influenza virus transmission in the northern hemisphere usually very low during this time period, but in this particular season the human host population was also experiencing the emerging epidemic of pandemic H1N1/09.  相似文献   

3.

Background

Seasonal influenza outbreaks are a serious burden for public health worldwide and cause morbidity to millions of people each year. In the temperate zone influenza is predominantly seasonal, with epidemics occurring every winter, but the severity of the outbreaks vary substantially between years. In this study we used a highly detailed database, which gave us both temporal and spatial information of influenza dynamics in Israel in the years 1998–2009. We use a discrete-time stochastic epidemic SIR model to find estimates and credible confidence intervals of key epidemiological parameters.

Findings

Despite the biological complexity of the disease we found that a simple SIR-type model can be fitted successfully to the seasonal influenza data. This was true at both the national levels and at the scale of single cities.The effective reproductive number Re varies between the different years both nationally and among Israeli cities. However, we did not find differences in Re between different Israeli cities within a year. R e was positively correlated to the strength of the spatial synchronization in Israel. For those years in which the disease was more “infectious”, then outbreaks in different cities tended to occur with smaller time lags. Our spatial analysis demonstrates that both the timing and the strength of the outbreak within a year are highly synchronized between the Israeli cities. We extend the spatial analysis to demonstrate the existence of high synchrony between Israeli and French influenza outbreaks.

Conclusions

The data analysis combined with mathematical modeling provided a better understanding of the spatio-temporal and synchronization dynamics of influenza in Israel and between Israel and France. Altogether, we show that despite major differences in demography and weather conditions intra-annual influenza epidemics are tightly synchronized in both their timing and magnitude, while they may vary greatly between years. The predominance of a similar main strain of influenza, combined with population mixing serve to enhance local and global influenza synchronization within an influenza season.  相似文献   

4.

Background

Most influenza surveillance is based on data from urban sentinel hospitals; little is known about influenza activity in rural communities. We conducted influenza surveillance in a rural region of China with the aim of detecting influenza activity in the 2009/2010 influenza season.

Methods

The study was conducted from October 2009 to March 2010. Real-time polymerase chain reaction was used to confirm influenza cases. Over-the-counter (OTC) drug sales were daily collected in drugstores and hospitals/clinics. Space-time scan statistics were used to identify clusters of ILI in community. The incidence rate of ILI/influenza was estimated on the basis of the number of ILI/influenza cases detected by the hospitals/clinics.

Results

A total of 434 ILI cases (3.88% of all consultations) were reported; 64.71% of these cases were influenza A (H1N1) pdm09. The estimated incidence rate of ILI and influenza were 5.19/100 and 0.40/100, respectively. The numbers of ILI cases and OTC drug purchases in the previous 7 days were strongly correlated (Spearman rank correlation coefficient [r] = 0.620, P = 0.001). Four ILI outbreaks were detected by space-time permutation analysis.

Conclusions

This rural community surveillance detected influenza A (H1N1) pdm09 activity and outbreaks in the 2009/2010 influenza season and enabled estimation of the incidence rate of influenza. It also provides a scientific data for public health measures.  相似文献   

5.

Background

The 2008–09 influenza season was the time in which the Department of Veterans Affairs (VA) utilized an electronic biosurveillance system for tracking and monitoring of influenza trends. The system, known as ESSENCE or Electronic Surveillance System for the Early Notification of Community-based Epidemics, was monitored for the influenza season as well as for a rise in influenza cases at the start of the H1N1 2009 influenza pandemic. We also describe trends noted in influenza-like illness (ILI) outpatient encounter data in VA medical centers during the 2008–09 influenza season, before and after the recognition of pandemic H1N1 2009 influenza virus.

Methodology/Principal Findings

We determined prevalence of ILI coded visits using VA''s ESSENCE for 2008–09 seasonal influenza (Sept. 28, 2008–April 25, 2009 corresponding to CDC 2008–2009 flu season weeks 40–16) and the early period of pandemic H1N1 2009 (April 26, 2009–July 31, 2009 corresponding to CDC 2008–2009 flu season weeks 17–30). Differences in diagnostic ICD-9-CM code frequencies were analyzed using Chi-square and odds ratios. There were 649,574 ILI encounters captured representing 633,893 patients. The prevalence of VA ILI visits mirrored the CDC''s Outpatient ILI Surveillance Network (ILINet) data with peaks in late December, early February, and late April/early May, mirroring the ILINet data; however, the peaks seen in the VA were smaller. Of 31 ILI codes, 6 decreased and 11 increased significantly during the early period of pandemic H1N1 2009. The ILI codes that significantly increased were more likely to be symptom codes. Although influenza with respiratory manifestation (487.1) was the most common code used among 150 confirmed pandemic H1N1 2009 cases, overall it significantly decreased since the start of the pandemic.

Conclusions/Significance

VA ESSENCE effectively detected and tracked changing ILI trends during pandemic H1N1 2009 and represents an important temporal alerting system for monitoring health events in VA facilities.  相似文献   

6.
BackgroundThe timing of the biannual WHO influenza vaccine composition selection and production cycle has been historically directed to the influenza seasonality patterns in the temperate regions of the northern and southern hemispheres. Influenza activity, however, is poorly understood in the tropics with multiple peaks and identifiable year-round activity. The evidence-base needed to take informed decisions on vaccination timing and vaccine formulation is often lacking for the tropics and subtropics. This paper aims to assess influenza seasonality in the tropics and subtropics. It explores geographical grouping of countries into vaccination zones based on optimal timing of influenza vaccination.MethodsInfluenza seasonality was assessed by different analytic approaches (weekly proportion of positive cases, time series analysis, etc.) using FluNet and national surveillance data. In case of discordance in the seasonality assessment, consensus was built through discussions with in-country experts. Countries with similar onset periods of their primary influenza season were grouped into geographical zones.ResultsThe number and period of peak activity was ascertained for 70 of the 138 countries in the tropics and subtropics. Thirty-seven countries had one and seventeen countries had two distinct peaks. Countries near the equator had secondary peaks or even identifiable year-round activity. The main influenza season in most of South America and Asia started between April and June. The start of the main season varied widely in Africa (October and December in northern Africa, April and June in Southern Africa and a mixed pattern in tropical Africa). Eight “influenza vaccination zones” (two each in America and Asia, and four in Africa and Middle East) were defined with recommendations for vaccination timing and vaccine formulation. The main limitation of our study is that FluNet and national surveillance data may lack the granularity to detect sub-national variability in seasonality patterns.ConclusionDistinct influenza seasonality patterns, though complex, could be ascertained for most countries in the tropics and subtropics using national surveillance data. It may be possible to group countries into zones based on similar recommendations for vaccine timing and formulation.  相似文献   

7.
Despite substantial efforts to control H5N1 avian influenza viruses (AIVs), the viruses have continued to evolve and cause disease outbreaks in poultry and infections in humans. In this report, we analyzed 51 representative H5N1 AIVs isolated from domestic poultry, wild birds, and humans in China during 2004 to 2009, and 21 genotypes were detected based on whole-genome sequences. Twelve genotypes of AIVs in southern China bear similar H5 hemagglutinin (HA) genes (clade 2.3). These AIVs did not display antigenic drift and could be completely protected against by the A/goose/Guangdong/1/96 (GS/GD/1/96)-based oil-adjuvanted killed vaccine and recombinant Newcastle disease virus vaccine, which have been used in China. In addition, antigenically drifted H5N1 viruses, represented by A/chicken/Shanxi/2/06 (CK/SX/2/06), were detected in chickens from several provinces in northern China. The CK/SX/2/06-like viruses are reassortants with newly emerged HA, NA, and PB1 genes that could not be protected against by the GS/GD/1/96-based vaccines. These viruses also reacted poorly with antisera generated from clade 2.2 and 2.3 viruses. The majority of the viruses isolated from southern China were lethal in mice and ducks, while the CK/SX/2/06-like viruses caused mild disease in mice and could not replicate in ducks. Our results demonstrate that the H5N1 AIVs circulating in nature have complex biological characteristics and pose a continued challenge for disease control and pandemic preparedness.The highly pathogenic H5N1 influenza viruses that emerged over a decade ago in southern China have evolved into over 10 distinct phylogenetic clades based on their hemagglutinin (HA) genes. The viruses have spread to over 63 countries and to multiple mammalian species, including humans, resulting in 498 cases of infection and 294 deaths by 6 May 2010 according to the World Health Organization (WHO) (http://www.who.int). To date, none of the different H5N1 clades has acquired the ability to consistently transmit among mammalian species. The currently circulating H5N1 viruses are unique in that they continue to circulate in avian species. All previous highly pathogenic H5 and H7 viruses have naturally “burned out” or were stamped out because of their high pathogenicity in domestic poultry. While there is growing complacency about the potential of H5N1 “bird flu” to attain consistent transmissibility in humans and develop pandemicity, it is worth remembering that we have no knowledge of the time that it took the 1918 Spanish, the 1957 Asian, the 1968 Hong Kong, and the 2009 North American pandemics to develop their pandemic potentials. We may therefore currently be witnessing in real time the evolution of an H5N1 pandemic influenza virus.H5N1 avian influenza viruses (AIVs) were first detected in sick geese in Guangdong province in 1996, and both nonpathogenic and highly pathogenic (HP) H5N1 viruses were described (18). In 1997, H5N1 reassortant viruses that derived the HA gene from A/goose/Guangdong/1/96 (GS/GD/1/96)-like viruses and the other genes from H6N1 and/or H9N2 viruses caused lethal outbreaks in poultry and humans in Hong Kong (6, 7). Since then, long-term active surveillance of influenza viruses in domestic poultry has been performed, and multiple subtypes of influenza viruses have been detected in chickens and ducks in China (16, 19, 37). H5N1 influenza viruses have been repeatedly detected in apparently healthy ducks in southern China since 1999 (4, 13) and were also detected in pigs in Fujian province in 2001 and 2003 (39).Since the beginning of 2004, there have been significant outbreaks of H5N1 avian influenza virus infection involving multiple poultry farm flocks in more than 20 provinces in China (2). H5N1 viruses resulted in the deaths of millions of domestic poultry, including chickens, ducks, and geese, as the result of infection or of culling and the deaths of thousands of wild birds (5, 20). Thirty-eight human cases of HP H5N1 infection with 25 fatalities have been associated with direct exposure to infected poultry (WHO; http://www.who.int). Since 2004, the vaccination of domestic poultry has been used for the control of HP H5N1 influenza virus in China. While this strategy has been effective at reducing the incidence of HP H5N1 in poultry and at markedly reducing the number of human cases, it is impossible to vaccinate every single bird due to the enormous poultry population. Outbreaks of H5N1 influenza virus still continue to occur in poultry although at a reduced frequency.A previous study by Smith et al. reported that a “Fujian-like” H5N1 influenza virus emerged in late 2005 and predominated in poultry in southern China (26). Those authors suggested that vaccination may have facilitated the selection of the “Fujian-like” sublineage. Here, we analyzed 51 representative H5N1 viruses that were isolated from wild birds, domestic poultry, and humans from 2004 to 2009 in China and described their genetic evolution and antigenicity profiles. Our results indicate that H5N1 influenza viruses in southern China, including the “Fujian-like” viruses, are complicated reassortants, which could be well protected against by GS/GD/1/96 virus-based vaccines. We documented the emergence of the latest variant of H5N1 (A/chicken/Shanxi/2/06 [CK/SX/2/06]) that broke through existing poultry vaccines. We show that this variant is less pathogenic in mice and ducks than the earlier strains and propose that the variant was not selected by the use of vaccines.  相似文献   

8.
9.
BackgroundHepatitis A is a common acute hepatitis caused by hepatitis A virus (HAV). Annually, it affects 1.4 million people worldwide. Between 1991 and 1994, HAV infections were highly endemic in Zhejiang Province (China), with 78,720 reported HAV infections per year. Hepatitis A vaccine came on the market in 1995 and was implemented for voluntary immunization. Since 2008, hepatitis A vaccine has been integrated into the national childhood routine immunization program.ObjectiveTo understand the current epidemiological profile of hepatitis A in Zhejiang Province since hepatitis A vaccine has been available for nearly two decades.MethodsThis study used the 2005–2014 National Notifiable Diseases Reporting System data to evaluate the incidence rate of notified hepatitis A cases in Zhejiang Province.ResultsThe overall trend of incidence rate of notified hepatitis A cases significantly decreased from 2005 to 2014 (P< 0.001). During the study period, the reported incidence rate in individuals aged ≤19 years declined to the historically lowest record in 2014. Compared with individuals aged ≤19 years, those aged ≥20 years showed the highest incidence rate (P< 0.001). Majority of HAV infected cases were Laborers, accounting for approximately 70% of reported cases.ConclusionsChildhood immunization strategy with hepatitis A vaccine seemed to be effective in decreasing notified hepatitis A incidence rate in individuals aged ≤19 years. Those aged ≥20 years were observed to be the most susceptible population. The vast majority of hepatitis A cases were notified among Laborers. Therefore, we strongly suggest that future preventive and control measures should focus more on adults, particularly Laborers, in addition to the current childhood hepatitis A vaccination programme.  相似文献   

10.
IntroductionNo equations to predict the body composition of athletes from Medellín expected to have high performance have been constructed and, thus, decisions regarding their training and nutrition plans lack support.ObjectiveTo calculate the concurrent validity of five prediction equations for fat percentage in a group of athletes from Medellín, Colombia, expected to yield high performance.Materials and methodsWe conducted a cross-sectional analysis to validate diagnostic tests using secondary-source data of athletes under the age of 18 who were part of the “Medellín Team”. The gold standard was dual-energy X-ray densitometry (DEXA). We analyzed the Slaughter, Durnin and Rahaman, Lohman, and Johnston prediction equations, as well as the five-component model. We used the intraclass correlation coefficient to assess the consistency of the methods and the Bland-Altman plot to calculate the average bias and agreement limits of each of the equations.ResultsWe included 101 athletes (50,5% of them women). The median age was 14,8 years (IR: 13,0 - 16,0). The concurrent validity was “good/excellent” for the Johnston and the Durnin and Rahaman equations and the five-components model. The Lohman equation overestimated the fat percentage in 12,7 points. All of the equations showed broad agreement limits.ConclusionsThe Durnin and Rahaman and the Johnston equations, as well as the five- component model, can be used to predict the FP in the study population as they showed a “good/excellent” concurrent validity and a low average bias. The equations analyzed have low accuracy, which hinders their use to diagnose the individual fat percentage within this population.  相似文献   

11.
Pigs are proposed to be “mixing vessel” hosts that can produce genetically novel reassortant viruses with pandemic potential. The appearance of any novel influenza viruses among pigs should pose concerns for human health. Here, we report the complete genome sequence of a novel H4N1 influenza virus [A/Swine/HuBei/06/2009(H4N1)] isolated from a pig in Central China in 2009. The genomic sequence analysis indicates that this virus is a wholly avian-original influenza virus. Each gene may come from different avian influenza viruses outside mainland China, suggesting the role of migratory birds in the dispersal of influenza virus.  相似文献   

12.

Background

The 2009 influenza A(H1N1) pandemic has generated thousands of articles and news items. However, finding relevant scientific articles in such rapidly developing health crises is a major challenge which, in turn, can affect decision-makers'' ability to utilise up-to-date findings and ultimately shape public health interventions. This study set out to show the impact that the inconsistent naming of the pandemic can have on retrieving relevant scientific articles in PubMed/MEDLINE.

Methodology

We first formulated a PubMed search algorithm covering different names of the influenza pandemic and simulated the results that it would have retrieved from weekly searches for relevant new records during the first 10 weeks of the pandemic. To assess the impact of failing to include every term in this search, we then conducted the same searches but omitted in turn “h1n1,” “swine,” “influenza” and “flu” from the search string, and compared the results to those for the full string.

Principal Findings

On average, our core search string identified 44.3 potentially relevant new records at the end of each week. Of these, we determined that an average of 27.8 records were relevant. When we excluded one term from the string, the percentage of records missed out of the total number of relevant records averaged 18.7% for omitting “h1n1,” 13.6% for “swine,” 17.5% for “influenza,” and 20.6% for “flu.”

Conclusions

Due to inconsistent naming, while searching for scientific material about rapidly evolving situations such as the influenza A(H1N1) pandemic, there is a risk that one will miss relevant articles. To address this problem, the international scientific community should agree on nomenclature and the specific name to be used earlier, and the National Library of Medicine in the US could index potentially relevant materials faster and allow publishers to add alert tags to such materials.  相似文献   

13.
The emergence in 2009 of a swine-origin H1N1 influenza virus as the first pandemic of the 21st Century is a timely reminder of the international public health impact of influenza viruses, even those associated with mild disease. The widespread distribution of highly pathogenic H5N1 influenza virus in the avian population has spawned concern that it may give rise to a human influenza pandemic. The mortality rate associated with occasional human infection by H5N1 virus approximates 60%, suggesting that an H5N1 pandemic would be devastating to global health and economy. To date, the H5N1 virus has not acquired the propensity to transmit efficiently between humans. The reasons behind this are unclear, especially given the high mutation rate associated with influenza virus replication. Here we used a panel of recombinant H5 hemagglutinin (HA) variants to demonstrate the potential for H5 HA to bind human airway epithelium, the predominant target tissue for influenza virus infection and spread. While parental H5 HA exhibited limited binding to human tracheal epithelium, introduction of selected mutations converted the binding profile to that of a current human influenza strain HA. Strikingly, these amino-acid changes required multiple simultaneous mutations in the genomes of naturally occurring H5 isolates. Moreover, H5 HAs bearing intermediate sequences failed to bind airway tissues and likely represent mutations that are an evolutionary “dead end.” We conclude that, although genetic changes that adapt H5 to human airways can be demonstrated, they may not readily arise during natural virus replication. This genetic barrier limits the likelihood that current H5 viruses will originate a human pandemic.  相似文献   

14.

Background

In the face of impending influenza pandemic, a rapid vaccine production and mass vaccination is the most effective approach to prevent the large scale mortality and morbidity that was associated with the 1918 “Spanish Flu”. The traditional process of influenza vaccine production in eggs is time consuming and may not meet the demands of rapid global vaccination required to curtail influenza pandemic.

Methodology/Principal Findings

Recombinant technology can be used to express the hemagglutinin (HA) of the emerging new influenza strain in a variety of systems including mammalian, insect, and bacterial cells. In this study, two forms of HA proteins derived from the currently circulating novel H1N1 A/California/07/2009 virus, HA1 (1–330) and HA (1–480), were expressed and purified from E. coli under controlled redox refolding conditions that favoured proper protein folding. However, only the recombinant HA1 (1–330) protein formed oligomers, including functional trimers that bound receptor and caused agglutination of human red blood cells. These proteins were used to vaccinate ferrets prior to challenge with the A/California/07/2009 virus. Both proteins induced neutralizing antibodies, and reduced viral loads in nasal washes. However, the HA1 (1–330) protein that had higher content of multimeric forms provided better protection from fever and weight loss at a lower vaccine dose compared with HA (1–480). Protein yield for the HA1 (1–330) ranged around 40 mg/Liter, while the HA (1–480) yield was 0.4–0.8 mg/Liter.

Conclusions/Significance

This is the first study that describes production in bacterial system of properly folded functional globular HA1 domain trimers, lacking the HA2 transmembrane protein, that elicit potent neutralizing antibody responses following vaccination and protect ferrets from in vivo challenge. The combination of bacterial expression system with established quality control methods could provide a mechanism for rapid large scale production of influenza vaccines in the face of influenza pandemic threat.  相似文献   

15.
16.

Background

Characteristics of patients with community-acquired pneumonia (CAP) due to pandemic influenza A 2009 (H1N1) have been inadequately compared to CAP caused by other respiratory pathogens. The performance of prediction rules for CAP during an epidemic with a new infectious agent are unknown.

Methods

Prospective, population-based study from November 2008–November 2009, in centers representing 70% of hospital beds in Iceland. Patients admitted with CAP underwent evaluation and etiologic testing, including polymerase chain reaction (PCR) for influenza. Data on influenza-like illness in the community and overall hospital admissions were collected. Clinical and laboratory data, including pneumonia severity index (PSI) and CURB-65 of patients with CAP due to H1N1 were compared to those caused by other agents.

Results

Of 338 consecutive and eligible patients 313 (93%) were enrolled. During the pandemic peak, influenza A 2009 (H1N1) patients constituted 38% of admissions due to CAP. These patients were younger, more dyspnoeic and more frequently reported hemoptysis. They had significantly lower severity scores than other patients with CAP (1.23 vs. 1.61, P = .02 for CURB-65, 2.05 vs. 2.87 for PSI, P<.001) and were more likely to require intensive care admission (41% vs. 5%, P<.001) and receive mechanical ventilation (14% vs. 2%, P = .01). Bacterial co-infection was detected in 23% of influenza A 2009 (H1N1) patients with CAP.

Conclusions

Clinical characteristics of CAP caused by influenza A 2009 (H1N1) differ markedly from CAP caused by other etiologic agents. Commonly used CAP prediction rules often failed to predict admissions to intensive care or need for assisted ventilation in CAP caused by the influenza A 2009 (H1N1) virus, underscoring the importance of clinical acumen under these circumstances.  相似文献   

17.
18.
19.

Background

In 2009, pregnant women were specifically targeted by a national vaccination campaign against pandemic A/H1N1 influenza virus. The objectives of the COFLUPREG study, initially set up to assess the incidence of serious forms of A/H1N1 influenza, were to assess the consequences of maternal vaccination on pregnancy outcomes and maternal seroprotection at delivery.

Methods

Pregnant women, between 12 and 35 weeks of gestation, non vaccinated against A/H1N1 2009 influenza were randomly selected to be included in a prospective cohort study conducted in three maternity centers in Paris (France) during pandemic period. Blood samples were planned to assess hemagglutination inhibition (HI) antibody against A/H1N1 2009 influenza at inclusion and at delivery.

Results

Among the 877 pregnant women included in the study, 678 (77.3%) had serum samples both at inclusion and delivery, and 320 (36.5%) received pandemic A/H1N1 2009 influenza vaccine with a median interval between vaccination and delivery of 92 days (95% CI 48–134). At delivery, the proportion of women with seroprotection (HI antibodies titers against A/H1N1 2009 influenza of 1∶40 or greater) was 69.9% in vaccinated women. Of the 422 non-vaccinated women with serological data, 11 (2.6%; 95%CI: 1.3–4.6) had laboratory documented A/H1N1 2009 influenza (1 with positive PCR and 10 with serological seroconversion). None of the 877 study’s women was hospitalized for flu. No difference on pregnancy outcomes was evidenced between vaccinated women, non-vaccinated women without seroconversion and non-vaccinated women with flu.

Conclusion

Despite low vaccine coverage, incidence of pandemic flu was low in this cohort of pregnant women.No effect on pregnancy and delivery outcomes was evidenced after vaccination.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号