首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Seedling Traits Determine Drought Tolerance of Tropical Tree Species   总被引:3,自引:0,他引:3  
Water availability is the most important factor determining tree species distribution in the tropics, but the underlying mechanisms are still not clear. In this study, we compared functional traits of 38 tropical tree species from dry and moist forest, and quantified their ability to survive drought in a dry‐down experiment in which wilting and survival were monitored. We evaluated how seedling traits affect drought survival, and how drought survival determines species distribution along the rainfall gradient. Dry forest species tended to have compound leaves, high stem dry matter content (stem dry mass/fresh mass), and low leaf area ratio, suggesting that reduction of transpiration and avoidance of xylem cavitation are important for their success. Three functional groups were identified based on the seedling traits: (1) drought avoiders with a deciduous leaf habitat and taproots; (2) drought resisters with tough tissues (i.e., a high dry matter content); and (3) light‐demanding moist forest species with a large belowground foraging capacity. Dry forest species had a longer drought survival time (62 d) than moist forest species (25 d). Deciduousness explained 69 percent of interspecific variation in drought survival. Among evergreen species, stem density explained 20 percent of the drought survival. Drought survival was not related to species distribution along the rainfall gradient, because it was mainly determined by deciduousness, and species with deciduous seedlings are found in both dry and moist forests. Among evergreen species, drought survival explained 28 percent of the variation in species position along the rainfall gradient. This suggests that, apart from drought tolerance, other factors such as history, dispersal limitation, shade tolerance, and fire shape species distribution patterns along the rainfall gradient.  相似文献   

3.
Plant hydraulic traits capture the impacts of drought stress on plant function, yet vegetation models lack sufficient information regarding trait coordination and variation with climate‐of‐origin across species. Here, we investigated key hydraulic and carbon economy traits of 12 woody species in Australia from a broad climatic gradient, with the aim of identifying the coordination among these traits and the role of climate in shaping cross‐species trait variation. The influence of environmental variation was minimized by a common garden approach, allowing us to factor out the influence of environment on phenotypic variation across species. We found that hydraulic traits (leaf turgor loss point, stomatal sensitivity to drought [Pgs], xylem vulnerability to cavitation [Px], and branch capacitance [Cbranch]) were highly coordinated across species and strongly related to rainfall and aridity in the species native distributional range. In addition, trade‐offs between drought tolerance and plant growth rate were observed across species. Collectively, these results provide critical insight into the coordination among hydraulic traits in modulating drought adaptation and will significantly advance our ability to predict drought vulnerability in these dominant trees species.  相似文献   

4.
  • Climate models predict a further drying of the Mediterranean summer. One way for plant species to persist during such climate changes is through acclimation. Here, we determine the extent to which trait plasticity in response to drought differs between species and between sites, and address the question whether there is a trade‐off between drought survival and phenotypic plasticity.
  • Throughout the summer we measured physiological traits (photosynthesis – Amax, stomatal conductance – gs, transpiration – E, leaf water potential – ψl) and structural traits (specific leaf area – SLA, leaf density – LD, leaf dry matter content – LDMC, leaf relative water content – LRWC) of leaves of eight woody species in two sites with slightly different microclimate (north‐ versus south‐facing slopes) in southern Spain. Plant recovery and survival was estimated after the summer drought period.
  • We found high trait variability between species. In most variables, phenotypic plasticity was lower in the drier site. Phenotypic plasticity of SLA and LDMC correlated negatively with drought survival, which suggests a trade‐off between them. On the other hand, high phenotypic plasticity of SLA and LDMC was positively related to traits associated with rapid recovery and growth after the drought period.
  • Although phenotypic plasticity is generally seen as favourable during stress conditions, here it seemed beneficial for favourable conditions. We propose that in environments with fluctuating drought periods there can be a trade‐off between drought survival and growth during favourable conditions. When climate become drier, species with high drought survival but low phenotypic plasticity might be selected for.
  相似文献   

5.
Considerable uncertainty surrounds the impacts of anthropogenic climate change on the composition and structure of Amazon forests. Building upon results from two large‐scale ecosystem drought experiments in the eastern Brazilian Amazon that observed increases in mortality rates among some tree species but not others, in this study we investigate the physiological traits underpinning these differential demographic responses. Xylem pressure at 50% conductivity (xylem‐P50), leaf turgor loss point (TLP), cellular osmotic potential (πo), and cellular bulk modulus of elasticity (ε), all traits mechanistically linked to drought tolerance, were measured on upper canopy branches and leaves of mature trees from selected species growing at the two drought experiment sites. Each species was placed a priori into one of four plant functional type (PFT) categories: drought‐tolerant versus drought‐intolerant based on observed mortality rates, and subdivided into early‐ versus late‐successional based on wood density. We tested the hypotheses that the measured traits would be significantly different between the four PFTs and that they would be spatially conserved across the two experimental sites. Xylem‐P50, TLP, and πo, but not ε, occurred at significantly higher water potentials for the drought‐intolerant PFT compared to the drought‐tolerant PFT; however, there were no significant differences between the early‐ and late‐successional PFTs. These results suggest that these three traits are important for determining drought tolerance, and are largely independent of wood density—a trait commonly associated with successional status. Differences in these physiological traits that occurred between the drought‐tolerant and drought‐intolerant PFTs were conserved between the two research sites, even though they had different soil types and dry‐season lengths. This more detailed understanding of how xylem and leaf hydraulic traits vary between co‐occuring drought‐tolerant and drought‐intolerant tropical tree species promises to facilitate a much‐needed improvement in the representation of plant hydraulics within terrestrial ecosystem and biosphere models, which will enhance our ability to make robust predictions of how future changes in climate will affect tropical forests.  相似文献   

6.
7.
干旱导致树木死亡对生态系统功能和碳平衡有重大影响。植物水分运输系统失调是引发树木死亡的主要机制。然而, 树木对干旱胁迫响应的多维性和复杂性, 使人们对植物水分运输系统在极端干旱条件下的响应以及植物死亡机理的认识还不清楚。该文首先评述衡量植物抗旱性的指标, 着重介绍可以综合评价植物干旱抗性特征的新参数——气孔安全阈值(SSM)。SSM越高, 表明气孔和水力性状之间的协调性越强, 木质部栓塞的可能性越低, 水力策略越保守。然后, 阐述木本植物应对干旱胁迫的一般响应过程。之后, 分别综述植物不同器官(叶、茎和根)对干旱胁迫的响应机制。植物达到死亡临界阈值的概率和时间, 取决于相关生理和形态学特征的相互作用。最后, 介绍木本植物水力恢复机制, 并提出3个亟待开展的研究问题: (1)改进叶片水分运输(木质部和木质部外水力导度)的测量方法, 量化4种不同途径的叶肉水分运输的相对贡献; (2)量化叶片表皮通透性变化, 以便更好地理解植物水分利用策略; (3)深入研究树木水碳耦合机制, 将个体结构和生理特征与群落/景观格局和过程相关联, 以便更好地评估和监测干旱诱导树木死亡的风险。  相似文献   

8.
Unlike most of the important food crops, sesame can survive drought but severe and repeated drought episodes, especially occurring during the reproductive stage, significantly curtail the productivity of this high oil crop. Genome‐wide association study was conducted for traits related to drought tolerance using 400 diverse sesame accessions, including landraces and modern cultivars. Ten stable QTLs explaining more than 40% of the phenotypic variation and located on four linkage groups were significantly associated with drought tolerance related traits. Accessions from the tropical area harboured higher numbers of drought tolerance alleles at the peak loci and were found to be more tolerant than those from the northern area, indicating a long‐term genetic adaptation to drought‐prone environments. We found that sesame has already fixed important alleles conferring survival to drought which may explain its relative high drought tolerance. However, most of the alleles crucial for productivity and yield maintenance under drought conditions are far from been fixed. This study also revealed that pyramiding the favourable alleles observed at the peak loci is of high potential for enhancing drought tolerance in sesame. In addition, our results highlighted two important pleiotropic QTLs harbouring known and unreported drought tolerance genes such as SiABI4, SiTTM3, SiGOLS1, SiNIMIN1 and SiSAM. By integrating candidate gene association study, gene expression and transgenic experiments, we demonstrated that SiSAM confers drought tolerance by modulating polyamine levels and ROS homeostasis, and a missense mutation in the coding region partly contributes to the natural variation of drought tolerance in sesame.  相似文献   

9.
Adams HD  Kolb TE 《Oecologia》2004,140(2):217-225
We sought to understand differences in tree response to meteorological drought among species and soil types at two ecotone forests in northern Arizona, the pinyon-juniper woodland/ponderosa pine ecotone, and the higher elevation, wetter, ponderosa pine/mixed conifer ecotone. We used two approaches that provide different information about drought response: the ratio of standardized radial growth in wet years to dry years (W:D) for the period between years 1950 and 2000 as a measure of growth response to drought, and 13C in leaves formed in non-drought (2001) and drought (2002) years as a measure of change in water use efficiency (WUE) in response to drought. W:D and leaf 13C response to drought for Pinus edulis and P. ponderosa did not differ for trees growing on coarse-texture soils derived from cinders compared with finer textured soils derived from flow basalts or sedimentary rocks. P. ponderosa growing near its low elevation range limit at the pinyon-juniper woodland/ponderosa pine ecotone had a greater growth response to drought (higher W:D) and a larger increase in WUE in response to drought than co-occurring P. edulis growing near its high elevation range limit. P. flexilis and Pseudotsuga menziesii growing near their low elevation range limit at the ponderosa pine/mixed conifer ecotone had a larger growth response to drought than co-occurring P. ponderosa growing near its high elevation range limit. Increases in WUE in response to drought were similar for all species at the ponderosa pine/mixed conifer ecotone. Low elevation populations of P. ponderosa had greater growth response to drought than high-elevation populations, whereas populations had a similar increase in WUE in response to drought. Our findings of different responses to drought among co-occurring tree species and between low- and high-elevation populations are interpreted in the context of drought impacts on montane coniferous forests of the southwestern USA.  相似文献   

10.
植物抗旱性机制包括耐旱性和避旱性。耐旱性的特征主要是木质部易栓塞性和膨压损失点,而避旱性的特征则是叶片脱落和落叶性。虽然这些机制可以权衡物种连续性,但对于干旱引发的叶片脱落和持续时间的变化如何影响木质部和叶片耐受性之间的关系却知之甚少。在本研究中,我们研究两种具有不同叶片脱落叶行为的橡树(栎属)的耐旱性程度差异。我们预测了Quercus deserticola 在旱季结束时落叶(晚落叶)而面临更大的空化风险,导致其比Q. laeta更耐旱,对水分的利用也更加保守。Q. laeta 只在旱季中期很短的时间内落叶(短落叶)。本研究在墨西哥中部进行,两种橡树各具有单个种群,它们之间相距1.58公里,海拔差为191米。Q. deserticola (晚落叶)多出现在下坡,而Q. laeta (短落叶)多出现在沿坡度海拔较高的地方。我们评估了样地内茎干的水分传导率的季节差异(雨季和旱季),并检测了两个物种间木质部对空化的脆弱性、叶片水分利用和叶片膨松损失点的差异。两种橡树在耐旱性状方面没有显著差异,主要包括木质部易栓塞性、叶片膨松损失点和气孔导度。然而,两种植物在旱季都有不同的表现:短落叶植物对木质部功能的负面影响要比晚落叶植物低。综上所述,两种橡树在植物生理性能方面的季节变化取决于冠层叶面积的减少。  相似文献   

11.
Growth models can be used to assess forest vulnerability to climate warming. If global warming amplifies water deficit in drought‐prone areas, tree populations located at the driest and southernmost distribution limits (rear‐edges) should be particularly threatened. Here, we address these statements by analyzing and projecting growth responses to climate of three major tree species (silver fir, Abies alba; Scots pine, Pinus sylvestris; and mountain pine, Pinus uncinata) in mountainous areas of NE Spain. This region is subjected to Mediterranean continental conditions, it encompasses wide climatic, topographic and environmental gradients, and, more importantly, it includes rear‐edges of the continuous distributions of these tree species. We used tree‐ring width data from a network of 110 forests in combination with the process‐based Vaganov–Shashkin‐Lite growth model and climate–growth analyses to forecast changes in tree growth during the 21st century. Climatic projections were based on four ensembles CO2 emission scenarios. Warm and dry conditions during the growing season constrain silver fir and Scots pine growth, particularly at the species rear‐edge. By contrast, growth of high‐elevation mountain pine forests is enhanced by climate warming. The emission scenario (RCP 8.5) corresponding to the most pronounced warming (+1.4 to 4.8 °C) forecasted mean growth reductions of ?10.7% and ?16.4% in silver fir and Scots pine, respectively, after 2050. This indicates that rising temperatures could amplify drought stress and thus constrain the growth of silver fir and Scots pine rear‐edge populations growing at xeric sites. Contrastingly, mountain pine growth is expected to increase by +12.5% due to a longer and warmer growing season. The projections of growth reduction in silver fir and Scots pine portend dieback and a contraction of their species distribution areas through potential local extinctions of the most vulnerable driest rear‐edge stands. Our modeling approach provides accessible tools to evaluate forest vulnerability to warmer conditions.  相似文献   

12.
Like many midlatitude ecosystems, Mediterranean forests will suffer longer and more intense droughts with the ongoing climate change. The responses to drought in long‐lived trees differ depending on the time scale considered, and short‐term responses are currently better understood than longer term acclimation. We assessed the temporal changes in trees facing a chronic reduction in water availability by comparing leaf‐scale physiological traits, branch‐scale hydraulic traits, and stand‐scale biomass partitioning in the evergreen Quercus ilex across a regional precipitation gradient (long‐term changes) and in a partial throughfall exclusion experiment (TEE, medium term changes). At the leaf scale, gas exchange, mass per unit area and nitrogen concentration showed homeostatic responses to drought as they did not change among the sites of the precipitation gradient or in the experimental treatments of the TEE. A similar homeostatic response was observed for the xylem vulnerability to cavitation at the branch scale. In contrast, the ratio of leaf area over sapwood area (LA/SA) in young branches exhibited a transient response to drought because it decreased in response to the TEE the first 4 years of treatment, but did not change among the sites of the gradient. At the stand scale, leaf area index (LAI) decreased, and the ratios of stem SA to LAI and of fine root area to LAI both increased in trees subjected to throughfall exclusion and from the wettest to the driest site of the gradient. Taken together, these results suggest that acclimation to chronic drought in long‐lived Q. ilex is mediated by changes in hydraulic allometry that shift progressively from low (branch) to high (stand) organizational levels, and act to maintain the leaf water potential within the range of xylem hydraulic function and leaf photosynthetic assimilation.  相似文献   

13.
Drought is a major limitation for survival and growth in plants. With more frequent and severe drought episodes occurring due to climate change, it is imperative to understand the genomic and physiological basis of drought tolerance to be able to predict how species will respond in the future. In this study, univariate and multitrait multivariate genome-wide association study methods were used to identify candidate genes in two iconic and ecosystem-dominating species of the western USA, coast redwood and giant sequoia, using 10 drought-related physiological and anatomical traits and genome-wide sequence-capture single nucleotide polymorphisms. Population-level phenotypic variation was found in carbon isotope discrimination, osmotic pressure at full turgor, xylem hydraulic diameter, and total area of transporting fibers in both species. Our study identified new 78 new marker × trait associations in coast redwood and six in giant sequoia, with genes involved in a range of metabolic, stress, and signaling pathways, among other functions. This study contributes to a better understanding of the genomic basis of drought tolerance in long-generation conifers and helps guide current and future conservation efforts in the species.  相似文献   

14.
Tree growth at northern treelines is generally temperature‐limited due to cold and short growing seasons. However, temperature‐induced drought stress was repeatedly reported for certain regions of the boreal forest in northwestern North America, provoked by a significant increase in temperature and possibly reinforced by a regime shift of the pacific decadal oscillation (PDO). The aim of this study is to better understand physiological growth reactions of white spruce, a dominant species of the North American boreal forest, to PDO regime shifts using quantitative wood anatomy and traditional tree‐ring width (TRW) analysis. We investigated white spruce growth at latitudinal treeline across a >1,000 km gradient in northwestern North America. Functionally important xylem anatomical traits (lumen area, cell‐wall thickness, cell number) and TRW were correlated with the drought‐sensitive standardized precipitation–evapotranspiration index of the growing season. Correlations were computed separately for complete phases of the PDO in the 20th century, representing alternating warm/dry (1925–1946), cool/wet (1947–1976) and again warm/dry (1977–1998) climate regimes. Xylem anatomical traits revealed water‐limiting conditions in both warm/dry PDO regimes, while no or spatially contrasting associations were found for the cool/wet regime, indicating a moisture‐driven shift in growth‐limiting factors between PDO periods. TRW reflected only the last shift of 1976/1977, suggesting different climate thresholds and a higher sensitivity to moisture availability of xylem anatomical traits compared to TRW. This high sensitivity of xylem anatomical traits permits to identify first signs of moisture‐driven growth in treeline white spruce at an early stage, suggesting quantitative wood anatomy being a powerful tool to study climate change effects in the northwestern North American treeline ecotone. Projected temperature increase might challenge growth performance of white spruce as a key component of the North American boreal forest biome in the future, when drier conditions are likely to occur with higher frequency and intensity.  相似文献   

15.
Aim To understand how tree growth response to regional drought and temperature varies between tree species, elevations and forest types in a mountain landscape. Location Twenty‐one sites on an elevation gradient of 1500 m on the San Francisco Peaks, northern Arizona, USA. Methods Tree‐ring data for the years 1950–2000 for eight tree species (Abies lasiocarpa var. arizonica (Merriam) Lemm., Picea engelmannii Parry ex Engelm., Pinus aristata Engelm., Pinus edulis Engelm., Pinus flexilis James, Pinus ponderosa Dougl. ex Laws., Pseudotsuga menziesii var. glauca (Beissn.) Franco and Quercus gambelii Nutt.) were used to compare sensitivity of radial growth to regional drought and temperature among co‐occurring species at the same site, and between sites that differed in elevation and species composition. Results For Picea engelmannii, Pinus flexilis, Pinus ponderosa and Pseudotsuga menziesii, trees in drier, low‐elevation stands generally had greater sensitivity of radial growth to regional drought than trees of the same species in wetter, high‐elevation stands. Species low in their elevational range had greater drought sensitivity than co‐occurring species high in their elevational range at the pinyon‐juniper/ponderosa pine forest ecotone, ponderosa pine/mixed conifer forest ecotone and high‐elevation invaded meadows, but not at the mixed conifer/subalpine forest ecotone. Sensitivity of radial growth to regional drought was greater at drier, low‐elevation compared with wetter, high‐elevation forests. Yearly growth was positively correlated with measures of regional water availability at all sites, except high‐elevation invaded meadows where growth was weakly correlated with all climatic factors. Yearly growth in high‐elevation forests up to 3300 m a.s.l. was more strongly correlated with water availability than temperature. Main conclusions Severe regional drought reduced growth of all dominant tree species over a gradient of precipitation and temperature represented by a 1500‐m change in elevation, but response to drought varied between species and stands. Growth was reduced the most in drier, low‐elevation forests and in species growing low in their elevational range in ecotones, and the least for trees that had recently invaded high‐elevation meadows. Constraints on tree growth from drought and high temperature are important for high‐elevation subalpine forests located near the southern‐most range of the dominant species.  相似文献   

16.
17.
LOS5/ABA3 gene encoding molybdenum cofactor sulphurase is involved in aldehyde oxidase (AO) activity in Arabidopsis, which indirectly regulates ABA biosynthesis and increased stress tolerance. Here, we used a constitutive super promoter to drive LOS5/ABA3 overexpression in soybean (Glycine max L.) to enhance drought tolerance in growth chamber and field conditions. Expression of LOS5/ABA3 was up‐regulated by drought stress, which led to increasing AO activity and then a notable increase in ABA accumulation. Transgenic soybean under drought stress had reduced water loss by decreased stomatal aperture size and transpiration rate, which alleviated leaf wilting and maintained higher relative water content. Exposed to drought stress, transgenic soybean exhibited reduced cell membrane damage by reducing electrolyte leakage and production of malondialdehyde and promoting proline accumulation and antioxidant enzyme activities. Also, overexpression of LOS5/ABA3 enhanced expression of stress‐up‐regulated genes. Furthermore, the seed yield of transgenic plants is at least 21% higher than that of wide‐type plants under drought stress conditions in the field. These data suggest that overexpression of LOS5/ABA3 could improve drought tolerance in transgenic soybean via enhanced ABA accumulation, which could activate expression of stress‐up‐regulated genes and cause a series of physiological and biochemical resistant responses.  相似文献   

18.
The effects of climate change on high‐latitude forest ecosystems are complex, making forecasts of future scenarios uncertain. The predicted lengthening of the growing season under warming conditions is expected to increase tree growth rates. However, there is evidence of an increasing sensitivity of the boreal forest to drought stress. To assess the influence of temperature and precipitation on the growth of black spruce (Picea mariana), we investigated long‐term series of wood anatomical traits on 20 trees from four sites along 600 km, the latitudinal range of the closed boreal forest in Quebec, Canada. We correlated the anatomical traits resolved at intraring level with daily temperature, vapor pressure deficit (VPD), and precipitation during the 1943–2010 period. Tree‐ring width, number of cells per ring and cell wall thickness were positively affected by spring and summer daily mean and maximum temperature at the northern sites. These results agree with the well‐known positive effect of high temperatures on tree ring formation at high latitudes. However, we captured, for the first time in this region, the latent impact of water availability on xylem traits. Indeed, in all the four sites, cell lumen area showed positive correlations with daily precipitation (mostly at low latitude), and/or negative correlations with daily mean and maximum temperature and VPD (mostly at high latitude). We inferred that drought, due to high temperatures, low precipitations, or both, negatively affects cell enlargement across the closed boreal forest, including the northernmost sites. The production of tracheids with narrower lumen, potentially more resistant to cavitation, could increase xylem hydraulic safety under a warmer and drier climate. However, this would result in lower xylem conductivity, with consequent long‐term hydraulic deterioration, growth decline, and possibly lead to tree dieback, as observed in other forest ecosystems at lower latitudes.  相似文献   

19.
Cavitation resistance is a critical determinant of drought tolerance in tropical tree species, but little is known of its association with life history strategies, particularly for seasonal dry forests, a system critically driven by variation in water availability. We analysed vulnerability curves for saplings of 13 tropical dry forest tree species differing in life history and leaf phenology. We examined how vulnerability to cavitation (P50) related to dry season leaf water potentials and stem and leaf traits. P50‐values ranged from ?0.8 to ?6.2 MPa, with pioneers on average 38% more vulnerable to cavitation than shade‐tolerants. Vulnerability to cavitation was related to structural traits conferring tissue stress vulnerability, being negatively correlated with wood density, and surprisingly maximum vessel length. Vulnerability to cavitation was negatively related to the Huber‐value and leaf dry matter content, and positively with leaf size. It was not related to SLA. We found a strong trade‐off between cavitation resistance and hydraulic efficiency. Most species in the field were operating at leaf water potentials well above their P50, but pioneers and deciduous species had smaller hydraulic safety margins than shade‐tolerants and evergreens. A trade‐off between hydraulic safety and efficiency underlies ecological differentiation across these tropical dry forest tree species.  相似文献   

20.
  • The performance of seedlings is crucial for the survival and persistence of plant populations. Although drought frequently occurs in floodplains and can cause seedling mortality, studies on the effects of drought on seedlings of floodplain grasslands are scarce. We tested the hypotheses that drought reduces aboveground biomass, total biomass, plant height, number of leaves, leaf area and specific leaf area (SLA), and increases root biomass and root‐mass fraction (RMF) and that seedlings from species of wet floodplain grasslands are more affected by drought than species of dry grasslands.
  • In a greenhouse study, we exposed seedlings of three confamilial pairs of species (Pimpinella saxifraga, Selinum carvifolia, Veronica teucrium, Veronica maritima, Sanguisorba minor, Sanguisorba officinalis) to increasing drought treatments. Within each plant family, one species is characteristic of wet and one of dry floodplain grasslands, confamilial in order to avoid phylogenetic bias of the results.
  • In accordance with our hypotheses, drought conditions reduced aboveground biomass, total biomass, plant height, number of leaves and leaf area. Contrary to our hypotheses, drought conditions increased SLA and decreased root biomass and RMF of seedlings. Beyond the effects of the families, the results were species‐specific (V. maritima being the most sensitive species) and habitat‐specific. Species indicative of wet floodplain grasslands appear to be more sensitive to drought than species indicative of dry grasslands.
  • Because of species‐ and habitat‐specific responses to reduced water availability, future drought periods due to climate change may severely affect some species from dry and wet habitats, while others may be unaffected.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号