首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Large scale changes in nuclear DNA amount accompany the evolution of species of higher plants. Much of the nuclear DNA accrued during the evolution of species does not encode genetic information and is selectively neutral. Nonetheless, the pattern of distribution of the excess DNA within and between chromosome complements suggests that there are rigid constraints underlying evolutionary changes in genome organisation. A five-fold increase in the amount of nuclear DNA has occurred in the evolution ofLathyrus species. Not withstanding this massive DNA variation, species show consistently similar patterns in base sequence proliferation, divergence and DNA distribution within and between chromosome complements. Within chromosome complements, the excess DNA is distributed evenly in all chromosomes irrespective of the large differences in chromosome size and, between complements, DNA distribution is discontinuous; species cluster into DNA groups with remarkably regular intervals. Similar constraints govern the frequency and distribution of chiasmata in the chromosome complements. Between species chiasma frequency and nuclear DNA amounts are not correlated but within complements it is positively correlated with the amount of DNA contained in each chromosome.  相似文献   

2.
The study of genome size evolution in a phylogenetic context in related polyploid and diploid lineages can help us to understand the advantages and disadvantages of genome size changes and their effect on diversification. Here, we contribute 199 new DNA sequences and a nearly threefold increase in genome size estimates in polyploid and diploid Veronica (Plantaginaceae) (to 128 species, c. 30% of the genus) to provide a comprehensive baseline to explore the effect of genome size changes. We reconstructed internal transcribed spacer (ITS) and trnL‐trnL‐trnF phylogenetic trees and performed phylogenetic generalized least squares (PGLS), ancestral character state reconstruction, molecular dating and diversification analyses. Veronica 1C‐values range from 0.26 to 3.19 pg. Life history is significantly correlated with 1C‐value, whereas ploidy and chromosome number are strongly correlated with both 1C‐ and 1Cx‐values. The estimated ancestral Veronica 1Cx‐value is 0.65 pg, with significant genome downsizing in the polyploid Southern Hemisphere subgenus Pseudoveronica and two Northern Hemisphere subgenera, and significant genome upsizing in two diploid subgenera. These genomic downsizing events are accompanied by increased diversification rates, but a ‘core shift’ was only detected in the rate of subgenus Pseudoveronica. Polyploidy is important in the evolution of the genus, and a link between genome downsizing and polyploid diversification and species radiations is hypothesized. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 178 , 243–266.  相似文献   

3.
Summary In terms of chromosome morphology, karyotype organisation, taxonomy and genetic relationship as judged from chromosome pairing in the Fl hybrid, A. cepa and A.fistulosum are two closely related species. But large variation in nuclear DNA amounts has occurred during the evolution of the two species. A comparison of the molecular composition of DNA in the two species has confirmed that the excess DNA acquired during evolution was predominantly repetitive sequences (sequences which do not encode genetic information). However, its distribution within the chromosome complements was equal in all chromosomes irrespective of the differences in chromosome size. The even distribution of the excess DNA within complements suggests strong constraints underlying evolutionary changes in genome organisation. The nature of the constraints is discussed, and it is shown that such constraints can influence the direction of karyotype evolution during speciation.  相似文献   

4.
Some representatives of the bivalve family Sphaeriidae are assumed to be polyploid. In this study, 11 sphaeriid species (nine of the genus Pisidium, one of Musculium, and one of Sphaerium) inhabiting central Europe were studied karyologically, 10 of them for the first time. Analysis revealed high chromosome numbers (from 140 to 240). To elucidate the origin of high chromosome numbers, DNA contents were measured by flow cytometry in 5 of the studied species and, for comparison, in S. corneum and S. nucleus, which are known to be diploid (2n=30). Species with high chromosome counts yielded very similar DNA contents that are not higher than in the related species with low diploid numbers. This finding contradicts a possible origin of these species by recent polyploidization or hybridization of related species. Chromosome complements of the investigated species with high chromosome numbers differ from those with low 2n in their small chromosome size and the high proportion of subtelo- or acrocentric chromosomes. This indicates their possible origin either by an ancient polyplodization event followed by chromosomal rearrangements or by multiple chromosome fissions.  相似文献   

5.
The ploidy status of Acipenser mikadoi was examined using nuclear DNA contents, karyotypes and fluorescence in situ hybridization (FISH) with 5.8S + 28S rDNA as a probe. In flow‐cytometrically sorted specimens with 8.2–9.1 pg DNA content per somatic cell, i.e. genetic diploid, the best informative metaphase with 268 chromosomes had 80 biarmed meta‐ or submetacentric (M or SM) chromosomes, 48 monoarmed telocentric (T) chromosomes and 140 microchromosomes. In genetic triploid specimens with 12.6–13.0 pg DNA content, the best informative metaphase with 402 chromosomes showed 120 biarmed M or SM, 72 monoarmed T chromosomes and 210 microchromosomes. The rDNA FISH detected a maximum 18 and 27 signals in the diploid and triploid A. miakdoi, respectively. The obtained findings thus corroborated a clear parallel between nuclear DNA contents and karyological or FISH profiles in the genetic diploid and triploid specimens, suggesting 1.5 times chromosome complements of diploid counterparts or three sets of homologues in the triploid sturgeons. Moreover, the estimated genome size and the observed molecular cytogenetic features in the diploid A. mikadoi strongly suggest that this species is a member of a functional tetraploid group recently proposed in the literature.  相似文献   

6.
The 140+ species of Echeveria have more than 50 gametic chromosome numbers, including every number from 12 through 34 and polyploids to n = ca. 260. With related genera, they comprise an immense comparium of 200+ species that have been interconnected in cultivation by hybrids. Some species with as many as 34 gametic chromosomes include none that can pair with each other, indicating that they are effectively diploid, but other species with fewer chromosomes test as tetraploids. Most diploid hybrids form multivalents, indicating that many translocations have rearranged segments of the chromosomes. Small, nonessential chromosomal remnants can be lost, lowering the number and suggesting that higher diploid numbers (n = 30–34) in the long dysploid series are older. These same numbers are basic to most other genera in the comparium (Pachyphytum, Graptopetalum, Sedum section Pachysedum), and many diploid intergeneric hybrids show very substantial chromosome pairing. Most polyploid hybrids here are fertile, even where the parents belong to different genera and have very different chromosome numbers. This seems possible only if corresponding chromosomes from a polyploid parent pair with each other preferentially, strong evidence for autopolyploidy. High diploid numbers here may represent old polyploids that have become diploidized by loss, mutation, or suppression of duplicate genes, but other evidence for this is lacking. Most species occur as small populations in unstable habitats in an area with a history of many rapid climatic and geological changes, presenting a model for rapid evolution.  相似文献   

7.
Given the paucity of information about genome size in the genus Centaurea, nuclear DNA content of 15 Centaurea taxa, belonging to four subgenera and six different sections, has been investigated for the first time. The sample concerns 21 populations from the Dalmatia region of Croatia. The 2C DNA content and GC percentage were assessed by flow cytometry and chromosome number was determined using standard methods. Genome size of studied Centaurea ranged from 2C=1.67 to 3.72 pg. These results were in accordance with chromosome number and especially with ploidy level that varies throughout this group; 2C DNA values ranged from 1.67 to 3.43 pg for diploid, and from 3.19 to 3.72 for polyploid taxa. No significant intraspecific variations of DNA amount were found between two subspecies of C. visiani and C. ragusina, nor between two varieties of C. gloriosa. However, some populations of C. glaberrima and C. cuspidata showed a significant difference in DNA amount. Three different basic chromosome numbers were observed in studied species (x=9, 10, and 11). The most frequent basic number was x=9. C. rupestris, C. ragusina ssp. ragusina, and C. r. ssp. lungensis possessed x=10 and C. tuberosa x=11. The species with a basic chromosome number of x=9 had a small genome size and the smallest chromosomes (on average 0.09 to 0.12 pg/chromosome) but frequently present polyploidy. Centaurea ragusina ssp. ragusina and C. r. ssp. lungensis had a mean base composition 41.3% GC.  相似文献   

8.
Abstract: Genome size was determined in thirty Austrian species of Sphagnum, using Feulgen absorbance photometry conducted on a video-based image analysis system (CIRES), and for comparison on a scanning cytophotometer (Leitz MPV II) with strongly correlated results. Pisum sativum (1C = 4.42pg DNA) was used for internal standardization. Between species, two levels of ploidy, haploid and diploid, could be unambiguously identified (although this identification remains, strictly speaking, hypothetical, as long as exact parallel chromosome counts are not available). Twenty-six haploid species yielded values from 0.392 pg to 0.506 pg DNA (1C), and four diploid species (including two varieties of S. palustre) from 0.814 pg to 0.952 pg. The average ratio between levels was 1:2.049. Variation between species within sections was lower than between sections. In some cases significant differences between accessions of one species were found. The genome size of Sphagnum palustre presented here strongly deviates from one estimate of this species in the literature.  相似文献   

9.
Chromosome number changes and karyotype evolution play an important role in plant genome diversification and eventually in speciation. The genus Ajuga L. (Lamiaceae) has approximately 50 species distributed in temperate to subtropical regions. Four of these species are currently recognized in Korea (A. decumbens Thunb., A. multiflora Bunge, A. nipponensis Makino and A. spectabilis Nakai). Understanding the karyotype evolution in Ajuga has been hampered by the small size of their chromosomes and symmetrical karyotypes. Here we used classic Feulgen staining to establish chromosome numbers and construct karyotypes of the four species of Ajuga recognized in Korea and flow cytometry was used to study their variation in genome. The chromosome number of all investigated plants was 2n = 32. Still, the 2C DNA content ranged from 2.18 pg (A. decumbens) to 4.53 pg (A. multiflora). While the chromosome numbers were the same for all investigated species, the genome size variation could potentially be used as a taxonomic marker.  相似文献   

10.
The evolution of genome size and ribosomal DNA (rDNA) locus organization was analysed in 23 diploid species of Chenopodium s.l., all of which share the same base chromosome number of x = 9. Phylogenetic relationships among these species were inferred from plastid and nuclear ribosomal internal transcribed spacer (nrITS) DNA sequences. The molecular phylogenetic analyses assigned all analysed species of Chenopodium s.l. to six evolutionary lineages, corresponding to the recent new generic taxonomic treatment of Chenopodium s.l. The distribution of rDNA loci for four species is presented here for the first time using fluorescence in situ hybridization (FISH) with 5S and 35S rDNA probes. Most of the 23 analysed diploid Chenopodium spp. possessed a single subterminally located 35S rDNA locus, except for three species which possessed two 35S rDNA loci. One or two 5S rDNA loci were typically localized subterminally on chromosomes, rarely interstitially. Analyses of rDNA locus numbers in a phylogenetic context resulted in the reconstruction of one locus each of 35S rDNA and 5S rDNA, both in subterminal positions, as the ancestral state. Genome sizes determined using flow cytometry were relatively small (2C value < 2.8 pg), ranging from 0.734 pg in C. schraderianum to 2.721 pg in C. californicum (nearly four‐fold difference), and were often conserved within major phylogenetic lineages, suggesting an adaptive value. The reconstructed ancestral genome size was small for all evolutionary lineages, and changes have probably coincided with the divergence of major lineages. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 179 , 218–235.  相似文献   

11.
New chromosome counts for 9 species and 2 genera of Sapindaceae are presented and compared with a review of all available chromosome numbers of the family. In 4 species diploid numbers differing from previous reports are found. In 4 species of the tribe Paullinieae (S. diversiflora, S. subdentata, C. grandiflorum and C. halicacabum) detailed studies on interphase nucleus structure, condensing behaviour and chromosome banding patterns are presented. The karyological differentiation of Paullinieae is generally characterized by dysploid reduction of chromosome numbers and the increase of chromosome size. Sequential staining of nuclei with CMA/DAPI and Giemsa-C-banding demonstrates diversification of constitutive heterochromatin (= hc) and different types of chromatin organization in Serjania and Cardiospermum. The obvious lack of polyploid series and the karyological evolution within the family is discussed. The outstanding small genome size found in Cardiospermum halicacabum is considered to be due to a secondary loss of DNA in the course of the change to herbaceous growth.  相似文献   

12.
Chromosome counts and genome sizes are reported from six species of Leontopodium: five from the centre of diversity in south‐western China, and L. japonicum from cultivation. Previously published chromosome counts for the genus are also compiled. Genome size (1C) in diploids ranges from 0.93 pg (L. dedeckensii) to 1.14 pg (L. cf. stracheyi) and 1.93 pg for tetraploid L. sinense. Leontopodium artemisiifolium had one pair of heteromorphic chromosomes. Leontopodium japonicum accessions showed variation in ploidy levels. Polyploidy, including autopolyploidy, is frequent in the genus. Variation is seen in basic chromosome number, including between species in the centre of diversity of the genus, where x = 12 or 13, but also within species among previously published counts. This variation does not correspond to currently inferred infrageneric groupings, and indicates both the importance of large‐scale chromosome evolution and the need for more in‐depth taxonomic work in a genus that shows little DNA sequence variation. © 2013 The Linnean Society of London  相似文献   

13.
The karyotypes and C-banding patterns of Chrysomya species C. marginalis, C. phaonis, C. pinguis, C. saffranea, C. megacephala (New Guinean strain), Lucilia sericata, and Protophormia terraenovae are described. All species are amphogenic and have similar chromosome complements (2n = 12), including an XY-XX sex-chromosome pair varying in size and morphology between species. Additionally, the C-banding pattern of the monogenic species Chrysomya albiceps is presented. The DNA contents of these and of further species Chrysomya rufifacies, Chrysomya varipes, and Chrysomya putoria were assessed on mitotic metaphases by Feulgen cytophotometry. The average 2C DNA value of the male genomes ranged from 1.04 pg in C. varipes to 2.31 pg in C. pinguis. The DNA content of metaphase X chromosomes varied from 0.013 pg (= 1.23% of the total genome) in C. varipes to 0.277 pg (12.20%) in L. sericata; that of Y chromosomes ranged from 0.003 pg (0.27%) in C. varipes to 0.104 pg (5.59%) in L. sericata. In most species, the corresponding 5 large chromosome pairs showed similar relative DNA contents. The data suggest that the interspecific DNA differences in most species are mainly due to quantitative variation of (repetitive) sequences lying outside the centromeric heterochromatin blocks of the large chromosomes. The results are also discussed with regard to phylogenetic relationships of some species.  相似文献   

14.
Species relationships in the genus Tulipa   总被引:1,自引:0,他引:1  
The relationships of diploid and polyploid species belonging to the sub-section Eriostemones of the genus Tulipa have been investigated from the point of view of chromosome morphology, relative DNA values, and meiotic pairing properties. Karyotype morphology is basically the same for all species and eight principal chromosome classes can be distinguished. The range of DNA values obtained by Feulgen cytophotometry for the diploid species is relatively small and provides little assistance in ascertaining the pattern of ploidy involved in the evolution of the group. Partial asynapsis and reverse loop pairing in several of the diploids at pachytene reveals a degree of structural differentiation which may be the outcome of hybridity between species. Significantly, these anomalies are rarely encountered at the equivalent tetraploid levels and a scheme is proposed to account for this behaviour.  相似文献   

15.
The technique of DNA flow cytometry was used to study variation in DNA content among different ploidy levels, as well as among diploid species, of Vaccinium section Cyanococcus. In a sample of plants of varying ploidy level, the relative fluorescence intensity (RFI) of nuclei stained with propidium iodide was a function of the number of chromosome sets (x), as represented by the linear equation RFI=3.7x-2.3 (r2=95%). The data indicated that DNA flow cytometry could be useful for the determination of ploidy level at the seedling stage in blueberry. They also suggest that conventional polyploid evolution has occurred in this section of the genus Vaccinium with an increase in nuclear DNA content concurrent with the increase in chromosome number. The nuclear DNA content of diploid species of Vaccinium section Cyanococcus was estimated from the relationship of the observed RFI to an internal known DNA standard (trout red blood cells). A nested analysis of variance indicated significant variation among species, as well as among populations within species, in nuclear DNA content, although this variation was small compared to the variation among ploidy levels. The variation in nuclear DNA content corresponded to the phylogenetic relationships among species determined from previous studies.  相似文献   

16.
Chromosome evolution in Australian rodents   总被引:3,自引:0,他引:3  
The chromosome complements of 188 specimens of 29 species of Australian murid rodents belonging to the subfamilies Pseudomyinae and Hydromyinae and the Uromys/Melomys group have been compared. At least one specimen of 18 different species was successfully C-banded. — The autosomal complements of many (9) diverse Pseudomyinae, one species of Melomys and one Hydromyinae proved to be identical, comprising 48 elements in the diploid set, the two smallest autosomal pairs of which are metacentric. No other karyotype is common to more than one species. From this we conclude that these three groups have been derived from a common ancestor which also possessed such a karyotype. The genus Zyzomys is exceptional since it possesses only 44 elements and lacks the two smallest metacentrics. — Karyotypic evolution within this apparently single phyletic line has been remarkably conservative, only three rearrangements being required to derive the most divergent karyotype. Moreover most of the observed rearrangements involve pericentric inversions and only one example of a fusion was found. Considerable differences in heterochromatin content, as determined by C-banding, occur between species however. Two species proved exceptional in this respect, namely Notomys cervinus and Uromys caudimaculatus. N. cervinus possesses numerous heterochromatic short arms. In U. caudimaculatus, there is a striking difference between northern and southern populations; in the former heterochromatin is present principally in the telomeric areas of the conventional A-chromosomes whereas in the latter it is found as separate supernumerary chromosomes. — In contrast to the autosomes, the X and Y chromosomes show high inter- and intra-specific variability in both size and morphology. All of this variability can be explained in terms of variation in heterochromatin content. Moreover the amount of heterochromatin in the X and Y chromosomes is highly correlated both within and between species. The Y chromosome of Uromys caudimaculatus is, however, distinctive in that it lacks C-banding.  相似文献   

17.
There is approximately a doubling of the total nuclear DNA between the 8 Lathyrus species and there are significant differences in the amounts of DNA in euchromatin and heterochromatin. Between the 8 species chiasma frequency and total nuclear DNA are not correlated but within complements it is positively correlated with the amount of DNA in the chromosomes. There is no significant correlation between chiasma frequency and euchromatin DNA nor between chiasma frequency and heterochromatin DNA among species, but among chromosomes, as with total DNA, it is positively correlated with euchromatin DNA and heterochromatin DNA. Results show that despite the large differences in DNA amounts between species there are genomic constraints underlying the frequency and distribution of chiasmata in the chromosome complements.  相似文献   

18.
Prospero is a Mediterranean autumn-flowering genus ofHyacinthaceae commonly classified inScilla asS. autumnalis andS. obtusifolia. Extensive dysploid and polyploid variation has been reported. In the present study 77 diploid accessions from the western to the eastern part of the area of distribution, the major part being from continental Greece and Crete, have been analysed for karyotype structure and, in part, for genome size. Methods employed were acetocarmine staining, Giemsa C-banding, fluorochrome staining mainly with chromomycin A3/DAPI, silver impregnation, and Feulgen densitometry. Banded idiograms were established with a computer assisted karyotype analysis procedure. Chromosome numbers were 2n = 8 inP. obtusifolium, and 2n = 12 and 14 inP. autumnale s. l. Dispensable euchromatic chromosome segments and different types of B chromosomes occurred. Among the cytotypes with 2n = 14 two karyotypes from Turkey differed from each other and from the rest in form, position of the nucleolar constriction, and in genome size. The remaining accessions were similar in karyotype shape but three levels of genome size could be discerned, the highest (1C = 7.50 pg) being found on the Iberian Peninsula, an intermediate one on Corsica and Malta, and the lowest (4.27 pg) in the Aegean. The karyotype with 2n = 12 had an intermediate genome size, and that ofP. obtusifolium a relatively low one. Heterochromatin amount was generally low, but some karyotypes showed characteristic banding patterns. The relationship between the chromosome complements with 2n = 14, 12 and 8 is discussed on the basis of idiograms and DNA amounts.The authors respectfully dedicate this papers to emer. o. Prof. Dr.Elisabeth Tschermak-Woess on the occasion of her 80th birthday.  相似文献   

19.
Centromeric repetitive DNA sequences in the genus Brassica   总被引:1,自引:0,他引:1  
Representatives of two major repetitive DNA sequence families from the diploid Brassica species B. campestris and B. oleracea were isolated, sequenced and localized to chromosomes by in situ hybridization. Both sequences were located near the centromeres of many chromosome pairs in both diploid species, but major sites of the two probes were all on different chromosome pairs. Such chromosome specificity is unusual for plant paracentromeric repetitive DNA. Reduction of stringency of hybridization gave centromeric hybridization sites on more chromosomes, indicating that there are divergent sequences present on other chromosomes. In tetraploid species derived from the diploids, the number of hybridization sites was different from the sum of the diploid ancestors, and some chromosomes had both sequences, indicating relatively rapid homogenization and copy number evolution since the origin of the tetraploid species.  相似文献   

20.
Nuclear DNA variation in Tephrosia   总被引:1,自引:1,他引:0  
2C nuclear DNA amounts and chromatin areas were estimated in twenty diploid and tetraploid (2n=22, 44; x=11) species of the genus Tephrosia. There were significant differences between the species both in DNA content and chromatin area. The divergence and evolution of Tephrosia species was accompanied by large scale quantitative DNA variation, ranging from 1.3 picograms in T. strigosa to 7.4 in T. pumila, and the DNA amount varied independently of the chromosome number. The element of discontinuity in the distribution of DNA changes between complements was quite regular. The species fell into eight distinct cluster groups with an interval of 0.74 pg between the two adjoining groups. In the light of the karyotypic and nuclear DNA differences between T. leptostachya, T. hamiltonii, T. wallichii and T. purpurea, T. incana and T. villosa, T. subtriglora and T. multiflora, these is indeed a case for considering them as separate species and not synonyms of T. purpurea, T. villosa and T. multiflora. DNA density increased with increase in DNA contents. As expected, the DNA content of colchitetraploids (C0, C1, C2) was almost double to the amount present in their corresponding diploids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号