首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The antigen-binding fragments (Fab) of antibodies are powerful tools in clinical therapy, molecular diagnostics and basic research. However, their principal applications require pure recombinant molecules in large amounts, which are challenging to obtain. Severe limitations in yield, folding and functionality are commonly encountered in bacterial production of Fab fragments. Secretion into the oxidizing periplasm generally results in low yield, whereas expression in the reducing cytoplasmic environment produces unfolded or non-functional protein. We hypothesized that an impaired reducing environment of the cytoplasm would permit correctly folded, functional cytoplasmic expression of Fabs with high yield. We used the Escherichia coli strain FA113, which has no activity of both thioredoxin and glutathione reductase, and thus has an oxidizing cytoplasmic environment. With the newly constructed vector pFAB1 we tested the cytoplasmic expression of two Fab fragments, which recognize the integral membrane protein NhaA, a bacterial Na(+)/H(+) antiporter. These antibodies differ in terms of DNA sequence and stability. Both antibody fragments were produced to very high yields (10-30 mg/l from bacterial cultures at an A(600 nm)=1.2-1.3). This is a factor 50-250 times higher than any other reported over-expression strategy for Fab fragments and currently represents the highest production rate ever been reported for antibody Fab fragments in bacteria grown to similar cell densities. The fragments are fully functional and can be efficiently purified by His-tag chromatography. Expression of active Fab fragments in the bacterial cytoplasm unlocks the possibility of using antibody specific targeting in an intracellular environment. Such a capacity opens new perspectives for investigating metabolic and regulatory pathways in vivo and also provides a powerful selection system for functional genomics.  相似文献   

2.
Fab59 is a rationally-designed antibody fragment (Fab) that mimics the activity of the cytokine thrombopoietin (TPO). Fab59 activity was initially detected directly from bacterial supernatants in a cell-based assay and was subsequently estimated to be equipotent to TPO using purified material. However, the expression of Fab59 was insufficient to support in vivo characterization of the Fab due to extremely low expression levels from its initial phage display expression vector. To boost expression, a new expression vector was designed and constructed, and Fab59 light chain codons were optimized for bacterial expression. However, from this a new challenge arose, in that the codon-optimized Fab59 was more toxic to Escherichia coli cells than parental Fab59. Co-expression of the bacterial chaperon protein Skp alleviated this toxicity. A two-step purification method was used to isolate monomeric Fab59 from the periplasm. Although Fab59 was prone to form aggregates during the purification process, buffer modification efficiently eliminated this problem. Overall, optimization of Fab59 expression and purification achieved a 100-fold increase in Fab59 production in E. coli relative to the starting yield. The yield of purified monomeric Fab59 from a shake flask reached up to 3.5mg/L, which was sufficient to support testing of the agonist activity of purified monomeric Fab59 in vivo. Even higher yields may be achieved by purification of Fab present in the culture media, as Skp most significantly increased accumulation of Fab59 in that location.  相似文献   

3.
Fibrolase is a non-hemorrhagic zinc metalloproteinase found in southern copperhead snake venom (Agkistrodon contortrix contortrix). It is capable of degrading fibrin clots that result from purified fibrinogen or blood plasma. The DNA of fibrolase was amplified by recursive PCR, and cloned into the pET25b(+) expression vector. The effect of co-expression of signalless versions of catalysts or molecular chaperones FkpA, Skp and DsbC in cytoplasm was examined. When co-expressed with DsbC, compared to the totally insoluble inclusion bodies of fibrolase expressed separately, more than 90 % of recombinant fibrolase was soluble, according to denaturing polyacrylamide gel electrophoresis analysis. We also determined that FkpA and Skp had no effects on the solubility of target protein when co-expressed with fibrolase in Escherichia coli. Fibrolase was successfully purified using metal ion affinity chromatography and hydrophobic chromatography, and a maximum yield of 20 mg/L fibrolase was obtained. Fibrinolytic activity of recombinant fibrolase was demonstrated using fibrin plate assays and fibrinogen hydrolysis.  相似文献   

4.
5.

Background

S-phase kinase protein 2 (Skp2), an oncogenic protein, is a key regulator in different cellular and molecular processes, through ubiquitin-proteasome degradation pathway. Increased levels of Skp2 are observed in various types of cancer and associated with poor prognosis. However, in human breast carcinomas, the underlying mechanism and prognostic significance of cytoplasmic Skp2 is still undefined.

Methods

To investigate the role of cytoplasmic Skp2 expression in human breast carcinomas, we immnohistochemically assessed cytoplasmic Skp2, p-Akt1, and p27 expression in 251 patients with invasive ductal carcinomas of the breast. Association of cytoplasmic Skp2 expression with p-Akt1 and p27 was analyzed as well as correspondence with other clinicopathological parameters. Disease-free survival and overall survival were determined based on the Kaplan-Meier method and Cox regression models.

Results

Cytoplasmic of Skp2 was detected in 165 out of 251 (65.7%) patients. Cytoplasmic Skp2 expression was associated with larger tumor size, more advanced histological grade, and positive HER2 expression. Increased cytoplasmic Skp2 expression correlated with p-Akt1 expression, with 54.2% (51/94) of low p-Akt1-expressing breast carcinomas, but 72.6% (114/157) of high p-Akt1-expressing breast carcinomas exhibiting cytoplasmic Skp2 expression. Elevated cytoplasmic Skp2 expression with low p-Akt1 expression was associated with poor disease-free and overall survival (DFS and OS), and Cox regression models demonstrated that cytoplasmic Skp2 expression was an independent prognostic marker for invasive breast carcinomas.

Conclusion

Cytoplasmic Skp2 expression is associated with aggressive prognostic factors, such as larger tumor size, and advanced histological grade of the breast cancers. Results demonstrate that combined cytoplasmic Skp2 and p-Akt1 expression may be prognostic for patients with invasive breast carcinomas, and cytoplasmic Skp2 may serve as a potential therapeutic target.  相似文献   

6.
Expression of the leaderless pac gene (LL pac), which lacks the coding region for the signal peptide of penicillin acylase (PAC), in Escherichia coli was conducted. It was demonstrated that the PAC precursor, proPAC, can be produced and even processed to form mature PAC in the cytoplasm, indicating that the posttranslational processing steps for PAC maturation can occur in both the periplasm and the cytoplasm of E. coli. The outcome of proPAC folding and PAC maturation could be affected by several factors, such as inducer type, proPAC formation rate, and chaperone availability. Misfolding of proPAC in the cytoplasm could be partially resolved through the coexpression of cytoplasmic chaperones, such as trigger factor, GroEL/ES, or DnaK/J-GrpE. The three chaperones tested showed different extents of the effect on proPAC solublization and PAC maturation, and trigger factor had the most prominent one. However, the chaperone-mediated solublization of proPAC did not guarantee its maturation, which is usually limited by the first autoproteolytic step. It was observed that arabinose could act as an effective inducer for the induction of LL pac expression regulated by the lac-derived promoter system of trc. In addition, PAC maturation could be highly facilitated by arabinose supplementation and coexpression of trigger factor, suggesting that the coordination of chaperone systems with proper culture conditions could dramatically impact recombinant protein production. This study suggests that folding/misfolding of proPAC could be a major step limiting the overproduction of PAC in E. coli and that the problem could be resolved through the search for appropriate chaperones for coexpression. It also demonstrates the analogy in the issues of proPAC misfolding as well as the expression bottleneck occurring in the cytoplasm (i.e., LL pac expression) and those occurring in the periplasm (i.e., wild-type pac expression).  相似文献   

7.
Using the well-characterized antibody McPC603 as a model, we had found that the Fv fragment can be isolated from Escherichia coli as a functional protein in good yields, whereas the amount of the correctly folded Fab fragment of the same antibody produced under identical conditions is significantly lower. In this paper, we analyse the reasons for this difference. We found that a variety of signal sequences function in the secretion of the isolated chains of the Fab fragment or in the co-secretion of both chains in E.coli. The low yield of functional Fab fragment is not caused by inefficient expression or secretion in E.coli, but by inefficient folding and/or assembly in the periplasm. We compared the folding yields for the Fv and the Fab fragment in the periplasm under various conditions. Several diagnostic framework variants were constructed and their folding yields measured. The results show that substitutions affecting cis-proline residues and those affecting various disulphide bonds in the protein are by themselves insufficient to dramatically change the partitioning of the folding pathway to the native structure, and the cause must lie in a facile aggregation of folding intermediates common to all structural variants. However, all structural variants could be obtained in native form, demonstrating the general utility of the secretory expression strategy.  相似文献   

8.
The periplasmic chaperones Skp, SurA, and DegP are implicated in the biogenesis of outer membrane proteins (OMPs) in Escherichia coli. Here, we investigated whether these chaperones exert similar functions in Neisseria meningitidis. Although N. meningitidis does not contain a homolog of the protease/chaperone DegP, it does possess a homolog of another E. coli protein, DegQ, which can functionally replace DegP when overproduced. Hence, we examined whether in N. meningitidis, DegQ acts as a functional homolog of DegP. Single skp, surA, and degQ mutants were easily obtained, showing that none of these chaperones is essential in N. meningitidis. Furthermore, all combinations of double mutants were generated and no synthetic lethality was observed. The absence of SurA or DegQ did not affect OMP biogenesis. In contrast, the absence of Skp resulted in severely lower levels of the porins PorA and PorB but not of other OMPs. These decreased levels were not due to proteolytic activity of DegQ, since porin levels remained low in a skp degQ double mutant, indicating that neisserial DegQ is not a functional homolog of E. coli DegP. The absence of Skp resulted in lower expression of the porB gene, as shown by using a P(porB)-lacZ fusion. We found no cross-species complementation when Skp of E. coli or N. meningitidis was heterologously expressed in skp mutants, indicating that Skp functions in a species-specific manner. Our results demonstrate an important role for Skp but not for SurA or DegQ in OMP biogenesis in N. meningitidis.  相似文献   

9.
目的:构建一株表达TNF-α Fab'抗体的大肠杆菌工程菌,并设计一种高效实用的策略以促进大肠杆菌周质空间的可溶性Fab'抗体表达。方法:首先,通过更换不同表达载体,改变轻链和重链顺序,更换信号肽,共表达分子伴侣(Skp)、二硫键合成酶(Dsbc)、肽基辅氨酰顺反异构酶(PPIB)、二硫键异构酶(hPDI)、核酸酶(Nuclease),以评估对Fab'抗体表达量的改善。其次,纯化表达的Fab'抗体。通过周质提取、Q阴离子交换柱净化、苯基柱捕获、Protein L柱亲和三步纯化方案得到高纯度的Fab'抗体。最终将纯化后的Fab'抗体进行亲和力测定。结果:提高正确组装的Fab'抗体表达量的策略有——将目的蛋白构建至pET-30a载体;重链在前、轻链在后;轻、重链采用相异的信号肽;共表达hPDI。周质提取液中的Fab'抗体浓度达到588.0mg/L提取液,纯化后产量可达28.2mg/L发酵液,总回收率为32.0%,纯度为90.9%。Fab'抗体亲和力为(5.8±3.0)×10-9mol/L,体外细胞学活性IC50为(5.2±2.4)×10-11mol/L。结论:通过大肠杆菌工程菌分子构建方式的优化,得到了一株高效表达可溶性Fab'抗体的工程菌株,为可溶性小分子抗体的规模化生产奠定了研究基础。  相似文献   

10.
The success of recombinant antibody fragments as diagnostic reagents and therapeutic agents depends on the availability of sufficient functional material. We have produced a bacterial expression vector that combines high-level expression driven by a modified Shine-Dalgarno sequence with the periplasmic chaperonin Skp. Using this vector, we are able to obtain higher yields of soluble antibody fragments from cultures without the need for supplementation of the culture medium during expression. The fragments produced in the presence of the Skp show improved antigen binding activity compared to when the chaperonin is absent.  相似文献   

11.
The expression of a monoclonal antibody Fab fragment in Escherichia coli strain RB791/pComb3, induced with either lactose or isopropyl-beta-D-thiogalactoside (IPTG), was compared to determine if lactose might provide an inexpensive alternative to induction with IPTG. Induction of Fab expression imposed a metabolic load on the recombinant cells, resulting in lower final cell yields compared to the non-induced controls. An IPTG concentration of 0.05 mM was sufficient to achieve maximal expression of soluble Fab protein when inducing in the early-, mid-, or late-log phases of batch cultures grown using either glucose or glycerol as a carbon source. The largest overall yield of Fab fragments when using 0.05 mM IPTG was achieved by increasing the final yield of cells through glycerol feeding following induction in late-log phase. Lactose was as effective as IPTG for inducing Fab expression in E. coli RB791/pComb3. The greatest overall level of Fab expression was found when cells grown on glycerol were induced with 2 g/L lactose in late-log phase. Since the cost of 0.05 mM of IPTG is significantly greater than the cost of 2 g/L lactose, lactose provides an inexpensive alternative to IPTG for inducing the expression of Fab fragments, and possibly other recombinant proteins, from the E. coli lac promoter.  相似文献   

12.
Domoic acid is a potent neurotoxin that can lead to amnesic shellfish poisoning in humans through ingestion of contaminated shellfish. We have produced and purified an anti-domoic acid single-chain Fragment variable (scFv) antibody fragment from the Escherichia coli periplasm. Yields of functional protein were increased by up to 100-fold upon co-production of E. coli DnaKJE molecular chaperones but co-overproduction of GroESL led to a reduction in solubility of the scFv. Co-production of the peptidyl-prolyl isomerase trigger factor resulted in accumulation of unprocessed scFv in the E. coli cytoplasm. This was due to an apparent bottleneck in translocation of the cytoplasmic membrane by the recombinant polypeptide. Co-expression of the E. coli disulfide bond isomerase dsbC increased scFv yields by delaying lysis of the host bacterial cells though this effect was not synergistic with molecular chaperone co-production. Meanwhile, use of a cold-shock promoter for protein production led to accumulation of greater amounts of scFv polypeptide which was predominantly in insoluble form and could not be rescued by chaperones. Purification of the scFv was achieved using an optimised metal affinity chromatography procedure and the purified protein bound domoic acid when immobilised on a mesoporous silicate support. The work outlines the potential benefit of applying a molecular chaperone/folding catalyst screening approach to improve antibody fragment production for applications such as sensor development.  相似文献   

13.
Skp2 over-expression has been observed in many human cancers. However, the mechanisms underlying elevated Skp2 expression have remained elusive. We recently reported that Akt1, but not Akt2, directly controls Skp2 stability by interfering with its association with APC/Cdh1. As a result, Skp2 degradation is protected in cancer cells with elevated Akt activity. This finding expands our knowledge of how specific kinase cascades influence proteolysis governed by APC/Cdh1 complexes. However, it awaits further investigation to elucidate whether the PI3K/Akt circuit affects other APC/Cdh1 substrates. Our results further strengthen the argument that different Akt isoforms might have distinct, even opposing functions in the regulation of cell growth or migration. In addition, we noticed that Ser72 is localized in a putative Nuclear Localization Sequence (NLS), and that phosphorylation of Ser72 disrupts the NLS and thus promotes Skp2 cytoplasmic translocation. This finding links elevated Akt activity with the observed cytoplasmic Skp2 staining in aggressive breast and prostate cancer patients. Furthermore, it provides the rationale for the development of specific Akt1 inhibitors as efficient anti-cancer therapeutic agents.  相似文献   

14.
Expression of the leaderless pac gene (LL pac), which lacks the coding region for the signal peptide of penicillin acylase (PAC), in Escherichia coli was conducted. It was demonstrated that the PAC precursor, proPAC, can be produced and even processed to form mature PAC in the cytoplasm, indicating that the posttranslational processing steps for PAC maturation can occur in both the periplasm and the cytoplasm of E. coli. The outcome of proPAC folding and PAC maturation could be affected by several factors, such as inducer type, proPAC formation rate, and chaperone availability. Misfolding of proPAC in the cytoplasm could be partially resolved through the coexpression of cytoplasmic chaperones, such as trigger factor, GroEL/ES, or DnaK/J-GrpE. The three chaperones tested showed different extents of the effect on proPAC solublization and PAC maturation, and trigger factor had the most prominent one. However, the chaperone-mediated solublization of proPAC did not guarantee its maturation, which is usually limited by the first autoproteolytic step. It was observed that arabinose could act as an effective inducer for the induction of LL pac expression regulated by the lac-derived promoter system of trc. In addition, PAC maturation could be highly facilitated by arabinose supplementation and coexpression of trigger factor, suggesting that the coordination of chaperone systems with proper culture conditions could dramatically impact recombinant protein production. This study suggests that folding/misfolding of proPAC could be a major step limiting the overproduction of PAC in E. coli and that the problem could be resolved through the search for appropriate chaperones for coexpression. It also demonstrates the analogy in the issues of proPAC misfolding as well as the expression bottleneck occurring in the cytoplasm (i.e., LL pac expression) and those occurring in the periplasm (i.e., wild-type pac expression).  相似文献   

15.
The periplasmic seventeen kilodalton protein (Skp) chaperone has been characterized primarily for its role in outer membrane protein (OMP) biogenesis, during which the jellyfish-like trimeric protein encapsulates partially folded OMPs, protecting them from the aqueous environment until delivery to the BAM outer membrane protein insertion complex. However, Skp is increasingly recognized as a chaperone that also assists in folding soluble proteins in the bacterial periplasm. In this capacity, Skp coexpression increases the active yields of many recombinant proteins and bacterial virulence factors. Using a panel of single-chain antibodies and a single-chain T-cell receptor (collectively termed scFvs) possessing varying stabilities and biophysical characteristics, we performed in vivo expression and in vitro folding and aggregation assays in the presence or absence of Skp. For Skp-sensitive scFvs, the presence of Skp during in vitro refolding assays reduced aggregation but did not alter the observed folding rates, resulting in a higher overall yield of active protein. Of the proteins analyzed, Skp sensitivity in all assays correlated with the presence of folding intermediates, as observed with urea denaturation studies. These results are consistent with Skp acting as a holdase, sequestering partially folded intermediates and thereby preventing aggregation. Because not all soluble proteins are sensitive to Skp coexpression, we hypothesize that the presence of a long-lived protein folding intermediate renders a protein sensitive to Skp. Improved understanding of the bacterial periplasmic protein folding machinery may assist in high-level recombinant protein expression and may help identify novel approaches to block bacterial virulence.  相似文献   

16.
E J Stewart  F Aslund    J Beckwith 《The EMBO journal》1998,17(19):5543-5550
Cytoplasmic proteins do not generally contain structural disulfide bonds, although certain cytoplasmic enzymes form such bonds as part of their catalytic cycles. The disulfide bonds in these latter enzymes are reduced in Escherichia coli by two systems; the thioredoxin pathway and the glutathione/glutaredoxin pathway. However, structural disulfide bonds can form in proteins in the cytoplasm when the gene (trxB) for the enzyme thioredoxin reductase is inactivated by mutation. This disulfide bond formation can be detected by assessing the state of the normally periplasmic enzyme alkaline phosphatase (AP) when it is localized to the cytoplasm. Here we show that the formation of disulfide bonds in cytoplasmic AP in the trxB mutant is dependent on the presence of two thioredoxins in the cell, thioredoxins 1 and 2, the products of the genes trxA and trxC, respectively. Our evidence supports a model in which the oxidized forms of these thioredoxins directly catalyze disulfide bond formation in cytoplasmic AP, a reversal of their normal role. In addition, we show that the recently discovered thioredoxin 2 can perform many of the roles of thioredoxin 1 in vivo, and thus is able to reduce certain essential cytoplasmic enzymes. Our results suggest that the three most effective cytoplasmic disulfide-reducing proteins are thioredoxin 1, thioredoxin 2 and glutaredoxin 1; expression of any one of these is sufficient to support aerobic growth. Our results help to explain how the reducing environment in the cytoplasm is maintained so that disulfide bonds do not normally occur.  相似文献   

17.
Crystallizing RNA has been an imperative and challenging task in the world of RNA research. Assistive methods such as chaperone-assisted RNA crystallography (CARC), employing monoclonal antibody fragments (Fabs) as crystallization chaperones have enabled us to obtain RNA crystal structures by forming crystal contacts and providing initial phasing information. Despite the early successes, the crystallization of large RNA-Fab complex remains a challenge in practice. The possible reason for this difficulty is that the Fab scaffold has not been optimized for crystallization in complex with RNA. Here, we have used the surface entropy reduction (SER) technique for the optimization of ΔC209 P4-P6/Fab2 model system. Protruding lysine and glutamate residues were mutated to a set of alanines or serines to construct Fab2SMA or Fab2SMS. Expression with the shake flask approach was optimized to allow large scale production for crystallization. Crystal screening shows that significantly higher crystal-forming ratio was observed for the mutant complexes. As the chosen SER residues are far away from the CDR regions of the Fab, the same set of mutations can now be directly applied to other Fabs binding to a variety of ribozymes and riboswitches to improve the crystallizability of Fab-RNA complex.  相似文献   

18.
Skp1 is an adaptor-like protein in E3(SCF)-ubiquitin ligases and other multiprotein complexes of the cytoplasm and nucleus. In Dictyostelium, Skp1 is modified by an unusual pentasaccharide containing a Galalpha1-Fuc linkage, whose formation is examined here. A cytosolic extract from Dictyostelium was found to yield, after 2400-fold purification, an activity that could transfer Gal from UDP-Gal to both a Fuc-terminated glycoform of Skp1 and synthetic Fuc conjugates in the presence of Mn(2+) and dithiothreitol. The microsomal fraction was devoid of activity. The linkage formed was Galalpha1,3Fuc based on co-chromatography with only this synthetic isomer conjugate, and sensitivity to alpha1,3/6-galactosidase. Skp1 exhibited an almost 1000-fold lower K(m) and 35-fold higher V(max) compared with a simple alpha-fucoside, but this advantage was abolished by denaturation or alkylation of Cys residues. A comparison of a complete series of synthetic glycosides representing the non-reducing terminal mono-, di-, and trisaccharides of Skp1 revealed, surprisingly, that the disaccharide is most active owing primarily to a V(max) advantage, but still much less active than Skp1 itself because of a K(m) difference. These findings indicate that alpha-GalT1 is a cytoplasmic enzyme whose modification of Skp1 requires proper presentation of the terminal acceptor disaccharide by a folded Skp1 polypeptide, which correlates with previous evidence that the Galalpha1,3Fuc linkage is deficient in expressed mutant Skp1 proteins.  相似文献   

19.
Protein secretion in Gram-negative bacteria is essential for both cell viability and pathogenesis. The vast majority of secreted proteins exit the cytoplasm through a transmembrane conduit called the Sec translocon in a process that is facilitated by ancillary modules, such as SecA, SecDF-YajC, YidC, and PpiD. In this study we have characterized YfgM, a protein with no annotated function. We found it to be a novel ancillary subunit of the Sec translocon as it co-purifies with both PpiD and the SecYEG translocon after immunoprecipitation and blue native/SDS-PAGE. Phenotypic analyses of strains lacking yfgM suggest that its physiological role in the cell overlaps with the periplasmic chaperones SurA and Skp. We, therefore, propose a role for YfgM in mediating the trafficking of proteins from the Sec translocon to the periplasmic chaperone network that contains SurA, Skp, DegP, PpiD, and FkpA.  相似文献   

20.
Skp2 (S-phase kinase associated protein 2) controls progression from G- to S-phase by promoting the proteolysis of the cyclin dependent kinase inhibitor p27KIP1. Despite the fact that a p27KIP1 decrease has been documented in melanoma progression, the role of Skp2 in these tumours is unknown. We therefore examined by immunohistochemistry the expression of Skp2, p27KIP1 and Ki-67 in 10 naevi (Ns), 15 superficial spreading melanomas (SSMs), 10 nodular melanomas (NMs) and 14 melanoma metastases (Ms). Nuclear Skp2 expression augmented with increasing malignancy (Ns: 1.4%, SSMs: 5.6%, NMs: 17.3%, Ms: 19.1%). In all tumours nuclear Skp2 expression correlated with Ki-67 (p=0.024) and inversely with p27KIP1 (p=0.007). A cytoplasmic reaction for Skp2 was also observed in most tumours and its expression decreased from Ns (12.3%) to SSMs (7.9%) and NMs (4.5%). In contrast, Ms showed an increase of cytoplasmic Skp2 (11.9%) that correlated with its nuclear expression (p=0.016). While nuclear Skp2 expression correlated with the pT-level (p=0.023), Clark-level (p=0.023) and Breslow index (p=0.019), the cytoplasmic Skp2 expression might be of biological significance only in NMs since it correlated with tumour depth (p=0.02) and pT-level (p=0.025). Our data suggests that Skp2 could contribute to melanoma progression. This is further highlighted by the fact that vertical growth phase (VGP) melanomas show significant higher nuclear Skp2 expressions when compared with the harmless radial growth phase (RGP) (p=0.047). Also nuclear Skp2 expression correlates with a reduced survival time (p=0.025) in melanoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号