首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Presynaptic neurexins (NRXs) bind to postsynaptic neuroligins (NLs) to form Ca(2+)-dependent complexes that bridge neural synapses. beta-NRXs bind NLs through their LNS domains, which contain a single site of alternative splicing (splice site 4) giving rise to two isoforms: +4 and Delta. We present crystal structures of the Delta isoforms of the LNS domains from beta-NRX1 and beta-NRX2, crystallized in the presence of Ca(2+) ions. The Ca(2+)-binding site is disordered in the beta-NRX2 structure, but the 1.7 A beta-NRX1 structure reveals a single Ca(2+) ion, approximately 12 A from the splice insertion site, with one coordinating ligand donated by a glutamic acid from an adjacent beta-NRX1 molecule. NMR studies of beta-NRX1+4 show that the insertion sequence is unstructured, and remains at least partially disordered in complex with NL. These results raise the possibility that beta-NRX insertion sequence 4 may function in roles independent of neuroligin binding.  相似文献   

2.
Neuroligins (NLs) and leucine-rich repeat transmembrane proteins (LRRTMs) are postsynaptic cell adhesion molecules that bind to presynaptic neurexins. In this paper, we show that short hairpin ribonucleic acid-mediated knockdowns (KDs) of LRRTM1, LRRTM2, and/or NL-3, alone or together as double or triple KDs (TKDs) in cultured hippocampal neurons, did not decrease synapse numbers. In neurons cultured from NL-1 knockout mice, however, TKD of LRRTMs and NL-3 induced an ~40% loss of excitatory but not inhibitory synapses. Strikingly, synapse loss triggered by the LRRTM/NL deficiency was abrogated by chronic blockade of synaptic activity as well as by chronic inhibition of Ca(2+) influx or Ca(2+)/calmodulin (CaM) kinases. Furthermore, postsynaptic KD of CaM prevented synapse loss in a cell-autonomous manner, an effect that was reversed by CaM rescue. Our results suggest that two neurexin ligands, LRRTMs and NLs, act redundantly to maintain excitatory synapses and that synapse elimination caused by the absence of NLs and LRRTMs is promoted by synaptic activity and mediated by a postsynaptic Ca(2+)/CaM-dependent signaling pathway.  相似文献   

3.
Autism encompasses a wide spectrum of disorders arising during brain development. Recent studies reported that sequence polymorphisms in neuroligin-3 (NLGN3) and neuroligin-4 (NLGN4) genes have been linked to autism spectrum disorders indicating neuroligin genes as candidate targets in brain disorders. We have characterized a single mutation found in two affected brothers that substituted Arg451 to Cys in NL3. Our data show that the exposed Cys causes retention of the protein in the endoplasmic reticulum (ER) when expressed in HEK-293 cells. To examine whether the introduction of a Cys in the C-terminal region of other alpha/beta-hydrolase fold proteins could promote the same cellular phenotype, we made homologous mutations in acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) and found a similar processing deficiency and intracellular retention (De Jaco et al., J Biol Chem. 2006, 281:9667-76). NL3, AChE and BChE mutant proteins are recognized as misfolded in the ER, and degraded via the proteasome pathway. A 2D electrophoresis coupled with mass spectrometry based approach was used to analyze proteins co-immunoprecipitating with NL3 and show differential expression of factors interacting with wild type and mutant NL3. We identified several proteins belonging to distinct ER resident chaperones families, including calnexin, responsible for playing a role in the folding steps of the AChE and NLs.  相似文献   

4.
Neuroligins (NLs) are a family of transmembrane proteins that function in synapse formation and/or remodeling by interacting with beta-neurexins (beta-NXs) to form heterophilic cell adhesions. The large N-terminal extracellular domain of NLs, required for beta-NX interactions, has sequence homology to the alpha/beta hydrolase fold superfamily of proteins. By peptide mapping and mass spectrometric analysis of a soluble recombinant form of NL1, several structural features of the extracellular domain have been established. Of the nine cysteine residues in NL1, eight are shown to form intramolecular disulfide bonds. Disulfide pairings of Cys 117 to Cys 153 and Cys 342 to Cys 353 are consistent with disulfide linkages that are conserved among the family of alpha/beta hydrolase proteins. The disulfide bond between Cys 172 and Cys 181 occurs within a region of the protein encoded by an alternatively spliced exon. The disulfide pairing of Cys 512 and Cys 546 in NL1 yields a structural motif unique to the NLs, since these residues are highly conserved. The potential N-glycosylation sequons in NL1 at Asn 109, Asn 303, Asn 343, and Asn 547 are shown occupied by carbohydrate. An additional consensus sequence for N-glycosylation at Asn 662 is likely occupied. Analysis of N-linked oligosaccharide content by mass matching paradigms reveals significant microheterogeneous populations of complex glycosyl moieties. In addition, O-linked glycosylation is observed in the predicted stalk region of NL1, prior to the transmembrane spanning domain. From predictions based on sequence homology of NL1 to acetylcholinesterase and the molecular features of NL1 established from mass spectrometric analysis, a novel topology model for NL three-dimensional structure has been constructed.  相似文献   

5.
Cadherins and neuroligins (NLs) represent two families of cell adhesion proteins that are essential for the establishment of synaptic connections in vitro; however, it remains unclear whether these proteins act in concert to regulate synapse density. Using a combination of overexpression and knockdown analyses in primary hippocampal neurons, we demonstrate that NL1 and N-cadherin promote the formation of glutamatergic synapses through a common functional pathway. Analysis of the spatial relationship between N-cadherin and NL1 indicates that in 14-day in vitro cultures, almost half of glutamatergic synapses are associated with both proteins, whereas only a subset of these synapses are associated with N-cadherin or NL1 alone. This suggests that NL1 and N-cadherin are spatially distributed in a manner that enables cooperation at synapses. In young cultures, N-cadherin clustering and its association with synaptic markers precede the clustering of NL1. Overexpression of N-cadherin at this time point enhances NL1 clustering and increases synapse density. Although N-cadherin is not sufficient to enhance NL1 clustering and synapse density in more mature cultures, knockdown of N-cadherin at later time points significantly attenuates the density of NL1 clusters and synapses. N-cadherin overexpression can partially rescue synapse loss in NL1 knockdown cells, possibly due to the ability of N-cadherin to recruit NL2 to glutamatergic synapses in these cells. We demonstrate that cadherins and NLs can act in concert to regulate synapse formation.  相似文献   

6.
Neurexins (NXs) and neuroligins (NLs) are transsynaptically interacting cell adhesion proteins that play a key role in the formation, maturation, activity-dependent validation, and maintenance of synapses. As complex alternative splicing processes in nerve cells generate a large number of NX and NLs variants, it has been proposed that a combinatorial interaction code generated by these variants may determine synapse identity and network connectivity during brain development. The functional importance of NXs and NLs is exemplified by the fact that mutations in NX and NL genes are associated with several neuropsychiatric disorders, most notably with autism. Accordingly, major research efforts have focused on the molecular mechanisms by which NXs and NLs operate at synapses. In this review, we summarize recent progress in this field and discuss emerging topics, such as the role of alternative interaction partners of NXs and NLs in synapse formation and function, and their relevance for synaptic plasticity in the mature brain. The novel findings highlight the fundamental importance of NX-NL interactions in a wide range of synaptic functions.  相似文献   

7.
A neuraminidase activity in myelin isolated from adult rat brains was examined. The enzyme activity in myelin was first compared with that in microsomes using N-acetylneuramin(alpha 2----3)lactitol (NL) as a substrate. In contrast to the microsomal neuraminidase which exhibited a sharp pH dependency for its activity, the myelin enzyme gave a very shallow pH activity curve over a range between 3.6 and 5.9. The myelin enzyme was more stable to heat denaturation (65 degrees C) than the microsomal enzyme. Inhibition studies with a competitive inhibitor, 2,3-dehydro-2-deoxy-N-acetylneuraminic acid, showed the Ki value for the myelin neuraminidase to be about one-fifth of that for the microsomal enzyme (1.3 X 10(-6) M versus 6.3 X 10(-6) M). The apparent Km values for the myelin and the microsomal enzyme were 1.3 X 10(-4) M and 4.3 X 10(-4) M, respectively. An enzyme preparation that was practically devoid of myelin lipids was then prepared and its substrate specificity examined. The "delipidated enzyme" could hydrolyze fetuin, NL, and ganglioside substrates, including GM1 and GM2. When the delipidated enzyme was exposed to high temperature (55 degrees C) or low pH (pH 2.54), the neuraminidase activities toward NL and GM3 decreased at nearly the same rate. Both fetuin and 2,3-dehydro-2-deoxy-N-acetylneuraminic acid inhibited NL and GM3 hydrolysis. With 2,3-dehydro-2-deoxy-N-acetylneuraminic acid, inhibition of NL was greater than that of GM3; however, the Ki values for each substrate were almost identical. GM3 and GM1 also competitively inhibited the hydrolysis of NL and NL similarly inhibited GM3 hydrolysis by the enzyme. These results indicate that rat brain myelin has intrinsic neuraminidase activities toward nonganglioside as well as ganglioside substrates, and that these two enzyme activities are likely catalyzed by a single enzyme entity.  相似文献   

8.
Neutral lipids (NLs) are apolar oil molecules synthesized in the endoplasmic reticulum bilayer upon diverse biological stimuli. NLs synthesized are released in the hydrophobic core of the bilayer. At a critical concentration, NLs condense by phase separation and nucleate a lipid droplet (LD). After an LD forms, a fraction of NLs can be present in the bilayer but at a concentration below that of the nucleation. Here, we study whether and how the accumulation of NLs alters a lipid bilayer’s mechanical properties. In synthetic systems, we found that NLs proffer unusual bilayer stretching capacities, especially in the presence of negatively curved phospholipids. This impact becomes spectacular when an LD is contiguous with the bilayer and supplies it with NLs. The tested NLs markedly decrease the bilayer area expansion modulus and significantly increase lysis tension but had opposite effects on membrane bending rigidity. Our data unveil how NL molecules modify overall membrane mechanics, the alteration of which may be linked to pathologies or anticancer treatments targeting NLs.  相似文献   

9.
Manganese and copper were released from spinach chloroplasts by NaCN-treatment, though iron was not affected. The Hill reaction activity was also inhibited by this treatment, but was partially recovered by the addition of either Mn2+ or Cu2+, but not of Fe3+. The interaction of Mn2+ with manganese-depleted chloroplasts by NaCN-treatment was studied using 54Mn2+. A Scatchard plot shows the high and low affinity binding sites of Mn2+ on NaCN-treated chloroplast membrane; high affinity binding being specific for NaCN-treated chloroplast with a binding constant, KH, of 1.9 X 10(5) M-1, and a maximum binding number, NH, of 0.0016 g-atom per mole of chlorophyll. The low binding site was also found on untreated chloroplasts; its binding constant, KL, being 1.2 X 10(4) M-1, and its maximum binding number, NL, of 0.0112 g-atom per mole oc chlorophyll at pH 8.2 NH was proportional to the degree of the removal of Mn by NaCN-treatment and was constant at pH 4--9. NL markedly increased at a high pH with a midpoint of pH 7.9 indicating the exposure of a new, similar binding site. Light illumination partially inhibited the binding of Mn2+. Within 1 min in the dark the binding reaction reached equilibrium in the absence of pyrophosphate, however, 20 min were required to transform into pyrophosphate-resistant form. The pH dependence of the binding of Mn2+ with pKa 7.2 and the ineffectiveness of p-chloromercuribenzoate suggest the possible ligand of Mn2+ is the imidazole nitrogen of the histidine residue.  相似文献   

10.
Osteoporosis is one of the leading forms of systemic diseases related to bone metabolism in the world. STARD3 N‐terminal like (STARD3NL) showed robust association with osteoporosis‐related traits. Yet, the molecular functional mechanisms of STARD3NL in osteoblasts is still obscure. In this study, we demonstrated a high level of STARD3NL expression in the bone tissues from the patients with low bone mass and ovariectomized (OVX)‐induced osteoporotic mice. We identified Stard3nl as a potent factor that negatively and positively regulates osteoblast differentiation and cell proliferation, respectively. Furthermore, inhibition of Stard3nl induced β‐catenin gene expression and the nuclear translocation of β‐catenin, as well as Wnt signalling activities, contributing to the activation of Wnt/β‐catenin signalling. Mechanistic studies revealed that Stard3nl bound with Annexin A2 (Anxa2) to suppress β‐catenin expression, resulting into the suppression of Wnt signalling and downstream osteogenic differentiation. Moreover, adeno‐associated virus 9 (AAV9)‐mediated silencing of Stard3nl reversed bone loss in OVX‐induced osteoporotic mice by the injection into the knee joints. Collectively, our study revealed that Stard3nl suppressed osteogenesis via binding with Anxa2, resulting into the inactivation of Wnt signalling. It also highlights the preventive and therapeutic potential of STARD3NL as a specific and novel target for osteoporotic patients.  相似文献   

11.
Two potent inhibitors (compounds 1 and 2) of malarial aspartyl protease, plasmepsin-II, were evaluated against wild type (NL4-3) and multidrug-resistant clinical isolate 769 (MDR) variants of human immunodeficiency virus type-1 (HIV-1) aspartyl protease. Enzyme inhibition assays showed that both 1 and 2 have better potency against NL4-3 than against MDR protease. Crystal structures of MDR protease in complex with 1 and 2 were solved and analyzed. Crystallographic analysis revealed that the MDR protease exhibits a typical wide-open conformation of the flaps (Gly48 to Gly52) causing an overall expansion in the active site cavity, which, in turn caused unstable binding of the inhibitors. Due to the expansion of the active site cavity, both compounds showed loss of direct contacts with the MDR protease compared to the docking models of NL4-3. Multiple water molecules showed a rich network of hydrogen bonds contributing to the stability of the ligand binding in the distorted binding pockets of the MDR protease in both crystal structures. Docking analysis of 1 and 2 showed a decrease in the binding affinity for both compounds against MDR supporting our structure-function studies. Thus, compounds 1 and 2 show promising inhibitory activity against HIV-1 protease variants and hence are good candidates for further development to enhance their potency against NL4-3 as well as MDR HIV-1 protease variants.  相似文献   

12.
Tateno H  Crocker PR  Paulson JC 《Glycobiology》2005,15(11):1125-1135
Mouse sialic acid-binding immunoglobulin-like lectin F (Siglec-F) is an eosinophil surface receptor, which contains an immunoreceptor tyrosine-based inhibitory motif (ITIM) in its cytoplasmic domain, implicating it as a regulator of cell signaling as documented for other siglecs. Here, we show that the sialoside sequence 6'-sulfo-sLe(X) (Neu5Acalpha2-3[6-SO4] Galbeta1-4[Fucalpha1-3]GlcNAc) is a preferred ligand for Siglec-F. In glycan array analysis of 172 glycans, recombinant Siglec-F-Fc chimeras bound with the highest avidity to 6'-sulfo-sLe X. Secondary analysis showed that related structures, sialyl-Lewis X (sLe X) and 6-sulfo-sLe X containing 6-GlcNAc-SO4 showed much lower binding avidity, indicating significant contribution of 6-Gal-SO4 on Siglec-F binding to 6'-sulfo-sLe x. The lectin activity of Siglec-F on mouse eosinophils was "masked" by endogenous cis ligands and could be unmasked by treatment with sialidase. Unmasked Siglec-F mediated mouse eosinophil binding and adhesion to multivalent 6'-sulfo-sLe X structure, and these interactions were inhibited by anti-Siglec-F monoclonal antibody (mAb). Although there is no clear-cut human ortholog of Siglec-F, Siglec-8 is encoded by a paralogous gene that is expressed selectively by human eosinophils and has recently been found to recognize 6'-sulfo-sLe X. These observations suggest that mouse Siglec-F and human Siglec-8 have undergone functional convergence during evolution and implicate a role for the interaction of these siglecs with their preferred 6'-sulfo-sLe X ligand in eosinophil biology.  相似文献   

13.
The aim of the present experiments was to clarify the subunit stoichiometry of P2X2/3 and P2X2/6 receptors, where the same subunit (P2X2) forms a receptor with two different partners (P2X3 or P2X6). For this purpose, four non-functional Ala mutants of the P2X2, P2X3, and P2X6 subunits were generated by replacing single, homologous amino acids particularly important for agonist binding. Co-expression of these mutants in HEK293 cells to yield the P2X2 WT/P2X3 mutant or P2X2 mutant/P2X3 WT receptors resulted in a selective blockade of agonist responses in the former combination only. In contrast, of the P2X2 WT/P2X6 mutant and P2X2 mutant/P2X6 WT receptors, only the latter combination failed to respond to agonists. The effects of α,β-methylene-ATP and 2-methylthio-ATP were determined by measuring transmembrane currents by the patch clamp technique and intracellular Ca(2+) transients by the Ca(2+)-imaging method. Protein labeling, purification, and PAGE confirmed the assembly and surface trafficking of the investigated WT and WT/mutant combinations in Xenopus laevis oocytes. In conclusion, both electrophysiological and biochemical investigations uniformly indicate that one subunit of P2X2 and two subunits of P2X3 form P2X2/3 heteromeric receptors, whereas two subunits of P2X2 and one subunit of P2X6 constitute P2X2/6 receptors. Further, it was shown that already two binding sites of the three possible ones are sufficient to allow these receptors to react with their agonists.  相似文献   

14.
In kinesin X-ray crystal structures, the N-terminal region of the α-1 helix is adjacent to the adenine ring of the bound nucleotide, while the C-terminal region of the helix is near the neck-linker (NL). Here, we monitor the displacement of the α-1 helix within a kinesin monomer bound to microtubules (MTs) in the presence or absence of nucleotides using site-directed spin labeling EPR. Kinesin was doubly spin-labeled at the α-1 and α-2 helices, and the resulting EPR spectrum showed dipolar broadening. The inter-helix distance distribution showed that 20% of the spins have a peak characteristic of 1.4–1.7 nm separation, which is similar to what is predicted from the X-ray crystal structure, albeit 80% were beyond the sensitivity limit (>2.5 nm) of the method. Upon MT binding, the fraction of kinesin exhibiting an inter-helix distance of 1.4–1.7 nm in the presence of AMPPNP (a non-hydrolysable ATP analog) and ADP was 20% and 25%, respectively. In the absence of nucleotide, this fraction increased to 40–50%. These nucleotide-induced changes in the fraction of kinesin undergoing displacement of the α-1 helix were found to be related to the fraction in which the NL undocked from the motor core. It is therefore suggested that a shift in the α-1 helix conformational equilibrium occurs upon nucleotide binding and release, and this shift controls NL docking onto the motor core.  相似文献   

15.
You Lee Son 《FEBS letters》2010,584(18):3862-3866
Liver X receptor (LXR)/retinoid X receptor (RXR) heterodimers have been shown to perform critical functions in cholesterol and lipid metabolism. Here, we have conducted a comparative analysis of the contributions of LXR and RXR binding to steroid receptor coactivator-1 (SRC-1), which contains three copies of the NR box. We demonstrated that the coactivator-binding surface of LXR, but not that of RXR, is critically important for physical and functional interactions with SRC-1, thereby confirming that RXR functions as an allosteric activator of SRC-1-LXR interaction. Notably, we identified NR box-2 and -3 as the essential binding targets for the SRC-1-induced stimulation of LXR transactivity, and observed the competitive in vitro binding of NR box-2 and -3 to LXR.

Structured summary

MINT-7986678, MINT-7986639, MINT-7986700, MINT-7986720, MINT-7986736, MINT-7986760, MINT-7986787: LXR (uniprotkb:Q13133) physically interacts (MI:0915) with SRC1 (uniprotkb:Q15788) and RXR (uniprotkb:P19793) by pull down (MI:0096)MINT-7986596, MINT-7986621: SRC1 (uniprotkb:Q15788) physically interacts (MI:0915) with LXR (uniprotkb:Q13133) by pull down (MI:0096)MINT-7986555, MINT-7986575: LXR (uniprotkb:Q13133) physically interacts (MI:0915) with SRC1 (uniprotkb:Q15788) by two hybrid (MI:0018)MINT-7986808, MINT-7986907, MINT-7986890: SRC1 (uniprotkb:Q15788) binds (MI:0407) to LXR (uniprotkb:Q13133) by pull down (MI:0096)MINT-7986822, MINT-7986848, MINT-7986865: SRC1 (uniprotkb:Q15788) binds (MI:0407) to RXR (uniprotkb:P19793) by pull down (MI:0096)  相似文献   

16.
We developed a common feature pharmacophore model using known antiadipogenic compounds (CFPMA). We identified rohitukine, a reported chromone anticancer alkaloid as a potential hit through in silico mapping of the in-house natural product library on CFPMA. Studies were designed to assess the antiadipogenic potential of rohitukine. Rohitukine was isolated from Dysoxylum binacteriferum Hook. to ⬧95% purity. As predicted by CFPMA, rohitukine was indeed found to be an antiadipogenic molecule. Rohitukine inhibited lipid accumulation and adipogenic differentiation in a concentration- and exposure-time-dependent manner in 3T3-L1 and C3H10T1/2 cells. Rohitukine downregulated expression of PPARγ, CCAAT/enhancer binding protein α, adipocyte protein 2 (aP2), FAS, and glucose transporter 4. It also suppressed mRNA expression of LPL, sterol-regulatory element binding protein (SREBP) 1c, FAS, and aP2, the downstream targets of PPARγ. Rohitukine arrests cells in S phase during mitotic clonal expansion. Rohitukine was bioavailable, and 25.7% of orally administered compound reached systemic circulation. We evaluated the effect of rohitukine on dyslipidemia induced by high-fat diet in the hamster model. Rohitukine increased hepatic expression of liver X receptor α and decreased expression of SREBP-2 and associated targets. Rohitukine decreased hepatic and gonadal lipid accumulation and ameliorated dyslipidemia significantly. In summary, our strategy to identify a novel antiadipogenic molecule using CFPMA successfully resulted in identification of rohitukine, which confirmed antiadipogenic activity and also exhibited in vivo antidyslipidemic activity.  相似文献   

17.

Background

Neocortical lesions (NLs) are an important pathological component of multiple sclerosis (MS), but their visualization by magnetic resonance imaging (MRI) remains challenging.

Objectives

We aimed at assessing the sensitivity of multi echo gradient echo (ME-GRE) T2 *-weighted MRI at 7.0 Tesla in depicting NLs compared to myelin and iron staining.

Methods

Samples from two MS patients were imaged post mortem using a whole body 7T MRI scanner with a 24-channel receive-only array. Isotropic 200 micron resolution images with varying T2 * weighting were reconstructed from the ME-GRE data and converted into R2 * maps. Immunohistochemical staining for myelin (proteolipid protein, PLP) and diaminobenzidine-enhanced Turnbull blue staining for iron were performed.

Results

Prospective and retrospective sensitivities of MRI for the detection of NLs were 48% and 67% respectively. We observed MRI maps detecting only a small portion of 20 subpial NLs extending over large cortical areas on PLP stainings. No MRI signal changes suggestive of iron accumulation in NLs were observed. Conversely, R2 * maps indicated iron loss in NLs, which was confirmed by histological quantification.

Conclusions

High-resolution post mortem imaging using R2 * and magnitude maps permits detection of focal NLs. However, disclosing extensive subpial demyelination with MRI remains challenging.  相似文献   

18.
Interaction between the human immunodeficiency virus type 1 (HIV-1) envelope and the relevant chemokine receptors is crucial for subsequent membrane fusion and viral entry. Although the V3 region of gp120 is known to determine the cell tropism as well as the coreceptor usage, the significance of the binding of the V3 region to the chemokine receptor has not been fully understood. To address this issue, we adopted the pseudotyped virus infection assay in which the V3 region of the T-cell line-tropic (T-tropic) NL4-3 envelope was replaced with a portion of stromal cell-derived factor 1 (SDF-1), the ligand of CXCR4. The V3 region of the NL4-3 envelope expression vector was replaced with three different stretches of SDF-1 cDNA. Expression of each chimeric envelope protein was confirmed by immunoprecipitation and Western blotting. Luciferase reporter viruses were prepared by cotransfection of the pNL4-3.Luc.E(-)R(-) vector and each chimeric envelope expression vector, and the infection assay was then carried out. We showed that pseudotyped viruses with one of the chimeric envelopes, NL4-3/SDF1-51, could infect U87.CD4.CXCR4 but not U87.CD4 or U87.CXCR4 cells and that this infection was inhibited by the ligand of CXCR4, SDF-1beta, by anti-human SDF-1 antibody, or by an anti-CD4 antibody, Leu3a, in a dose-dependent manner. Furthermore, chimeric NL4-3/SDF1-51 gp120 significantly inhibited binding of labeled SDF-1 to CXCR4. It was suggested that replacement of the V3 region of the NL4-3 envelope with SDF-1 preserved the CD4-dependent infectivity of T-tropic HIV-1. These results indicate that binding between the V3 region and the relevant coreceptor is important for viral entry, whether its amino acid sequence is indigenous to the virus or not.  相似文献   

19.
Genome sequencing showed that two proteins in Mycobacterium tuberculosis H37Rv contain the metal binding motif (D/E)X(2)HX(approximately 100)(D/E)X(2)H characteristic of the soluble diiron enzyme superfamily. These putative acyl-ACP desaturase genes desA1 and desA2 were cloned from genomic DNA and expressed in Escherichia coli BL21(DE3). DesA1 was found to be insoluble, but in contrast, DesA2 was a soluble protein amenable to biophysical characterization. Here, we report the 2.0 A resolution X-ray structure of DesA2 determined by multiple anomalous dispersion (MAD) phasing from a Se-met derivative and refinement against diffraction data obtained on the native protein. The X-ray structure shows that DesA2 is a homodimeric protein with a four-helix bundle core flanked by five additional helices that overlay with 192 structurally equivalent amino acids in the structure of stearoyl-ACP Delta9 desaturase from castor plant with an rms difference 1.42 A. In the DesA2 crystals, one metal (likely Mn from the crystallization buffer) was bound in high occupancy at the B-site of the conserved metal binding motif, while the A-site was not occupied by a metal ion. Instead, the amino group of Lys-76 occupied this position. The relationships between DesA2 and known diiron enzymes are discussed.  相似文献   

20.
A population of Xiphinema hunaniense Wang and Wu, 1992 with all four juvenile stages was found in the rhizosphere of Pinus sp. in Hangzhou, Zhejiang, China. Morphometrics of 18 females and 35 juveniles of this population are given herein. Detailed morphology and morphometrics of the four juvenile stages are provided. Further comparisons based on morphometrics of the population with previous studies of the females and the first-stage juveniles of X. hunaniense with X. radicicola are given, and morphological variation in X. hunaniense populations are discussed. A revised polytomous key code of Loof and Luc (1990) for X. hunaniense identification is provided, i.e., A1- B4- C4- D4/5- E1- F2(3)- G2- H2-I3- J4- K2- L1. In addition, the sequence of the D2 and D3 expansion region of the 28S rRNA gene was analyzed and compared with sequences of closely related species downloaded from the NCBI database. Cluster analysis of sequences confirmed and supported the species identifications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号