首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel selective pressures derived from human activities challenge the persistence of animal populations worldwide. Behavior is expected to be a major factor driving animals’ responses to global change because it largely determines how animals interact with the environment. However, the role of individual variation in behavior to facilitate the persistence of animals in changing environments remains poorly understood. Here, we adopted an animal personality approach to investigate whether different behavioral traits allow animals to deal with two major components of global change: urbanization and biological invasions. By studying six populations of Anolis sagrei lizards, we found for the first time that anoles vary consistently in their behavior across different times and contexts. Importantly, these animal personalities were consistent in the wild and in captivity. We investigated whether behavioral traits are pulled in different directions by different components of global change. On the one hand, we found that lizards from urban areas differ from nearby forest lizards in that they were more tolerant of humans, less aggressive, bolder after a simulated predator attack, and they spent more time exploring new environments. Several of these risk‐taking behaviors constituted a behavioral syndrome that significantly differed between urban and forest populations. On the other hand, the behavior of urban A. sagrei coexisting with the invasive predatory lizard Leiocephalus carinatus was associated with dramatic changes in their foraging niche. Overall, we provide evidence that differences in animal personalities facilitate the persistence of animals under novel selective regimes by producing adaptive behaviors relevant to their ecology such as predator avoidance. Our results suggest that natural selection can favor certain behaviors over others when animals are confronted with different ecological challenges posed by global change. Therefore, we underscore the need to incorporate behavioral ecology into the study of how animals adaptively respond to human‐induced environmental changes.  相似文献   

2.
Testosterone produced by the gonads is a primary mediator of seasonal patterns of territoriality and may directly facilitate territorial behavior during an encounter with a potential intruder. Costs and benefits associated with territoriality can vary as a function of habitat, for example through differences in resource distribution between areas occupied by different individuals. We investigated behaviors in response to simulated territorial intrusions (hereafter territorial behaviors) in urban (Phoenix, Arizona) and nearby desert populations of two Sonoran Desert birds (Curve-billed Thrasher and Abert's Towhee). We also examined the degree to which these behaviors are mediated by testosterone (T) and the adrenal steroid, corticosterone (CORT), which can interact with T in territorial contexts. In both species, urban birds displayed more territorial behaviors than their desert conspecifics, but this difference was not associated with variation in either plasma total or in plasma free (i.e., unbound to binding globulins) T or CORT. In addition, neither plasma T nor plasma CORT changed as a function of duration of the simulated territorial intrusion. Urban Abert's Towhees displayed more territorial behaviors in areas where their population densities were high than in areas of low population densities. Urban Curve-billed Thrashers displayed more territorial behaviors in areas with a high proportion of desert-type vegetation, particularly in areas that differed in vegetation composition from nearby randomly sampled areas, than in areas with a high proportion of exotic or non-desert type vegetation. Associations between territorial behavior and habitat characteristics were not related to plasma T or CORT. Understanding the hormonal processes underlying these associations between behavior and habitat may provide insight into how free-ranging animals assess territorial quality and alter their defensive behavior accordingly.  相似文献   

3.
Variations in behavioral traits are widely recognized to drive animal behaviors exhibited within a population. However, information on how behavior traits influence behavior in anthropogenically modified habitats is lacking. Many habitats have become highly fragmented as a result of human processes. To mitigate this and improve habitat connectivity, wildlife passes are increasingly employed, with the aim of enabling animals to move freely between habitats. However, wildlife passes (e.g., fishways) are not always effective in achieving passage and it remains uncertain what factors play a role in an individual''s likelihood of passing successfully. This study measured three behavioral traits (boldness, exploration, and activity) in juvenile brown trout (Salmo trutta; n = 78) under field conditions within a river and tested whether these behavior traits influenced both the passage success and the behaviors exhibited during upstream fishway passage attempts. Although behavioral traits were found and collapsed into two behavioral trait dimensions, behavioral traits had low repeatability and so did not contribute to a personality spectrum. Boldness was found to negatively influence the number of passage attempts carried out by an individual and to positively influence passage success, with bolder individuals carrying out fewer attempts and having an increased probability of passage success. No behavioral traits were found to be related to other passage metrics (passage success, Time until First Attempt, and Passage Duration) during the first passage. But all three behavioral traits were significantly negatively related to the changes in passage behaviors at consecutive, successful passage attempts, with bolder, more exploratory and more active individuals passing through a fishway quicker on the second passage than on the first. This study suggests that bolder and more active individuals may perform better during fishway passage attempts, particularly within rivers where multiple barriers to movement exist.  相似文献   

4.
Urbanization creates novel environments for wild animals where selection pressures may differ drastically from those in natural habitats. Adaptation to urban life involves changes in various traits, including behavior. Behavioral traits often vary consistently among individuals, and these so-called personality traits can be correlated with each other, forming behavioral syndromes. Despite their adaptive significance and potential to act as constraints, little is known about the role of animal personality and behavioral syndromes in animals' adaptation to urban habitats. In this study we tested whether differently urbanized habitats select for different personalities and behavioral syndromes by altering the population mean, inter-individual variability, and correlations of personality traits. We captured house sparrows (Passer domesticus) from four different populations along the gradient of urbanization and assessed their behavior in standardized test situations. We found individual consistency in neophobia, risk taking, and activity, constituting three personality axes. On the one hand, urbanization did not consistently affect the mean and variance of these traits, although there were significant differences between some of the populations in food neophobia and risk taking (both in means and variances). On the other hand, both urban and rural birds exhibited a behavioral syndrome including object neophobia, risk taking and activity, whereas food neophobia was part of the syndrome only in rural birds. These results indicate that there are population differences in certain aspects of personality in house sparrows, some of which may be related to habitat urbanization. Our findings suggest that urbanization and/or other population-level habitat differences may not only influence the expression of personality traits but also alter their inter-individual variability and the relationships among them, changing the structure of behavioral syndromes.  相似文献   

5.
The existence of consistent individual differences in behavioral strategies ("personalities" or coping styles) has been reported in several animal species. Recent work in great tits has shown that such traits are heritable and exhibit significant genetic variation. Free-living birds respond to environmental stresses by up-regulating corticosterone production. Behavior during mild stress can occur in accordance to two types of coping styles, i.e. active and passive. Using artificially selected lines of zebra finches that vary in the amount of corticosterone produced in response to a manual restraint stressor we ran three "personality" experiments. We show that birds in the different corticosterone lines differ in their exploratory and risk-taking behaviors. There was an increase in exploratory behavior as corticosterone titre increased but only in the low corticosterone line. Birds in high corticosterone line showed greater risk-taking behavior than birds in the other lines. Thus, in general, higher levels of circulating corticosterone following a mild stress result in greater exploratory behavior and greater risk taking. This study shows that lines of animals selected for endocrine hormonal responses differ in their "coping" styles or "personalities".  相似文献   

6.
Stress coping styles have been characterized as a proactive/reactive dichotomy in laboratory and domesticated animals. In this study, we examined the prevalence of proactive/reactive stress coping styles in wild-caught short-tailed singing mice (Scotinomys teguina). We compared stress responses to spontaneous singing, a social and reproductive behavior that characterizes this species. To establish proactive/reactive profiles for singing mice, we measured exploratory and anxiety behavior using an open-field behavioral test. We examined correlations between open-field behaviors and fecal corticosterone (CORT) metabolites, baseline plasma CORT, and stress-induced CORT. Mice with proactive behavioral responses in the open-field had higher fecal CORT titers than reactive males, but did not differ in baseline or stress-induced plasma CORT. We suggest that individual differences in CORT metabolism may contribute to this surprising pattern. Males that sang in the open-field were behaviorally proactive and had lower stress-induced CORT, indicating a link between stress responses and singing in this species. Overall, the data demonstrate that singing mice offer an interesting model for exploring how stress reactivity can shape social behaviors.  相似文献   

7.
Animals respond to stressors by producing glucocorticoid stress hormones, such as corticosterone (CORT). CORT acts too slowly to trigger immediate behavioral responses to a threat, but can change longer-term behavior, facilitating an individual's survival to subsequent threats. To be adaptive, the nature of an animal's behavior following elevated CORT levels should be matched to the predominant threats that they face. Seeking refuge following a stressful encounter could be beneficial if the predominant predator is a visual hunter, but may prove detrimental when the predominant predator is able to enter these refuge sites. As a result, an individual's behavior when their CORT levels are high may differ among populations of a single species. Invasive species impose novel pressures on native populations, which may select for a shift in their behavior when CORT levels are high. We tested whether the presence of predatory invasive fire ants (Solenopsis invicta) at a site affects the behavioral response of native eastern fence lizards (Sceloporus undulatus) to elevated CORT levels. Lizards from an uninvaded site were more likely to hide when their CORT levels were experimentally elevated; a response that likely provides a survival advantage for lizards faced with native predatory threats (e.g. birds and snakes). Lizards from a fire ant invaded site showed the opposite response; spending more time moving and up on the basking log when their CORT levels were elevated. Use of the basking log likely reflects a refuge-seeking behavior, rather than thermoregulatory activity, as selected body temperatures were not affected by CORT. Fleeing off the ground may prove more effective than hiding for lizards that regularly encounter small, terrestrially-foraging fire ant predators. This study suggests that invasive species may alter the relationship between the physiological and behavioral stress response of native species.  相似文献   

8.
Behavior of wild vertebrate individuals can vary in response to environmental or social factors. Such within-individual behavioral variation is often mediated by hormonal mechanisms. Hormones also serve as a basis for among-individual variations in behavior including animal personalities and the degree of responsiveness to environmental and social stimuli. How do relationships between hormones and behavioral traits evolve to produce such behavioral diversity within and among individuals? Answering questions about evolutionary processes generating among-individual variation requires characterizing how specific hormones are related to variation in specific behavioral traits, whether observed hormonal variation is related to individual fitness and, whether hormonal traits are consistent (repeatable) aspects of an individual's phenotype. With respect to within-individual variation, we need to improve our insight into the nature of the quantitative relationships between hormones and the traits they regulate, which in turn will determine how they may mediate behavioral plasticity of individuals. To address these questions, we review the actions of two steroid hormones, corticosterone and testosterone, in mediating changes in vertebrate behavior, focusing primarily on birds. In the first part, we concentrate on among-individual variation and present examples for how variation in corticosterone concentrations can relate to behaviors such as exploration of novel environments and parental care. We then review studies on correlations between corticosterone variation and fitness, and on the repeatability over time of corticosterone concentrations. At the end of this section, we suggest that further progress in our understanding of evolutionary patterns in the hormonal regulation of behavior may require, as one major tool, reaction norm approaches to characterize hormonal phenotypes as well as their responses to environments.In the second part, we discuss types of quantitative relationships between hormones and behavioral traits within individuals, using testosterone as an example. We review conceptual models for testosterone-behavior relationships and discuss the relevance of these models for within-individual plasticity in behavior. Next, we discuss approaches for testing the nature of quantitative relationships between testosterone and behavior, concluding that again reaction norm approaches might be a fruitful way forward.We propose that an integration of new tools, especially of reaction norm approaches into the field of behavioral endocrinology will allow us to make significant progress in our understanding of the mechanisms, the functional implications and the evolution of hormone–behavior relationships that mediate variation both within and among individuals. This knowledge will be crucial in light of already ongoing habitat alterations due to global change, as it will allow us to evaluate the mechanisms as well as the capacity of wild populations to adjust hormonally-mediated behaviors to altered environmental conditions.  相似文献   

9.
Animals in urban habitats face a number of unique stresses, including the necessity of dealing with high levels of human activity. Growing research suggests that: (1) inherent traits, as opposed to learned behavior, influence which species invade urban habitats, and (2) individuals exhibit behavioral syndromes that limit behavioral flexibility. As a result, perhaps only animals with inherently bold personalities successfully settle in areas of high human activity, and such animals may also exhibit correlated variation in other behavioral traits, such as territorial aggression. In this study, we examine boldness and aggression in several urban and rural populations of song sparrows (Melospiza melodia). We found that urban birds were both bolder toward humans and also showed higher levels of aggression. We found a correlation between boldness and aggression in all populations combined, but no correlation within urban populations. Our results agree with other recent studies of song sparrow behavior, suggesting that greater boldness and aggression are general features of urban song sparrow populations, and a lack of a correlation between boldness and aggression in urban habitats is a general phenomenon as well. Urban habitats may select for bold and aggressive birds, and yet the traits can vary independently. These results add to a small number of studies which find that behavioral syndromes break down in potentially high quality habitats.  相似文献   

10.
Understanding why and how behavioral profiles differ across latitudes can help predict behavioral responses to environmental change. The first response to environmental change that an organism exhibits is commonly a behavioral response. Change in one behavior usually results in shifts in other correlated behaviors, which may adaptively or maladaptively vary across environments and/or time. However, one important aspect that is often neglected when studying behavioral expressions among populations is if/how the experimental design might affect the results. This is unfortunate since animals often plastically modify their behavior to the environment, for example, rearing conditions. We studied behavioral traits and trait correlations in larvae of a univoltine damselfly, Lestes sponsa, along its latitudinal distribution, spreading over 3,300 km. We compared behavioral profiles among larvae grown in two conditions: (a) native temperatures and photoperiods or (b) averaged constant temperatures and photoperiods (common‐garden). We hypothesized latitudinal differences in behavioral traits regardless of the conditions in which larvae were grown, with northern populations expressing higher activity, boldness, and foraging efficiency. When grown in native conditions, northern larvae were bolder, more active and more effective in prey capture than central and low latitude populations, respectively, as well as showed the strongest behavioral correlations. In contrast, larvae reared in common‐garden conditions showed no differences between regions in both individual traits and trait correlations. The results suggest different selective pressures acting on the studied traits across populations, with environment as a central determinant of the observed trait values. Common‐garden designed experiments may evoke population‐dependent levels of plastic response to the artificial conditions and, hence, generate results that lack ecological relevance when studying multi‐population differences in behavior.  相似文献   

11.
Urban stressors represent strong selective gradients that can elicit evolutionary change, especially in non‐native species that may harbor substantial within‐population variability. To test whether urban stressors drive phenotypic differentiation and influence local adaptation, we compared stress responses of populations of a ubiquitous invader, reed canary grass (Phalaris arundinacea). Specifically, we quantified responses to salt, copper, and zinc additions by reed canary grass collected from four populations spanning an urbanization gradient (natural, rural, moderate urban, and intense urban). We measured ten phenotypic traits and trait plasticities, because reed canary grass is known to be highly plastic and because plasticity may enhance invasion success. We tested the following hypotheses: (a) Source populations vary systematically in their stress response, with the intense urban population least sensitive and the natural population most sensitive, and (b) plastic responses are adaptive under stressful conditions. We found clear trait variation among populations, with the greatest divergence in traits and trait plasticities between the natural and intense urban populations. The intense urban population showed stress tolerator characteristics for resource acquisition traits including leaf dry matter content and specific root length. Trait plasticity varied among populations for over half the traits measured, highlighting that plasticity differences were as common as trait differences. Plasticity in root mass ratio and specific root length were adaptive in some contexts, suggesting that natural selection by anthropogenic stressors may have contributed to root trait differences. Reed canary grass populations in highly urbanized wetlands may therefore be evolving enhanced tolerance to urban stressors, suggesting a mechanism by which invasive species may proliferate across urban wetland systems generally.  相似文献   

12.
Most examples of adaptation to the urban environment relate to plasticity processes rather than to natural selection. Personality, however, defined as consistent individual differences in behaviour related to exploration, caution, and neophobia, is a good behavioural candidate character to study natural selection in relation to the urban habitat due to its heritable variation. The aim of this paper was to analyse variation in personality by comparing urban and forest great tits Parus major using standard tests of exploratory behaviour and boldness. We studied personality in 130 wild great tits captured in Barcelona city and nearby forests and found that urban birds were more explorative and bolder towards a novel object than forest birds. Genotype frequencies of the DRD4 SNP830 polymorphism, a gene region often associated with personality variation, varied significantly between forest and urban birds. Behavioural scores, however, were not correlated with this polymorphism in our population. Exploration scores correlated to boldness for forest birds but not for urban birds. Our findings suggest that the novel selection pressures of the urban environment favour the decoupling of behavioural traits that commonly form behavioural syndromes in the wild.  相似文献   

13.
Experiencing stress during adolescence can increase neophobic behaviors in adulthood, but most tests have been conducted in the absence of conspecifics. Conspecifics can modulate responses to stressors, for example by acting as ‘social buffers’ to attenuate the aversive appraisal of stressors. Here, we investigate the long-term effects of adolescent stress on the behavioral responses to novel stimuli (a mild stressor) across social contexts in an affiliative passerine bird, the zebra finch. During early (days 40–60) or late (days 65–85) adolescence the birds (n = 66) were dosed with either saline or the hormone corticosterone (CORT). CORT was given in order to mimic a physiological stress response and saline was given as a control. In adulthood, the birds' behavioral responses to a novel environment were recorded in both the presence and absence of conspecifics. An acute CORT response was also quantified in adolescence and adulthood. Our findings show clear evidence of social context mediating any long-term effects of adolescent stress. In the presence of familiar conspecifics no treatment effects were detected. Individually, birds dosed with CORT in early adolescence were slower to enter a novel environment, spent more time perching in the same novel environment, and, if female, engaged in more risk assessment. Birds dosed in late adolescence were unaffected. No treatment effects were detected on CORT, but adolescents had a higher CORT concentration than adults. Our results are the first to suggest that familiar conspecifics in adulthood can buffer the long-term effects of stress that occurred during early adolescence.  相似文献   

14.
The adaptive value of social affiliation has been well established. It is unclear, however, what endogenous mechanisms may mediate affiliative behavior. The Australian zebra finch (Taeniopygia guttata) breeds colonially and adults maintain lifelong pair bonds that may be disrupted in the wild due to high mortality rates. Many of its natural, social behaviors are maintained in laboratory conditions, making this species well suited for studying the mechanisms of affiliation. This study examines the behavioral and neuroendocrine responses to pair mate separation and reunion in zebra finches. We measured plasma corticosterone (CORT) and behavioral changes following separation from a pair bonded mate, and again upon reintroducing the mate or an opposite-sex cagemate. Plasma CORT concentrations were: (1). elevated during pair mate separation, even in the presence of other same-sex individuals, and (2). reduced to baseline upon reunion with the pair mate but not upon re-pairing with a new opposite-sex partner. These findings show that zebra finches exhibit hormonal responses to separation and reunion specifically with a bonded pair mate and not with other familiar conspecifics. In addition, alterations in behavior during separation and reunion are consistent with monogamous pair bond maintenance. This study presents evidence for adrenocortical involvement in avian pair bonding, and for hypothalamic-pituitary-adrenal activation in response to an ecologically relevant social stressor.  相似文献   

15.
Vertebrates respond to unpredictable noxious environmental stimuli by increasing secretion of glucocorticoids (CORT). Although this hormonal stress response is adaptive, high levels of CORT may induce significant costs if stressful situations are frequent. Thus, alternative coping mechanisms that help buffer individuals against environmental stressors may be selected for when the costs of CORT levels are elevated. By allowing individuals to identify, anticipate and cope with the stressful circumstances, cognition may enable stress-specific behavioural coping. Although there is evidence that behavioural responses allow animals to cope with stressful situations, it is unclear whether or not cognition reduces investment in the neuroendocrine stress response. Here, we report that in birds, species with larger brains relative to their body size show lower baseline and peak CORT levels than species with smaller brains. This relationship is consistent across life-history stages, and cannot be accounted for by differences in life history and geographical latitude. Because a large brain is a major feature of birds that base their lifetime in learning new things, our results support the hypothesis that enhanced cognition represents a general alternative to the neuroendocrine stress response.  相似文献   

16.
Animals in urban habitats are often noticeably bold in the presence of humans. Such boldness may arise due to habituation, as urban animals learn, through repeated exposure, that passing humans do not represent a threat. However, there is growing research suggesting that: (1) inherent traits, as opposed to learned behaviour, influence which species invade urban habitats, and (2) individuals exhibit individual personality traits that limit behavioural flexibility, with the possible result that not all individuals would be able to demonstrate an appropriate level of boldness in urban environments. As a result, perhaps only birds with inherently bold personalities could successfully settle in an area of high human disturbance, and further, we might also expect to see the existence of behavioural syndromes, where boldness is correlated with variation in other behavioural traits such as aggression. In this study, we examined boldness and territorial aggression in urban and rural populations of song sparrows. We found that urban birds were bolder towards humans and that urban birds also showed higher levels of territorial aggression. We also found an overall correlation between boldness and territorial aggression, suggesting that urban boldness may be part of a behavioural syndrome. However, we see no correlation between boldness and aggression in the urban population, and thus, more work is needed to determine the mechanisms accounting for high levels of boldness and aggression urban song sparrows.  相似文献   

17.
Urban landscapes are associated with abiotic and biotic environmental changes that may result in potential stressors for wild vertebrates. Urban exploiters have physiological, morphological, and behavioral adaptations to live in cities. However, there is increasing evidence that urban exploiters themselves can suffer from urban conditions, especially during specific life‐history stages. We looked for a link between the degree of urbanization and the level of developmental stress in an urban exploiter (the house sparrow, Passer domesticus), which has recently been declining in multiple European cities (e.g., London, UK). Specifically, we conducted a large‐scale study and sampled juvenile sparrows in 11 urban and rural sites to evaluate their feather corticosterone (CORT) levels. We found that juvenile feather CORT levels were positively correlated with the degree of urbanization, supporting the idea that developing house sparrows may suffer from urban environmental conditions. However, we did not find any correlation between juvenile feather CORT levels and body size, mass, or body condition. This suggests either that the growth and condition of urban sparrows are not impacted by elevated developmental CORT levels, or that urban sparrows may compensate for developmental constraints once they have left the nest. Although feather CORT levels were not correlated with baseline CORT levels, we found that feather CORT levels were slightly and positively correlated with the CORT stress response in juveniles. This suggests that urban developmental conditions may potentially have long‐lasting effects on stress physiology and stress sensitivity in this urban exploiter.  相似文献   

18.
One potential stressor to vertebrates both in the wild and in captivity is the presence of numerous individuals in a confined space. To examine the effects of increased conspecific density in birds, we simultaneously measured cardiac, behavioral, and endocrine responses of European starlings (Sturnus vulgaris) to acute crowding. A cage containing a resident bird was outfitted with a trap door that allowed for the introduction of intruder birds (one, three, or five birds) without human interference. The resident bird was implanted with a subcutaneous heart rate (HR) transmitter, behavior was videotaped through a two-way mirror, and blood samples were taken at the end of each treatment to determine plasma corticosterone (CORT) concentrations. Resident starlings significantly increased both general activity and aggressive behaviors while decreasing preening following the initiation of elevated conspecific density. Intruder starlings increased feeding, drinking, and aggressive pecking rates, but postintrusion feeding rates decreased as intruder number increased. Preening decreased in both residents and intruders following the intrusion. HR increased in the resident starlings at the time of intruder introduction, with an increase in the magnitude of this response directly correlating with increasing intruder number. The CORT response to increased density was dependent on social role (resident or intruder), since increasing density did not alter CORT levels in resident birds, but resulted in elevated CORT 30 min following the five-intruder introduction in the intruder birds. Together, these data suggest that increased conspecific density is a significant acute stressor in starlings which is capable of inducing aggression in both residents and intruders. Furthermore, it elicits different responses from different physiological and behavioral systems, and behavioral responses such as feeding and general activity may be density-dependent. The data specifically illustrate that cardiac and behavioral activation can be independent of CORT release, and the CORT response of starlings to increased conspecific density is dependent on social role and degree of the increase in density.  相似文献   

19.
Fasting is part of penguin's breeding constraints. During prolonged fasting, three metabolic phases occur successively. Below a threshold in body reserves, birds enter phase III (PIII), which is characterized by hormonal and metabolic shifts. These changes are concomitant with egg abandonment in the wild and increased locomotor activity in captivity. Because corticosterone (CORT) enhances foraging activity, we investigated the variations of endogenous CORT, and the effects of exogenous CORT on the behavioral, hormonal, and metabolic responses of failed breeder Adélie penguins. Untreated and treated captive male birds were regularly weighed and sampled for blood while fasting, and locomotor activity was recorded daily. Treated birds were implanted with various doses of CORT during phase II. Untreated penguins entering PIII had increased CORT (3.5-fold) and uric acid (4-fold; reflecting protein catabolism) levels, concomitantly with a rise in locomotor activity (2-fold), while prolactin (involved in parental care in birds) levels declined by 33%. In CORT-treated birds, an inverted-U relationship was obtained between CORT levels and locomotor activity. The greatest increase in locomotor activity was observed in birds implanted with a high dose of CORT (C100), locomotor activity showing a 2.5-fold increase, 4 days after implantation to a level similar to that of birds in PIII. Moreover, uric acid levels increased three-fold in C100-birds, while prolactin levels declined by 30%. The experimentally induced rise in CORT levels mimicked metabolic, hormonal, and behavioral changes, characterizing late fasting, thus supporting a role for this hormone in the enhanced drive for refeeding occurring in long-term fasting birds.  相似文献   

20.
Successful urban colonization by formerly rural species represents an ideal situation in which to study adaptation to novel environments. We address this issue using candidate genes for behavioural traits that are expected to play a role in such colonization events. We identified and genotyped 16 polymorphisms in candidate genes for circadian rhythms, harm avoidance and migratory and exploratory behaviour in 12 paired urban and rural populations of the blackbird Turdus merula across the Western Palaearctic. An exonic microsatellite in the SERT gene, a candidate gene for harm avoidance behaviour, exhibited a highly significant association with habitat type in an analysis conducted across all populations. Genetic divergence at this locus was consistent in 10 of the 12 population pairs; this contrasts with previously reported stochastic genetic divergence between these populations at random markers. Our results indicate that behavioural traits related to harm avoidance and associated with the SERT polymorphism experience selection pressures during most blackbird urbanization events. These events thus appear to be influenced by homogeneous adaptive processes in addition to previously reported demographic founder events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号