首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
  1. We conducted a paired large‐scale predation experiment over 32 months in two streams being seasonally shaded by deciduous riparian trees, using the benthivorous fish species gudgeon (Gobio gobio) and stone loach (Barbatula barbatula) as top predators. The biomass of benthic grazers and periphyton in the presence/absence of fish was measured and the periphyton production was compared with the consumption rates using a model‐based approach.
  2. A three‐level trophic cascade from benthivorous fish via benthic grazers to periphyton was evident from the field experiment. Integrated over the whole study period, fish reduced the biomass of benthic grazers and indirectly increased the periphyton biomass.
  3. Scenario analyses, using a simple dynamic model, indicated top‐down control of periphyton to be strongest during autumn, when periphyton growth was light‐limited, and weaker in the spring, when periphyton growth was not light‐limited. The seasonal light supply variation was caused by shading due to deciduous riparian trees during the vegetation period.
  4. This asymmetry in temporal processes weakened the top‐down control in a natural benthic community. Even though grazer biomass is naturally reduced in summer, due to the emergence of the most abundant species (mayflies), a grazer biomasses high enough to reduce the spring periphyton peak could not be sustained by the low summer periphyton growth.
  5. We suppose that the temporal decoupling of grazer biomass from periphyton biomass might be caused by the very short generation time of the primary producers (days) compared with the long generation time of the primary consumers (mostly 1 year).
  相似文献   

2.
    
Local dynamics such as resource enhancement (e.g. nutrient supply) and stochastic events of destruction (disturbances that provide new space) are hypothesized to counteractively affect species diversity and composition. We tested the independent and interactive effects of nutrients and disturbance on the development of assemblages of epibiota attached to vertical surfaces in an oligotrophic system. Nutrient concentrations were manipulated at three levels (ambient, medium and high) while disturbance was manipulated by removing biomass at seven frequencies (0×, 2×, 3×, 4×, 5×, 7×, 12×). Nutrient and disturbance regimes had opposing effects on diversity such that species richness increased with resource enhancement (nutrients) and declined with disturbance. These results support the model that increased heterogeneity of distribution of limiting resources allows the coexistence of species with low and high resource requirements.  相似文献   

3.
    
A long‐term biomanipulation has been performed in the stratified Feldberger Haussee since 1985. Prior to manipulation, nutrient load to the lake had declined due to waste water removal. Planktivorous fish were reduced by seining and by enhancement of piscivorous fish. Changes in transparency, nutrients, phytoplankton, zooplankton and fish were documented for both the premanipulation period (1978–1985) and the manipulation period (1986–1998). Transparency increased in response to the manipulation (+54%), but strong year‐to‐year fluctuations were observed. These fluctuations were correlated to chlorophyll a, primary production and the proportion of piscivores in the fish community. We conclude that the success of the restoration was predominantly attributed to bottom‐up forces as a result of the declining nutrient load and an intensified co‐precipitation of phosphorus with calcite. However, the increased predation impact by the piscivorous fish may have caused a reduced nutrient recycling by the planktivorous fish thus contributing also to the improvement in water quality.  相似文献   

4.
1. Algal growth in lotic systems is controlled either from the bottom‐up (e.g. nutrients and light, which determine growth rates) or from the top‐down (e.g. grazing pressure, which reduces accumulated biomass). Nutrient‐enriched streams that support large and diverse grazing macroinvertebrate populations and those with shaded riparian corridors rarely suffer from excessive algal growth. 2. In this study, the density of benthic algivorous macroinvertebrates was experimentally manipulated in shaded and open nutrient‐enriched stream habitats of the Owennagearagh River, south‐west Ireland. The ability of macroinvertebrate grazers and riparian shade to control benthic algal growth [particularly the nuisance alga, Cladophora glomerata (L. Kütz)] was investigated. Three sites with markedly different concentrations of plant nutrients (one site upstream and two sites downstream of the sewage outfall) were selected. The density of grazing invertebrates colonising ceramic tiles was reduced using high‐voltage localised electric pulses. Replicates of treatment (grazer‐excluded) and control (grazed) tiles were deployed in open and shaded (<25 and >80% canopy cover, respectively) patches of stream bed, in each site. 3. After 2‐week Cladophora cover, periphytic chlorophyll a and biofilm ash‐free dry mass (AFDM) were quantified for all experimental tiles. Values for all three parameters were highest on grazer‐excluded tiles from open patches. Grazed tiles from open patches accrued little Cladophora and had significantly lower levels of chlorophyll a and AFDM. Nutrient inputs were found to have an impact on the density of grazing invertebrates, with higher densities of Baetis nymphs at the most nutrient‐enriched site. 4. Our results demonstrate that in eutrophic, high‐light streams, filamentous algae can quickly accumulate to nuisance levels in the absence of invertebrate grazers. In future, greater attention should be paid to the role of grazing invertebrates in controlling nuisance algae in streams, in addition to algal–nutrient relationships.  相似文献   

5.
    
Stream inlets into shallow bays of reservoirs and lakes may be ‘hot‐spots’ for toxic cyanobacterial bloom initiation. These ‘hot‐spots’ may be connected with the permanent inflow of high nutrient concentrations from the catchment, optimal physical conditions (wind protected areas) that occur in shallow areas and/or ineffective top‐down control. Four sampling sites along a transect from stream to reservoir in a shallow bay of Sulejow Reservoir (Poland) were studied to test the above hypothesis, comprising a transition zone between lotic and pelagic habitats. Investigations showed that stream inlet into shallow bay acted as incubator for Microcystis blooms. The nutrient level, especially phosphorus, was identified as the major cause of cyanobacterial bloom growth. The increase of Microcystis biomass strongly correlated with increasing microcystin concentrations, however, a relationship with microcystin content was not observed. Toxicity of bloom demonstrated seasonal variability, reaching its maximum at the initial phase of bloom. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
    
  1. Periphytic algae are an important source of energy fuelling stream food webs. Periphytic algal biomass can be controlled by bottom‐up and top‐down forces, but there are few studies that have investigated these effects simultaneously, especially in tropical streams, where periphyton can be a very important carbon source. Here, we investigated the bottom‐up effects of nutrients and the top‐down effects of grazers and predators in a coastal tropical stream in Brazil.
  2. We employed nutrient‐diffusing substrata to test for nutrient limitation, placed inside electric exclosures of different intensities, which prevented consumers from entering the electrified area. We used four types of substrata: one enriched with nitrogen alone (N), one with phosphorus alone (P), one with nitrogen + phosphorus (NP) and one control with no nutrients added (C). The electric exclosure had three treatments: high electricity that excluded both predators (Macrobrachium olfersi shrimps) and grazers (Baetidae mayflies), low electricity that excluded only shrimps, and a control treatment with no electricity where both shrimps and mayflies were allowed to enter.
  3. The limiting nutrient in the stream was nitrogen. Our results showed a greater magnitude of bottom‐up effects, with periphytic algae responding more strongly to nutrient addition than to grazers or predators. Top‐down control was not as strong, but periphytic algae responded negatively to grazers, especially in the absence of predators. This suggests that shrimps, either directly or indirectly, inhibit mayfly grazing activity. The response of periphytic algae to nutrients was stronger in the absence of grazers. Thus, top‐down effects, both directly and indirectly through a trophic cascade, can dampen the response to nitrogen addition, diminishing the degree of resource limitation.
  相似文献   

7.
8.
1. Water‐level fluctuations are typical of lakes located in the semi‐arid Mediterranean region, which is characterised by warm rainy winters and hot dry summers. Ongoing climate change may exacerbate fluctuations and lead to more severe episodes of drought, so information on the effects of water level on the functioning of lake ecosystems in such regions is crucial. 2. In eutrophic Lake Eymir, Turkey, we conducted a 4‐month (summer) field experiment using cylindrical 0.8‐m‐ (low‐water‐level) and 1.6‐m‐deep (high‐water‐level) mesocosms (kept open to the sediment and atmosphere). Fish (tench, Tinca tinca, and bleak, Alburnus escherichii) were added to half of the mesocosms, while the rest were kept fishless. Ten shoots of Potamogeton pectinatus were transplanted to each mesocosm. 3. Sampling for physicochemical variables, chlorophyll a (chl‐a), zooplankton and per cent plant volume inhabited (PVI%) by macrophytes was conducted weekly during the first 5 weeks, and subsequently biweekly. Macrophytes were harvested on the last sampling date. During the course of the experiment, the water level decreased by 0.41 ± 0.06 m. 4. Throughout the experiment, fish affected zooplankton abundance (?), nutrient concentrations (+), chl‐a (+) and water clarity (?) most strongly in the low‐water‐level mesocosms and the zooplankton community shifted towards dominance of small‐sized forms. The fishless mesocosms had a higher zooplankton/phytoplankton ratio, suggesting higher grazing. 5. Greatest macrophyte growth was observed in the low‐water‐level fishless mesocosms. However, despite high nutrient concentrations and low water clarity, macrophytes were also abundant in the fish mesocosms and particularly increased following a water‐level decrease from midsummer onwards. Macrophyte growth was poor in the high‐water‐level mesocosms, even in the fishless ones with high water clarity. This was ascribed to extensive periphyton development reducing light availability for the macrophytes. 6. Our results indicate that a reduction in water level during summer may help maintain the growth of macrophytes in Mediterranean eutrophic shallow lakes, despite a strong negative effect of fish predation on water clarity. It is therefore probable that an expected negative effect of global climate change on water clarity because of eutrophication and enhanced top‐down control of fish may be, at least partly, counteracted by reduced water level, provided that physical disturbance is not severe.  相似文献   

9.
Ecological stoichiometry seeks to understand the ecological consequences of elemental imbalances between consumers and their resources. Therein, the well-accepted growth rate hypothesis (GRH) states that organisms exhibiting rapid growth have higher phosphorus (P) demand – and thus lower C:P and N:P ratios – than slow growing ones, due to a higher allocation to P-rich rRNA. However, GRH has rarely been extended to other biological traits than growth, especially at the community level. In this study, we investigated whether macroinvertebrate stoichiometric traits (e.g. C:P and N:P ratios) can be linked to their development traits, and whether these stoichiometric traits are related to macroinvertebrate community assemblage under different nutrient conditions. We allocated more than 400 European taxa to different groups, defined using available information about three development-related traits: ‘life span', ‘voltinism' and ‘number of reproductive cycles per individual'. We sampled 18 invertebrate taxa in six streams exhibiting different levels of nutrient concentration and measured their stoichiometric traits. Further, we quantified invertebrate taxon abundances in these streams during an annual survey. Based on these data, we tested whether community composition regarding the developmental groups differs, depending on nutrient concentration. We found significant differences in the proportions of the developmental groups along a gradient of water N:P, in relation to their stoichiometric traits. Taxa with low C:P and N:P ratios were generally associated with faster development groups, and these taxa tended to occur at higher proportions in streams exhibiting low dissolved N:P ratios. In contrast, communities from P-poor, high dissolved N:P streams, were dominated by slowly developing taxa with high N:P ratios. Our results highlight that extending the GRH to species development rate might give some insights about the mechanisms by which nutrient concentrations in ecosystems influence consumers' community composition.  相似文献   

10.
11.
  总被引:1,自引:0,他引:1  
The introduction of invasive species, which often differ functionally from the components of the recipient community, generates ecological impacts that propagate along the food web. This review aims to determine how consistent the impacts of aquatic invasions are across taxa and habitats. To that end, we present a global meta‐analysis from 151 publications (733 cases), covering a wide range of invaders (primary producers, filter collectors, omnivores and predators), resident aquatic community components (macrophytes, phytoplankton, zooplankton, benthic invertebrates and fish) and habitats (rivers, lakes and estuaries). Our synthesis suggests a strong negative influence of invasive species on the abundance of aquatic communities, particularly macrophytes, zooplankton and fish. In contrast, there was no general evidence for a decrease in species diversity in invaded habitats, suggesting a time lag between rapid abundance changes and local extinctions. Invaded habitats showed increased water turbidity, nitrogen and organic matter concentration, which are related to the capacity of invaders to transform habitats and increase eutrophication. The expansion of invasive macrophytes caused the largest decrease in fish abundance, the filtering activity of filter collectors depleted planktonic communities, omnivores (including both facultative and obligate herbivores) were responsible for the greatest decline in macrophyte abundance, and benthic invertebrates were most negatively affected by the introduction of new predators. These impacts were relatively consistent across habitats and experimental approaches. Based on our results, we propose a framework of positive and negative links between invasive species at four trophic positions and the five different components of recipient communities. This framework incorporates both direct biotic interactions (predation, competition, grazing) and indirect changes to the water physicochemical conditions mediated by invaders (habitat alteration). Considering the strong trophic links that characterize aquatic ecosystems, this framework is relevant to anticipate the far‐reaching consequences of biological invasions on the structure and functionality of aquatic ecosystems.  相似文献   

12.
    
Many herbivorous animals selectively eat flowers and unripe fruit or seeds. Some preferentially eat new tissues growing from germinating seeds. This behaviour enables access to otherwise limited or unavailable amino acids that are necessary to sustain successful production and growth of young. For the same reason the diet of breeding females and neonates of many presumed strictly herbivorous animals is supplemented with animal protein. However, because these foods are often only eaten for limited periods, and make up only a small proportion of the total diet, they are usually dismissed as unimportant to the animals' nutrition. It is suggested that actively looking for such feeding may well reveal it to be far more common and important to the successful breeding of herbivores than has been thought in the past.  相似文献   

13.
    
Evidence that ecosystems and primary producers are limited in their productivity by multiple nutrients has caused the traditional nutrient limitation framework to include multiple limiting nutrients. The models built to mimic these responses have invoked local mechanisms at the level of the primary producers. In this paper, we explore an alternative explanation for the emergence of co‐limitation by developing a simple, stoichiometrically explicit meta‐ecosystem model with two limiting nutrients, autotrophs and herbivores. Our results show that differences in movement rates for the nutrients, autotrophs and herbivores can allow for nutrient co‐limitation in biomass response to emerge despite no local mechanisms of nutrient co‐limitation. Furthermore, our results provide an explanation to why autotrophs show positive growth responses to nutrients despite ‘nominal’ top‐down control by herbivores. These results suggest that spatial processes can be mechanisms for nutrient co‐limitation at local and regional scales, and can help explain anomalous results in the co‐limitation literature.  相似文献   

14.
The effects of forest fragmentation on ecological interactions and particularly on food webs have scarcely been analysed. There is usually less herbivory in forest fragments than in continuous forests. Here we hypothesize that forest fragmentation enhances top‐down control of herbivory through an increase in insectivorous birds and a decrease in herbivorous insects, with a consequent decrease in plant reproductive success in small forest fragments. In the Maulino forest in central Chile, we experimentally excluded birds from Aristotelia chilensis (Elaeocarpaceae) trees in both forest fragments and continuous forest, and analysed herbivore insect abundance, herbivory and plant reproductive success during two consecutive growing seasons. We expected that insect abundance and herbivory would increase, and reproductive success would decrease in A. chilensis from which birds have been excluded, particularly in forest fragments where bird abundance and predation pressure on insects is higher. The abundance of herbivorous insects was lower in the forest fragments than in the continuous forest only in the first season, and herbivory was lower in forest fragments than in the continuous forest throughout the study. Moreover, during the second growing season herbivory was greater in the excluded trees than in the control trees, and as expected, there was a greater difference in the fragments than in the continuous forest, but this was not statistically significant. Exclusion of birds did not affect the reproductive success of A. chilensis. Our results, after 2 years of study, demonstrate that birds affect the levels of herbivory on A. chilensis in the Maulino forest, but do not support our hypothesis of enhanced top‐down control in fragmented forests, as the strength of the effect of excluding birds did not vary with fragmentation.  相似文献   

15.
16.
    
Productivity and trophic structure of aquatic ecosystems result from a complex interplay of bottom‐up and top‐down forces that operate across benthic and pelagic food web compartments. Projected global changes urge the question how this interplay will be affected by browning (increasing input of terrestrial dissolved organic matter), nutrient enrichment and warming. We explored this with a process‐based model of a shallow lake food web consisting of benthic and pelagic components (abiotic resources, primary producers, grazers, carnivores), and compared model expectations with the results of a browning and warming experiment in nutrient‐poor ponds harboring a boreal lake community. Under low nutrient conditions, the model makes three major predictions. (a) Browning reduces light and increases nutrient supply; this decreases benthic and increases pelagic production, gradually shifting productivity from the benthic to the pelagic habitat. (b) Because of active habitat choice, fish exert top‐down control on grazers and benefit primary producers primarily in the more productive of the two habitats. (c) Warming relaxes top‐down control of grazers by fish and decreases primary producer biomass, but effects of warming are generally small compared to effects of browning and nutrient supply. Experimental results were consistent with most model predictions for browning: light penetration, benthic algal production, and zoobenthos biomass decreased, and pelagic nutrients and pelagic algal production increased with browning. Also consistent with expectations, warming had negative effects on benthic and pelagic algal biomass and weak effects on algal production and zoobenthos and zooplankton biomass. Inconsistent with expectations, browning had no effect on zooplankton and warming effects on fish depended on browning. The model is applicable also to nutrient‐rich systems, and we propose that it is a useful tool for the exploration of the consequences of different climate change scenarios for productivity and food web dynamics in shallow lakes, the worldwide most common lake type.  相似文献   

17.
1. The roles of nutrients, disturbance and predation in regulating consumer densities have long been of interest, but their indirect effects have rarely been quantified in wetland ecosystems. The Florida Everglades contains gradients of hydrological disturbance (marsh drying) and nutrient enrichment (phosphorus), often correlated with densities of macroinvertebrate infauna (macroinvertebrates inhabiting periphyton), small fish and larger invertebrates, such as snails, grass shrimp, insects and crayfish. However, most causal relationships have yet to be quantified. 2. We sampled periphyton (content and community structure) and consumer (small omnivores, carnivores and herbivores, and infaunal macroinvertebrates inhabiting periphyton) density at 28 sites spanning a range of hydrological and nutrient conditions and compared our data to seven a priori structural equation models. 3. The best model included bottom‐up and top‐down effects among trophic groups and supported top‐down control of infauna by omnivores and predators that cascaded to periphyton biomass. The next best model included bottom‐up paths only and allowed direct effects of periphyton on omnivore density. Both models suggested a positive relationship between small herbivores and small omnivores, indicating that predation was unable to limit herbivore numbers. Total effects of time following flooding were negative for all three consumer groups even when both preferred models suggested positive direct effects for some groups. Total effects of nutrient levels (phosphorus) were positive for consumers and generally larger than those of hydrological disturbance and were mediated by changes in periphyton content. 4. Our findings provide quantitative support for indirect effects of nutrient enrichment on consumers, and the importance of both algal community structure and periphyton biomass to Everglades food webs. Evidence for top‐down control of infauna by omnivores was noted, though without substantially greater support than a competing bottom‐up‐only model.  相似文献   

18.
19.
  总被引:1,自引:0,他引:1  
  1. Aquatic herbivores consume variable quantities and qualities of food. In freshwater systems, where phosphorus (P) is often a primary limiting element, inadequate dietary P can slow maternal growth and reduce body P content. There remains uncertainty about whether and how dietary effects on mothers are transferred to offspring by way of egg provisioning.
  2. Using the keystone herbivore Daphnia, we tested a novel explanation (the ‘neonate nutrition hypothesis’) to determine whether the early nutrition of newborns affects their elemental composition and whether the indications of differences in maternal P nutrition found previously might be overestimated.
  3. We thus examined the P content of mothers and their eggs from deposition through development to the birth of neonates. We examined further whether very short periods of ingestion (3 h) by the offspring alter the overall P content of juvenile Daphnia.
  4. We showed that strong dietary P effects on mothers were not directly transferred to their eggs. Irrespective of the supply of P in the maternal diet, the P content of eggs in different developmental stages and in (unfed) neonates did not differ. This indicates that Daphnia mothers do not reduce the quality (in terms of P) of newly produced offspring after intermittent periods (i.e. several days) of poor nutrition. In contrast, the P content of neonates reflected that of their food after brief periods of feeding, indicating that even temporary exposure to nutrient poor food immediately after birth may strongly affect the elemental composition of neonates.
  5. Our results thus support the neonate nutrition hypothesis, which, like differential maternal provisioning, is a possible explanation for the variable elemental quality of young Daphnia.
  相似文献   

20.
N:P化学计量学在生态学研究中的应用   总被引:38,自引:0,他引:38  
化学计量学很早就被应用于生态学研究中,但长期以来几乎被生态学家所忽视。近年来,由于认识到化学计量学研究可以把生态实体的各个层次在元素水平上统一起来,因此元素化学计量学成为近年来新兴的一个生态学研究领域。氮磷作为植物生长的必需矿质营养元素和生态系统常见的限制性元素,在植物体内存在功能上的联系,二者之间具有重要的相互作用。近年来由于人类活动的强烈影响,这两种元素的循环在速度和规模上都发生了前所未有的改变,导致一系列环境问题的出现,因此N:P化学计量学研究就显得极为重要。本文论述了N:P化学计量学在物种、群落、生态系统等各层次的应用现状,同时从分子生物学角度分析了应用N:P化学计量学的可行性,并指出了N:P化学计量学研究的应用前景和存在的缺陷。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号