首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The high potential of quinoline containing natural products and their derivatives in medicinal chemistry led us to discover a novel series of compounds 623 based on the concept of molecular hybridization. Most of the synthesized analogues exhibited potent leishmanicidal potential. The most potent compound (23, IC50 = 0.10 ± 0.001 μM) among the series was found ∼70 times more lethal than the standard drug. The current series 623 conceded in the development of fourteen (14) extraordinarily active compounds against leishmaniasis. In silico analysis were also performed to probe the mode of action while all the compounds structure were established by NMR and Mass spectral analysis.  相似文献   

2.
A focused library of rhodanine compounds containing novel substituents at the C5-position was synthesized and tested in vitro against a panel of clinically relevant MRSA strains. The present SAR study was based on our lead compound 1 (MIC = 1.95 μg/mL), with a focus on identifying optimal C5-arylidene substituents. In order to obtain this objective, we condensed several unique aromatic aldehydes with phenylalanine-derived rhodanine intermediates to obtain C5-substituted target rhodanine compounds for evaluation as anti-MRSA compounds. These efforts produced three compounds with significant efficacy: 23, 32 and 44, with MIC values ranging from 0.98 to 1.95 μg/mL against all tested MRSA strains as compared to the reference antibiotics penicillin G (MIC = 15.60–250.0 μg/mL) and ciprofloxacin (MIC = 7.80–62.50 μg/mL) and comparable to that of vancomycin (MIC = 0.48 μg/mL). In addition, compounds 24, 28, 37, 41, 46 and 48 (MIC = 1.95–3.90 μg/mL) were efficacious against all MRSA strains. The majority of the synthesized compounds had bactericidal activity at concentrations only two to fourfold higher than their MIC. Overall, the results suggest that compounds 23, 32 and 44 may be of potential use in the treatment of MRSA infections.  相似文献   

3.
Four series of phenylpicolinamide derivatives bearing 1H-pyrrolo[2,3-b]pyridine moiety (12ae, 13af, 14af and 15ai) were designed, synthesized and evaluated for the IC50 values against three cancer cell lines (A549, PC-3 and MCF-7) and c-Met kinase. Five selected compounds (13b, 15b, 15d, 15e and 15f) were further evaluated for the activity against HepG2 and Hela cell lines. Eighteen of the compounds showed excellent cytotoxicity activity and selectivity with the IC50 valuables in single-digit μM to nanomole range. Seven of them are equal to more active than positive control Foretinib against one or more cell lines. The most promising compound 15f showed superior activity to Foretinib, with the IC50 values of 1.04 ± 0.11 μM, 0.02 ± 0.01 μM and 9.11 ± 0.55 μM against A549, PC-3 and MCF-7 cell lines, which were 0.62 to 19.5 times more active than Foretinib (IC50 values: 0.64 ± 0.26 μM, 0.39 ± 0.11 μM, 9.47 ± 0.22 μM), respectively. Structure–activity relationships (SARs) and docking studies indicated that replacement of quinoline nucleus of the previous active compounds with 1H-pyrrolo[2,3-b]pyridine moiety maintained even improved the potent cytotoxic activity. The results suggested that the introduction of fluoro atoms to the aminophenoxy part of target compounds or the phenyl group of pyrimidine substituted on C-4 position was benefit for the activity.  相似文献   

4.
4-Thiazolidinones derivatives of marine bromopyrrole alkaloids were synthesized as potential antibiofilm compounds. Among the synthesized compounds, some showed promising antibiofilm activity. Biological data revealed that 1,3-thiazolidin-4-one derivatives are more potent antibiofilm agents compared to 1,3-thiazinan-4-ones. Antibiofilm activity of compound 4b, 4c (MIC = 0.78 μg/ml) was 3-fold superior than standard vancomycin (MIC = 3.125 μg/ml) while activity of compound 4d, 4f, 4g and 4h was 2-fold (MIC = 1.56 μg/ml) against Staphylococcus aureus biofilm. Compound 4b–4h showed equal antibiofilm activity against Staphylococcus epidermidis compared to standard Vancomycin (MIC = 3.125 μg/ml).  相似文献   

5.
Four series of phenylpyrimidine-carboxamide derivatives bearing 1H-pyrrolo[2,3-b]pyridine moiety (14ae, 15ag, 16ae and 17ag) were designed, synthesized and evaluated for the IC50 values against three cancer cell lines (A549, PC-3 and MCF-7). Four selected compounds (15e, 16ab and 17a) were further evaluated for the activity against c-Met kinase, HepG2 and Hela cell lines. Most of the compounds showed excellent cytotoxicity activity and selectivity with the IC50 valuables in single-digit μM to nanomole range. Eleven of them are equal to more active than positive control Foretinib against one or more cell lines. The most promising compound 15e showed superior activity to Foretinib against A549, PC-3 and MCF-7 cell lines, with the IC50 values of 0.14 ± 0.08 μM, 0.24 ± 0.07 μM and 0.02 ± 0.01 μM, which were 4.6, 1.6 and 473.5 times more active than Foretinib (0.64 ± 0.26 μM, 0.39 ± 0.11 μM, 9.47 ± 0.22 μM), respectively. Structure–activity relationships (SARs) and docking studies indicated that the replacement of phenylpicolinamide scaffold with phenylpyrimidine fragment of the target compounds was benefit for the activity. What’s more, the introduction of fluoro atom to the aminophenoxy part played no significant impact on the activity and any substituent group on aryl group is unfavourable for the activity.  相似文献   

6.
The 2-acylamino-5-nitro-1,3-thiazole derivatives (114) were prepared using a one step reaction. All compounds were tested in vitro against four neglected protozoan parasites (Giardia intestinalis, Trichomonas vaginalis, Leishmania amazonensis and Trypanosoma cruzi). Acetamide (9), valeroylamide (10), benzamide (12), methylcarbamate (13) and ethyloxamate (14) derivatives were the most active compounds against G. intestinalis and T. vaginalis, showing nanomolar inhibition. Compound 13 (IC50 = 10 nM), was 536-times more active than metronidazole, and 121-fold more effective than nitazoxanide against G. intestinalis. Compound 14 was 29-times more active than metronidazole and 6.5-fold more potent than nitazoxanide against T. vaginalis. Ureic derivatives 2, 3 and 5 showed moderate activity against L. amazonensis. None of them were active against T. cruzi. Ligand efficiency indexes analysis revealed higher intrinsic quality of the most active 2-acylamino derivatives than nitazoxanide and metronidazole. In silico toxicity profile was also computed for the most active compounds. A very low in vitro mammalian cytotoxicity was obtained for 13 and 14, showing selectivity indexes (SI) of 246,300 and 141,500, respectively. Nitazoxanide showed an excellent leishmanicidal and trypanocidal effect, repurposing this drug as potential new antikinetoplastid parasite compound  相似文献   

7.
A series of new strobilurin–pyrimidine analogs were designed and synthesized based on the structures of our previously discovered antiproliferative compounds I and II. Biological evaluation with two human cancer cell lines (A549 and HL60) showed that most of these compounds possessed moderate to potent antiproliferative activity. Two potent candidates (8f, IC50 = 2.2 nM and 11d, IC50 = 3.4 nM) were identified with nanomolar activity against leukemia cancer cell line HL60 for further development. This activity represents a 1000- to 2500-fold improvement compared to the parent compounds I and II and is 20- to 30-fold better than the chemotherapy drug, doxorubicin. The present work provides strong incentive for further development of these strobilurin–pyrimidine analogs as potential antitumor agents for the treatment of leukemia.  相似文献   

8.
In the present study, a series of new carbazole linked 1H-1,2,3-triazoles (227) were synthesized via click reaction of N-propargyl-9H-carbazole (1) and azides of appropriate acetophenones and heterocycles. Synthesized carbazole triazoles including 7, 9, 10, 19, 20, and 2326 (IC50 = 0.8 ± 0.01–100.8 ± 3.6 μM), exhibited several folds more potent α-glucosidase inhibitory in vitro activity as compared to standard drug, acarbose. Compounds 25, 713, and 1727 did not show any cytotoxicity against 3T3 cell lines, except triazoles 6, and 1416. Among the series, carbazole triazoles 23 (IC50 = 1.0 ± 0.057 μM) and 25 (IC50 = 0.8 ± 0.01 μM) were found to be most active, and could serve as an attractive building block in the search of new non-sugar derivatives as anti-diabetic agents.  相似文献   

9.
A series of γ-butyrolactone derivatives has been designed and synthesized from commercially available 2-acetyl butyrolactone (3-acetyldihydrofuran-2(3H)-one, 1) by aminoalkylating its active methylene followed by condensation with different aldehydes. Compounds having amino group were further converted to their respective tartrate salts and were evaluated for spermicidal activity against human sperm in vitro. Compounds showing appreciable spermicidal activity at ⩽0.5% [3c, 4d (0.5%); 2c, 3d (0.1%); 2d, 4c (0.05%)] were tested for safety studies against human cervical (HeLa) cell line. These compounds were found safer than, Nonoxynol-9. One of the two most active compounds was also found to be the safest (IC50 = 961 μg/ml; 4c), while the second compound exhibited lower safety against HeLa (IC50 = 269 μg/ml; 2d). The compound 4c significantly reduced the number of free thiols on human sperm. All the compounds were inactive against Trichomonas vaginalis.  相似文献   

10.
Novel riminophenazine derivatives, characterized by the presence of the basic and cumbersome quinolizidinylalkyl and pyrrolizidinylethyl moieties, have been synthesized and tested (Rema test) against Mycobacterium tuberculosis H37Rv and H37Ra, and six clinical isolates of Mycobacterium avium and Mycobacterium tuberculosis. Most compounds exhibited potent activity against the tested strains, resulting more active than clofazimine, isoniazid and ethambutol.The best compounds (4, 5, 12 and 13) exhibited a MIC in the range 0.82–0.86 μM against all strains of Mycobacterium tuberculosis and, with the exception of 4 a MIC around 3.3 μM versus M. avium. The corresponding values for clofazimine (CFM) were 1.06 and 4.23 μM, respectively. Cytotoxicity was evaluated against three cell lines and compound 4 displayed a selectivity index (SI) versus the human cell line MT-4 comparable with that of CFM (SI = 5.23 vs 6.4). Toxicity against mammalian Vero 76 cell line was quite lower with SI = 79.  相似文献   

11.
Oxadiazoles and thiadiazoles 137 were synthesized and evaluated for the first time for their α-glucosidase inhibitory activities. As a result, fifteen of them 1, 4, 5, 7, 8, 13, 17, 23, 25, 30, 32, 33, 35, 36 and 37 were identified as potent inhibitors of the enzyme. Kinetic studies of the most active compounds (oxadiazoles 1, 23 and 25, and thiadiazoles 35 and 37) were carried out to determine their mode of inhibition and dissociation constants Ki. The most potent compound of the oxadiazole series (compound 23) was found to be a non-competitive inhibitor (Ki = 4.36 ± 0.017 μM), while most potent thiadiazole 35 was identified as a competitive inhibitor (Ki = 6.0 ± 0.059 μM). The selectivity and toxicity of these compounds were also studied by evaluating their potential against other enzymes, such as carbonic anhydrase-II and phosphodiesterase-I. Cytotoxicity was evaluated against rat fibroblast 3T3 cell line. Interestingly, these compounds were found to be inactive against other enzymes, exhibiting their selectivity towards α-glucosidase. Inhibition of α-glucosidase is an effective strategy for controlling post-prandial hyperglycemia in diabetic patients. α-Glucosidase inhibitors can also be used as anti-obesity and anti-viral drugs. Our study identifies two novel series of potent α-glucosidase inhibitors for further investigation.  相似文献   

12.
Novel C-aryl glucoside SGLT2 inhibitors containing 1,3,4-thiadiazole moieties were designed and synthesized. Among the compounds tested, biaryl-type compounds containing pyrazine 59, 2-furan 61, and 3-thiophene 71 showed the best in vitro inhibitory activities to date (IC50 = 3.51–7.03 nM) against SGLT2. A selected compound 61, demonstrated reasonable blood glucose-lowering effects, indicating that the information obtained from the SAR studies in this 1,3,4-thiadiazolylmethylphenyl glucoside series might help to design more active SGLT2 inhibitors that are structurally related.  相似文献   

13.
A series of 7,8-dihydro-5H-thiopyrano[4,3-d]pyrimidine derivatives (7aq, 10aq) were designed, synthesized and their chemical structures were confirmed by 1H NMR, 13C NMR, MS and HRMS spectrum. All the compounds were evaluated for the inhibitory activity against mTOR kinase at 10 μM level. Five selected compounds (7b, 7e, 7h, 10b and 10e) were further evaluated for the inhibitory activity against PI3Kα at 10 μM level, and the IC50 values against mTOR kinase and two cancer cell lines. Twelve of the target compounds exhibited moderate antitumor activities. The most promising compound 7e showed strong antitumor activities against mTOR kinase, H460 and PC-3 cell lines with IC50 values of 0.80 ± 0.15 μM, 7.43 ± 1.45 μM and 11.90 ± 0.94 μM, which were 1.28 to 1.71-fold more active than BMCL-200908069-1 (1.37 ± 0.07 μM, 9.52 ± 0.29 μM, 16.27 ± 0.54 μM), respectively. Structure–activity relationships (SARs) and docking studies indicated that the thiopyrano[4,3-d]pyrimidine scaffolds exerted little effect on antitumor activities of target compounds. Substitutions of aryl group at C-4 position had a significant impact on the antitumor activities, and 4-OH substitution produced the best potency.  相似文献   

14.
A series of guaianolide-type sesquiterpene lactones derivatives with arylation of α-methylene-γ-lactone moiety was synthesized using Heck reactions, and was evaluated for their activities against acute myelogenous leukemia (AML) cell line HL-60 and doxorubicin-resistant cell line HL-60/A. Although all compounds were significantly less active against HL-60 than the parent molecules, surprisingly, compounds 3a, 4c4e, 5e, and 8d exhibited high potency against doxorubicin-resistant cell line HL-60/A (IC50 = 6.2–19 μM), and their activities against HL-60/A were comparable to that of their parent molecules. In view of their novel activities against HL-60/A, compound 5e with inhibitory activity against HL-60/A (IC50 = 6.2 ± 0.5 μM) was selected for study its preliminary mechanism. The result reveals that compound 5e can obviously induce apoptosis.  相似文献   

15.
Tamiflu, the ethyl ester form of oseltamivir carboxylic acid (OC), is the first orally available anti-influenza drug for the front-line therapeutic option. In this study, the OC-hydroxamates, OC-sulfonamides and their guanidino congeners (GOC) were synthesized. Among them, an OC-hydroxamate 7d bearing an O-(2-indolyl)propyl substituent showed potent NA inhibition (IC50 = 6.4 nM) and good anti-influenza activity (EC50 = 60.1 nM) against the wild-type H1N1 virus. Two GOC-hydroxamates (9b and 9d) and one GOC-sulfonamide (12a) were active to the tamiflu-resistant H275Y virus (EC50 = 2.3–6.9 μM).  相似文献   

16.
Compounds 125 showed varying degree of antileishmanial activities with IC50 values ranging between 1.95 and 88.56 μM. Compounds 2, 10, and 11 (IC50 = 3.29 ± 0.07 μM, 1.95 ± 0.04 μM, and 2.49 ± 0.03 μM, respectively) were found to be more active than standard pentamidine (IC50 = 5.09 ± 0.04 μM). Compounds 7 (IC50 = 7.64 ± 0.1 μM), 8 (IC50 = 13.17 ± 0.46 μM), 18 (IC50 = 13.15 ± 0.02 μM), and 24 (IC50 = 15.65 ± 0.41 μM) exhibited good activities. Compounds 1, 3, 4, 5, 9, 12, 15, 18, and 19 were found to be moderately active. Compounds 13, 14, 16, 17, 2025 showed weak activities with IC50 values ranging between 57 and 88 μM.  相似文献   

17.
A series of 6-chloro-3-oxindole derivatives 125 were synthesized in high yields by the reaction of 6-chlorooxindole with different aromatic aldehydes in the presence of piperidine. All the synthesized compounds were isolated with E configuration. The structures were confirmed using spectroscopic techniques, including 1H NMR and EIMS. These compounds showed varying degree of yeast α-glucosidase inhibition and seven were found as potent inhibitors of the enzyme. Compounds 2, 3, 4, 5, 6, 23, and 25 exhibited IC50 values 2.71 ± 0.007, 11.41 ± 0.005, 37.93 ± 0.002, 15.19 ± 0.004, 24.71 ± 0.007, 17.33 ± 0.001, and 14.2 ± 0.002 μM, respectively, as compared to standard acarbose (IC50, 38.25 ± 0.12 μM). Docking studies helped to find interactions between the enzyme and the active compounds. As a result of this study, oxindoles have been discovered as a new class of α-glucosidase inhibitors which have not been reported earlier.  相似文献   

18.
A new series of chalcone derivatives 118, bearing isoxazole moieties were designed and synthesized, and biologically evaluated for their activity on mushroom tyrosinase and melanin synthesis in murine B16 cells. The result indicated that most of prepared compounds 118 showed potent activating effect on tyrosinase, especially for 12, 4, 67, 9 and 15. Among them, compounds 2, 4 and 9 demonstrated the best activity with EC50 = 1.3, 2.5 and 3.0 μmol·L−1 respectively, much better than the positive control 8-methoxypsoralan (8-MOP, EC50 = 14.8 μmol·L−1); In B16 cells, all the tested compounds exhibited a stronger activity on melanogenesis than 8-MOP (with the value of 115%). It was interesting that derivatives substituted with halogen (1, 2, 4, 5, 7, 9) were generally more potent. Compounds 2 (463%) and 18 (438%) with 3 and 4-fold potency compared with 8-MOP respectively, were recognized as the most promising candidate hits for further pharmacological study of anti-vitiligo.  相似文献   

19.
The efficient synthesis of a new series of polyhydroxylated dibenzyl ω-(1H-1,2,3-triazol-1-yl)alkylphosphonates as acyclic nucleotide analogues is described starting from dibenzyl ω-azido(polyhydroxy)alkylphosphonates and selected alkynes under microwave irradiation. Selected O,O-dibenzylphosphonate acyclonucleotides were transformed into the respective phosphonic acids. All compounds were evaluated in vitro for activity against a broad variety of DNA and RNA viruses and for cytostatic activity against murine leukemia L1210, human T-lymphocyte CEM and human cervix carcinoma HeLa cells. Compound (1S,2S)-16b exhibited antiviral activity against Influenza A H3N2 subtype (EC50 = 20 μM—visual CPE score; EC50 = 18 μM—MTS method; MCC >100 μM, CC50 >100 μM) in Madin Darby canine kidney cell cultures (MDCK), and (1S,2S)-16k was active against vesicular stomatitis virus and respiratory syncytial virus in HeLa cells (EC50 = 9 and 12 μM, respectively). Moreover, compound (1R,2S)-16l showed activity against both herpes simplex viruses (HSV-1, HSV-2) in HEL cell cultures (EC50 = 2.9 and 4 μM, respectively) and feline herpes virus in CRFK cells (EC50 = 4 μM) but at the same time it exhibited cytotoxicity toward uninfected cell (MCC  4 μM). Several other compounds have been found to inhibit proliferation of L1210, CEM as well as HeLa cells with IC50 in the 4–50 μM range. Among them compounds (1S,2S)- and (1R,2S)-16l were the most active (IC50 in the 4–7 μM range).  相似文献   

20.
A series of (1H-benzo[d][1,2,3]triazol-1-yl)(4-benzylpiperazin-1-yl)methanones and of (1H-benzo[d][1,2,3]triazol-1-yl)(4-phenylpiperazin-1-yl)methanones has been prepared and tested on human fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL). In the benzylpiperazinyl series, compound 29 (ML30) exhibited an IC50 value of 0.54 nM on MAGL, combined with a 1000-fold selectivity versus FAAH, while compounds 11 and 16 acted as potent dual FAAH-MAGL inhibitors (IC50 <10 nM). In the phenylpiperazinyl series, compounds 37, 38, 42, and 43 displayed IC50 values against MAGL in the nanomolar range, whilst being between one and two orders of magnitude less potent on the FAAH, while compounds 31 and 32 were potent FAAH inhibitors (IC50 <20 nM) and over 12-fold selective versus MAGL. The key structural determinants driving the structure–activity relationships were explored by the minimization of the inhibitors inside the active site of both enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号